Proximal Gradient Method

Pontus Giselsson

Today's lecture

- Proximal gradient method
- Key properties for convergence

Problem formulation

• Empirical risk minimization problems are of form

$$\underset{x}{\text{minimize}} \underbrace{\frac{1}{N} \sum_{i=1}^{N} f_i(x)}_{f(x)} + g(x)$$

- We assume that:
 - all f_i and g are convex
 - all f_i are differentiable with L_i Lipschitz gradient

$$\|\nabla f_i(x) - \nabla f_i(y)\| \le L_i \|x - y\|$$

- f has L-Lipschitz gradient
- g is not necessarily differentiable (1-norm, indicator of set)
- g is (typically) separable (often with $g_1 = \ldots = g_n$)

$$g(x) = \sum_{i=1}^{n} g_i(x_i)$$

• (Note x and y are variables here, not data! Also x_i is *i*th element)

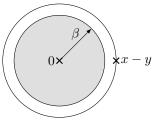
Lipschitz continuity

• The gradient ∇f is $\beta\text{-Lipschitz}$ continuous if

$$\|\nabla f(x) - \nabla f(y)\| \le \beta \|x - y\|$$

holds for all x, y

• Graphical representation ($\nabla f(x) - \nabla f(y)$ in gray area)



• 1-Lipschitz is called *nonexpansive*

Gradient method with Lipschitz gradient

- Let γ be such that $\gamma \nabla f$ is $\frac{1}{2}$ -Lipschitz
- Gradient method

$$x_{k+1} := (I - \gamma \nabla f) x_k$$

tries to solve problem (which is special case with $g \equiv 0$):

 $\underset{x}{\operatorname{minimize}} f(x)$

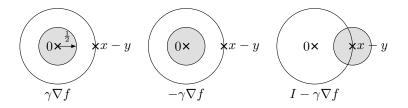
• Problem solved if $\nabla f(x^{\star}) = 0$, i.e., if

$$x^{\star} = (I - \gamma \nabla f) x^{\star},$$

i.e., x^* is fixed-point of forward (gradient) step $(I - \gamma \nabla f)$

Gradient mapping properties

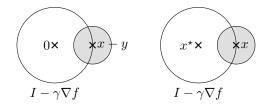
- The gradient mapping $G := I \gamma \nabla f$ satisfies
- (recall $\gamma \nabla f$ is $\frac{1}{2}$ -Lipschitz)



• Rightmost figure shows where G(x) - G(y) can end up

Gradient mapping properties

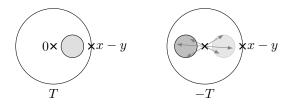
• Let $y = x^*$ with x^* fixed-point of $I - \gamma \nabla f$ and shift figure by x^* :

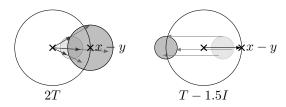


- Right figure shows where $G(x) G(x^\star) + x^\star = G(x)$ can end up
- Gradient step $G(x) = I \gamma \nabla f$ can take you further away from x^\star
- Gradient method does not work?
- (Recall: fixed-point x^* of $G = I \gamma \nabla f$ is solution to problem)

Circle exercise

- If Tx Ty ends up in gray area, given x y, how about $\alpha T + \beta I$?
- Take every possible v = Tx Ty and compute $\alpha v + \beta(x y)$





Convexity

- We have not exploited that f is convex
- A differentiable function is convex if and only if for all $\boldsymbol{x},\boldsymbol{y}$

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$$

• Gradient satisfies (add two copies with x and y swapped):

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0$$

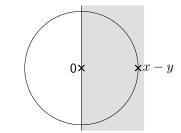
which is referred to that ∇f is monotone

Monotone operator

• Monotonicity of ∇f :

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0$$

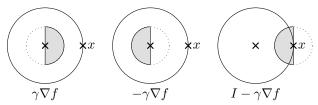
• Graphical representation



then $\nabla f(x) - \nabla f(y)$ in gray area (since scalar product positive)

Lipschitz and monotone

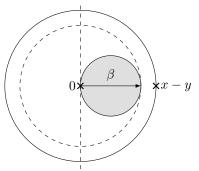
• $\gamma \nabla f$ monotone and 0.5-Lipschitz:



• May still become further away from fixed-point after iteration

Baillon-Haddad theorem — Cocoercivity

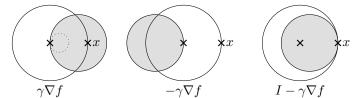
- If f is convex (∇f monotone) and $\nabla f \beta$ -Lipschitz
- Then ∇f is $\frac{1}{\beta}$ -cocoercive: $\nabla f = \frac{\beta}{2}(I-N)$ with N nonexpansive
- Graphical representation



- Always: $\frac{1}{\beta}$ -cocoercive implies β -Lipschitz
- For gradient of convex functions, converse implication holds
- This is known as Baillon-Haddad theorem

Gradient mapping properties

- ∇f is $\frac{1}{\beta}$ -cocoercive with $\beta = \frac{1}{2}$
- $I \gamma \nabla f$ with $\gamma = 3$:



• We have

$$I - \gamma \nabla f = I - \gamma \frac{\beta}{2} (I - N) = (1 - \frac{\gamma \beta}{2})I + \frac{\gamma \beta}{2}N$$

Averaged operators

• For cocoercive ∇f , gradient mapping satisfies

$$I - \gamma \nabla f = (1 - \frac{\gamma \beta}{2})I + \frac{\gamma \beta}{2}N$$

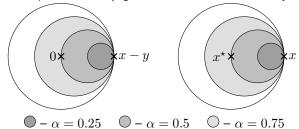
with \boldsymbol{N} nonexpansive

• Operators T of the form

$$T = (1 - \alpha)I + \alpha N$$

with $\alpha \in (0,1)$ are called averaged

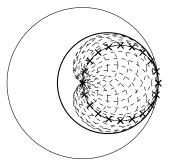
• Graphical representation (right: $x^* = Tx^*$ and shifted by x^*)



• Gradient mapping $I - \gamma \nabla f$ averaged if $\frac{\gamma \beta}{2} \in (0, 1)$

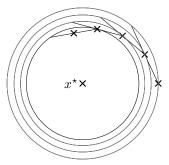
Composition of averaged operators

- composition of averaged operators is averaged
- assume that T_1 is α_1 -averaged and T_2 is α_2 -averaged, $\alpha_i \in (0,1)$
- then T_2T_1 is $\frac{\alpha}{\alpha+1}$ -averaged with $\alpha = \frac{\alpha_1}{1-\alpha_1} + \frac{\alpha_2}{1-\alpha_2}$
- example $\alpha_1 = \alpha_2 = 0.5 \Rightarrow T_1T_2$ is $\frac{2}{3}$ -averaged



lteration example - $\alpha = 0.5$

- rotation operator R_{θ} with $\theta = 50^{\circ}$ (nonexpansive)
- fixed-point x^\star at origin
- iterate 0.5-averaged operator



Convergence – Intuition from figures

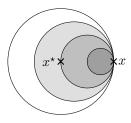
• Let T be $\alpha\text{-averaged}$ with $\alpha\in(0,1)$

• Then

$$x_{k+1} = Tx_k$$

converges to fixed-point of T (provided it exists)

• Intuition: sufficiently much closer to fixed-point in every iteration



Convergence – Theory

1. Let T be $\alpha\text{-averaged}$ and R be 2-cocoercive, then

$$T = I - \alpha R$$

(fixed-point of $T \Leftrightarrow \text{zero of } R$)

2. R is β -cocoercive if and only if

$$\langle Rx - Ry, x - y \rangle \ge \beta \|Rx - Ry\|^2$$

- 3. Derive algorithm inequality and use: $x_k \rightarrow \text{fix}T$ if (and only if)
 - $Rx_k \to 0$ as $k \to \infty$
 - $||x_k x^*||$ converges for all $x^* \in fixT$

Part 1

• Recall α -averaged T

$$T = (1 - \alpha)I + \alpha N$$

• Recall β -cocoercive R

$$R = \frac{1}{2\beta}(I - N)$$

• Therefore

$$T = (1 - \alpha)I + \alpha N = I - \alpha(I - N) = I - \alpha R$$

for $\frac{1}{2}$ -cocoercive R

Part 2

• Recall β -cocoercive R

$$R = \frac{1}{2\beta}(I - N)$$

• Therefore

$$\begin{split} \|Rx - Ry\|^2 &= \|\frac{1}{2\beta}(x - Nx) - \frac{1}{2\beta}(y - Ny)\|^2 \\ &= \frac{1}{4\beta^2}(\|x - y\|^2 + \|Nx - Ny\|^2 - 2\langle x - y, Nx - Ny \rangle \\ &= \frac{1}{4\beta^2}(-\|x - y\|^2 + \|Nx - Ny\|^2 \\ &+ 2\langle x - y, x - y - (Nx - Ny) \rangle) \\ &\leq \frac{1}{2\beta^2}\langle x - y, x - y - (Nx - Ny) \rangle \\ &= \frac{1}{\beta}\langle x - y, Rx - Ry \rangle \end{split}$$

Part 3

• Algorithm $x_{k+1} = Tx_k = x_k - \alpha Rx_k$ satisfies

$$||x_{k+1} - x^*||^2 = ||x_k - \alpha Rx_k - x^*||^2$$

= $||x_k - x^*||^2 - 2\alpha \langle Rx_k, x_k - x^* \rangle + \alpha^2 ||Rx_k||^2$
= $||x_k - x^*||^2 - 2\alpha \langle Rx_k - Rx^*, x_k - x^* \rangle + \alpha^2 ||Rx_k - Rx$
 $\leq ||x_k - x^*||^2 - \alpha (1 - \alpha) ||Rx_k - Rx^*||^2$
= $||x_k - x^*||^2 - \alpha (1 - \alpha) ||Rx_k||^2$

- Let $\alpha \in (0,1)$ to conclude that
 - $Rx_k \to 0$ as $k \to \infty$
 - $||x_k x^*||$ converges for all $x^* \in \text{fix}T$

and apply result to get $x_k \to x^\star \in \mathrm{fix}T$

Summary so far

• Have considered gradient method for

 $\underset{x}{\operatorname{minimize}} f(x)$

where $f\xspace$ is convex and differentiable with Lipschitz gradient

- Important property for convergence; Cocoercivity of gradient
- Follows from Baillon-Haddad theorem
- Implies that gradient mapping is iteration of averaged map

Composite form

• Next, consider composite form

$$\min_{x} \inf f(x) + g(x)$$

where f as before and $g\ {\rm convex}$ and nonsmooth

- Handle f via gradient as before
- Handle g via proximal operator

$$\operatorname{prox}_{\gamma g}(z) = \operatorname{argmin}_{x}(g(x) + \frac{1}{2\gamma} ||x - z||_{2}^{2})$$

where $\gamma>0$ is a parameter

Prox is generalization of projection

 $\bullet\,$ Introduce the indicator function of a set C

$$\iota_C(x):=\begin{cases} 0 & \text{if } x\in C\\ \infty & \text{otherwise} \end{cases}$$

(we can use extended valued functions that take value $\infty)$ \bullet Then

$$\Pi_{C}(z) = \underset{x}{\operatorname{argmin}} (\|x - z\|_{2} : x \in C)$$

=
$$\underset{x}{\operatorname{argmin}} (\frac{1}{2} \|x - z\|_{2}^{2} : x \in C)$$

=
$$\underset{x}{\operatorname{argmin}} (\frac{1}{2} \|x - z\|_{2}^{2} + \iota_{C}(x))$$

=
$$\operatorname{prox}_{\iota_{C}}(z)$$

projection onto ${\boldsymbol C}$ equals prox of indicator function of ${\boldsymbol C}$

Examples of proximal operators

• Quadratic function,
$$g(x) = \frac{1}{2}x^THx + h^Tx$$
:

$$\operatorname{prox}_{\gamma g}(z) = (I + \gamma H)^{-1}(z - \gamma h)$$

• The squared 2-norm, $g(x) = \frac{1}{2} ||x||_2^2$:

$$\operatorname{prox}_{\gamma g}(z) = (1+\gamma)^{-1} z$$

• The 2-norm,
$$g(x) = ||x||_2$$
:

$$\operatorname{prox}_{\gamma g}(z) = \begin{cases} (1 - \gamma / \|z\|_2)z & \text{if } \|z\|_2 \ge \gamma \\ 0 & \text{otherwise} \end{cases}$$

• Affine subspace, $V = \{x : Ax = b\}$:

$$\operatorname{prox}_{\iota_V}(z) = \Pi_V(z) = z - A^T (AA^T)^{-1} (Az - b)$$

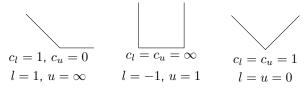
Piece-wise linear function

• Define $h_i : \mathbb{R} \to \overline{\mathbb{R}}$ is

$$h_i(x) = \begin{cases} c_l(l-x) & \text{ if } x \leq l \\ 0 & \text{ if } l \leq x \leq u \\ c_u(x-u) & \text{ if } x \geq u \end{cases}$$

where $c_l, c_u \in (0,\infty]$ (∞ included) and $l \leq u$

• graphical representations of different h_i



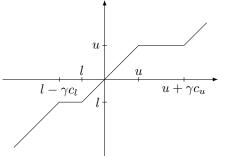
- special cases of h_i
 - hinge loss (SVM)
 - upper and lower bounds
 - "soft" upper and lower bounds
 - absolute value

Prox of h_i

• Prox of h_i :

$$\operatorname{prox}_{\gamma h_i}(z) = \begin{cases} z + \gamma c_l & \text{if } z \le l - \gamma c_l \\ l & \text{if } l - \gamma c_l \le z \le l \\ z & \text{if } l \le z \le u \\ u & \text{if } u \le z \le u + \gamma c_u \\ z - \gamma c_u & \text{if } z \ge u + \gamma c_u \end{cases}$$

• Graphical representation ($l = -1, u = 1.5, \gamma c_l = 1, \gamma c_u = 2$):



Examples prox h_i

• Hinge loss, $g = h_i$ with l = 1, $u = \infty$, $c_l = 1$, $c_u = 0$:

$$\operatorname{prox}_{\gamma g}(z) = \begin{cases} z + \gamma & \text{if } z \leq 1 - \gamma \\ 1 & \text{if } 1 - \gamma \leq z \leq 1 \\ z & \text{if } z \geq 1 \end{cases}$$

• Absolute value, $g = h_i$ with l = u = 0 and $c_l = c_u = 1$:

$$\operatorname{prox}_{\gamma g}(z) = \begin{cases} z + \gamma & \text{if } z \leq -\gamma \\ 0 & \text{if } -\gamma \leq z \leq \gamma \\ z - \gamma & \text{if } z \geq \gamma \end{cases}$$

• Upper and lower bounds, $g = h_i$ with l < u and $c_l = c_u = \infty$:

$$\operatorname{prox}_{\gamma g}(z) = \begin{cases} l & \text{if } z \leq l \\ z & \text{if } l \leq z \leq u \\ u & \text{if } u \leq z \end{cases}$$

Computational cost

• Computing prox requires solving optimization problem

$$\operatorname{prox}_{\gamma g}(z) = \operatorname{argmin}_{x}(g(x) + \frac{1}{2\gamma} ||x - z||_{2}^{2})$$

- Prox typically more expensive to evaluate than gradient
- Example: Quadratic $g(x) = \frac{1}{2}x^THx + h^Tx$:

$$\operatorname{prox}_{\gamma g}(z) = (I + \gamma H)^{-1}(z - \gamma h), \qquad \nabla g(z) = Hz - h$$

• Often use prox for nondifferentiable and separable functions

Prox for separable functions

• Separable function

$$g(x) = \sum_{i=1}^{n} g_i(x_i)$$

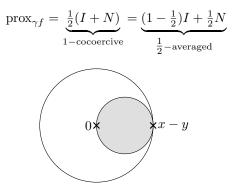
where $x = (x_1, ..., x_n)$:

$$\operatorname{prox}_{\gamma g}(z) = \begin{bmatrix} \operatorname{prox}_{\gamma g_1}(z_1) \\ \vdots \\ \operatorname{prox}_{\gamma g_n}(z_n) \end{bmatrix}$$

- Decomposes into n individual proxes \Rightarrow cheap to evaluate
- 1-norm $\|x\|_1$, upper/lower bounds, hinge loss constructed from h_i

Property of proximal operator

- Proximal operator is 1-Lipschitz, i.e., nonexpansive
- It is also gradient of convex function
- Hence, it is 1-cocoercive, i.e., $\frac{1}{2}$ -averaged



• This property makes it useful for algorithms

Proximal gradient method

• Applicable to models

$$\min_{x} \inf f(x) + g(x)$$

• The method iterates

$$x_{k+1} = \operatorname{prox}_{\gamma g} (I - \gamma \nabla f) x_k$$

- Prox generalizes projection \Rightarrow generalizes projected gradient
- Easily implemented using ProximalOperators package in Julia

Why does it work?

• The point x^{\star} solves

$$\min_{x} \inf f(x) + g(x)$$

if and only if fixed-point to proximal gradient mapping

$$x^{\star} = \operatorname{prox}_{\gamma g} (I - \gamma \nabla f) x^{\star}$$

• Iteration of $prox_{\gamma g}(I - \gamma \nabla f)x^{\star}$ converges to fixed-point – why?

Convergence

- Know gradient mapping $\frac{\gamma\beta}{2}$ -averaged if $\gamma \in (0, \frac{2}{\beta})$
- Know that $\mathrm{prox}_{\gamma f}$ is $\frac{1}{2}\text{-averaged}$ for all $\gamma>0$
- Composition $\mathrm{prox}_{\gamma g}(I-\gamma \nabla f)$ is therefore also averaged
- Iteration of averaged map converges to fixed-point, i.e., solution

Another way to prove convergence

- Can prove convergence in similar but different way
- Use nonexpansiveness of $\mathrm{prox}_{\gamma g}$ and $\frac{1}{\beta}$ -cocoercivity of ∇f

$$||x_{k+1} - x^{\star}||^{2} = ||\operatorname{prox}_{\gamma g}(I - \gamma \nabla f)x_{k} - \operatorname{prox}_{\gamma g}(I - \nabla f)x^{\star}||^{2}$$

$$\leq ||x_{k} - \gamma \nabla f(x_{k}) - (x^{\star} - \gamma \nabla f(x^{\star}))||^{2}$$

$$= ||x_{k} - x^{\star}||^{2} - 2\gamma \langle \nabla f(x_{k}) - \nabla f(x^{\star}), x_{k} - x^{\star} \rangle$$

$$+ \gamma^{2} ||\nabla f(x_{k}) - \nabla f(x^{\star})||^{2}$$

$$= ||x_{k} - x^{\star}||^{2} - \gamma (\frac{2}{\beta} - \gamma) ||\nabla f(x_{k}) - \nabla f(x^{\star})||^{2}$$

• Sufficient decrease if $\gamma \in (0, \frac{2}{\beta})$, just like gradient method

Summary

- f convex and ∇f Lipschitz $\Rightarrow \nabla f$ cocoercive (Baillon-Haddad)
- ∇f cocoercive implies $I \gamma \nabla f$ averaged (for small γ)
- $\operatorname{prox}_{\gamma g}$ is $\frac{1}{2}$ -averaged
- Composition of averaged is averaged; $prox_{\gamma q}(I \gamma \nabla f)$ averaged
- Iteration of averaged operator converges to fixed-point
- Fixed-point of $prox_{\gamma g}(I \gamma \nabla f)$ is solution to problem

Next lecture

- \bullet Apply method to formulations from Lecture 1
- Modify method to exploit structure
 - Stochastic gradients
 - Coordinate-wise updates