
Assignment 1 - A simple service the hard way

The task is to create a simple web service that display the number of visitors since
deployment. It need not be unique visits, but rather a counter that is increased every
time the page is loaded. To achieve this, you need to learn how to launch virtual
machines, create virtual networks and routers, configure storage, and manage
credentials. The assignment consists of two steps. First you should do this using
graphical user interface Horizon and then do the same using the Terraform
orchestration tool.

By hand using Horizon
You should create a simple virtual infrastructure that consists of one or more virtual
machines that are connected to the same subnet and that access internet via a virtual
router.

• Create a virtual network and a subnet.
• Create a virtual router.
• Upload a set of SSH keys.
• Create a virtual machine, connect it to the network you created above, and use

the SSH keys you just added.
• Associate a floating IP to the virtual machine.
• Configure the security groups (firewall) to allow for ssh access (port 22) and

www access (use the port that is exposed by your server).
• login to the virtual machine and make sure you can access internet.
• Finally, create a storage container in object store

Now that we have created the infrastructure up and running, it's time to write an
application. You are tasked to write a web service that keeps count of visits. The front-
end should be scalable, i.e. it should be possible to add and remove servers without
losing count. Therefore, the counter should be stored in persistent storage and in this
assignment, use the object store. The Swift object store allows you to upload a binary
object, for example a file that contains a single number. This may not be the most
efficient way to store a counter, but hey nobody really does visitor counters anymore so
don’t worry too much about efficiency.
However, what you should worry about is how you handle credentials. Accessing the
object store will require the calling VM to authenticate itself. How do you get the
password there in a secure way?

Figure 1. A high-level view of the visitor count service.

Start by developing a very simple web server on your local machine. We suggest you
write it in Python and use the Flask library, but to each her own. The web server should
consist of a static part, which displays the message "You are visitor:", followed by a
dynamic part which is the visit counter. This means that the web server needs to access
the object store to read and update the counter.

There exist a set of Python APIs for accessing OpenStack and they are automatically
installed when you install the OpenStack command-line tools. The first step is then to do
just that. We suggest you use virtualenv to simplify installation of the OpenStack tools.
This will help you recreate the same environment on a server in the cloud later.

Once you have your service working locally, you should transfer it to a server in the
cloud. When you got a working service, you can save that as an image (do a snapshot).
Now, should be able to create new VMs from that same server image and they should
connect to the same counter object. The counter value displayed should work as
expected, monotonically increasing (don’t worry about race conditions). You can use the
cloud-init feature to run a script when a VM is booted. This can be used to start the
web server and pass parameters.

Scripting using Terraform

At this point you have created the infrastructure by hand using Horizon. Now, you shall
do the same using Terraform. The only things that should be kept from the first part is
the server image.

Start by installing Terraform and work through the getting started guide found here
https://learn.hashicorp.com/terraform/getting-started/install.html. You will find an
interactive tutorial at katakoda (don’t worry if you don’t understand the Docker part. We
will come to that later.).

Web Server

Object Store

counter

.Internet

Write your Terraform application as a set of *.tf-files. Demonstrate how you can add
and remove web servers and that the counter works as expected. Provide an output-file
that contains the public IP-addresses of the current front-ends.
Also provide a way to clean your account.

Example code for simple server

from swiftclient.service import SwiftService, SwiftError,
SwiftUploadObject
from flask import Flask, Response
import os

def download_counter(swift, container, object_name='counter'):
 ...

def update_counter(object_name='counter'):
 ...

def upload_counter(swift, container, object_name='counter'):
 ...

def increment_counter(swift, container, object_name='counter'):
 download_counter(swift, container, object_name)
 value = update_counter(object_name)
 upload_counter(swift, container, object_name)
 return value

container = ...
app = Flask(__name__)

@app.route('/')
def handle_get():
 with SwiftService() as swift:
 try:
 return Response('{"value":%d}' % increment_counter(swift,
container), mimetype='application/json')
 except SwiftError as e:
 logger.error(e.value)

if __name__ == "__main__":
 app.run()

The above application assumes that the proper environment variables are set, i.e. the
ones from the .rc-file that is downloaded from your project.

The cloud servers have no passwords so you need to login using the ssh-key you
provided when creating the VMs.

ssh -i mykey.key ubuntu@123.123.123.123

It’s good practice when you login in to a machine for the first time, to make sure to
update it (otherwise the repositories are not correct and you will not be able to install
packages). For the server above, you should need to do the following:

sudo apt-get update
sudo apt-get install git
sudo apt install python-pip
ADD A NOTE ON VIRTUALENV?
pip install Flask==1.1.1
pip install python-swiftclient==3.8.0
pip install python-keystoneclient

