
1

Testing Self-Adaptive Software with Probabilistic
Guarantees on Performance Metrics: Extended

and Comparative Results
Claudio Mandrioli, and Martina Maggio

Abstract—This paper discusses methods to test the performance of the adaptation layer in a self-adaptive system. The problem is
notoriously hard, due to the high degree of uncertainty and variability inherent in an adaptive software application. In particular,
providing any type of formal guarantee for this problem is extremely difficult. In this paper we propose the use of a rigorous probabilistic
approach to overcome the mentioned difficulties and provide probabilistic guarantees on the software performance. We describe the
set up needed for the application of a probabilistic approach. We then discuss the traditional tools from statistics that could be applied
to analyse the results, highlighting their limitations and motivating why they are unsuitable for the given problem. We propose the use of
a novel tool – the Scenario Theory – to overcome said limitations. We conclude the paper with a thorough empirical evaluation of the
proposed approach, using three adaptive software applications: the Tele-Assistance Service, the Self-Adaptive Video Encoder, and the
Traffic Reconfiguration via Adaptive Participatory Planning. With the first, we empirically expose the trade-off between data collection
and confidence in the testing campaign. With the second, we demonstrate how to compare different adaptation strategies. With the
third, we discuss the role of the randomisation in the selection of test inputs. In the evaluation, we apply the scenario theory and also
classical statistical tools: Monte Carlo and Extreme Value Theory. We provide a complete evaluation and a thorough comparison of the
confidence and guarantees that can be given with all the approaches.

Index Terms—Testing, Self-Adaptive Software, Autonomous Systems.

F

1 INTRODUCTION

Software systems are affected by uncertainty that alters
their behaviour and can render their performance unpre-
dictable. Adaptation layers were introduced in software as
a viable solution to deal with performance fluctuations and
minimise the effect of uncontrolled changes [1], [2], [3]. This
makes software self-adaptive. The idea behind self-adaptive
software is to have a layer responsible for observing be-
havioural changes and taking counteractions. This can guar-
antee more stable and predictable software performance in
terms of non-functional software behaviour [4], [5], e.g.,
lower response times, or higher reliability.

Adaptation can be implemented using different method-
ologies; some of them provide guarantees based on formal
models [5], [6], [7], others are empirically proven effec-
tive [8], [9], [10]. In both cases there is a need for appropriate
performance testing of the system composed of the software
and its adaptation layer. The presence of an adaptation layer
opens up the possibility that in the same exact condition
the software will behave differently, depending on its past
behaviour and accumulated knowledge. It is necessary to
conduct empirical validation of satisfactory behaviour to
verify the correctness of the system and adaptation-layer
implementation [11]. In addition, it is important to quantify

• C. Mandrioli is a Ph.D. student at the Department of Automatic Control,
Lund University, Sweden.
E-mail: claudio.mandrioli@control.lth.se

• M. Maggio is with the Department of Computer Science at Saarland
University, Germany and with the Department of Automatic Control at
Lund University, Sweden.
E-mail: maggio@cs.uni-saarland.de

Manuscript received September XX, XX; revised XX.

the achievable performance.
In general, testing is a crucial aspect of software devel-

opment. For self-adaptive software, the testing process is
complicated by the presence of the adaptation layer [12],
[13], [14], [15]. Self-adaptive systems testing is intrinsically
hard, due to the extreme variability and uncertainty in-
volved in the software execution [14], [16], [17], [18]. In
fact, the adaptation layer explicitly reacts to the uncertainty,
and may influence it for the future. This creates a loop
around the software [1]. In the context of uncertainty and
adaptation, this paper’s challenge is to achieve and maintain
formal guarantees on non-functional aspects of the software
execution, such as reliability and response times.

Research Challenges: The adaptation layer and the pres-
ence of uncertainty impose specific challenges for testing.
Triggered by the environmental variability, the adaptation
generates changes in the system - and this changing na-
ture makes it difficult (and in many cases impossible) to
exhaustively guarantee its correct behaviour [14], [19], [20],
[21], [22], [23]. The adaptation also creates a difficulty in the
performance quantification and in determining the testing
sufficiency and effectiveness [14], [16].

As an example, consider testing a web-application that
can run on different servers with different and time-varying
performance results. Not all of the servers can provide the
same reliability. The adaptive layer should choose dynami-
cally which server to use, in order to maximise the overall
reliability. In general, it is not possible to guarantee that
the application is always reliable, since any server may
fail. Also, the actual reliability will depend significantly

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2

uncertainty

Software

Adaptation
layer

Test
outcomes
collection

Scenario theory
(or Monte Carlo

or Extreme Value Theory)fe
ed

ba
ck

ad
ap

ta
ti

on

performance
parameter

Performance
bound

Testing
confidence

System under test

Test inputs

Test outcome

Result of testing campaign

Fig. 1. Overview of the proposed approach. In the figure, black blocks represent components of the adaptive system and of the testing procedure.
The red text and boxes highlight the main high-level concepts of the testing procedure. The arrows represent information flow. Figure from [24].

on the specific servers, and on their performance. As a
consequence, when testing the system, any evaluation of its
reliability is heavily affected by the specific test cases. De-
termining which tests are sufficient and when it is possible
to stop the testing process becomes challenging. Prior liter-
ature contributions highlighted a set of research challenges
for testing adaptive software [14], [16]. The quoted papers
listed a series of challenges, and then group them into macro
areas: types of guarantees, quantification of performance
metrics, and quantification of the testing effectiveness. In
this paper, we try to address these macro challenges:

• CH1: Definition of what type of guarantees can be given
for self-adaptive software.

• CH2: Quantification of the mentioned guarantees.
• CH3: Quantification of the testing sufficiency and effec-

tiveness (or testing adequacy).
Furthermore, any method based on statistics heavily de-
pends on the input data. In this paper we also discuss an
additional challenge (that is mentioned in [14], [16] with
less emphasis):

• CH4: Definition and collection of testing input data.
We believe CH1 to be the main challenge that we try

to solve in this paper. The remaining challenges can be
viewed as sub-challenges, that mark relevant aspects in the
definition of a methodology to address CH1. Towards a so-
lution for CH1, we define a particular notion of probabilistic
guarantees that can be provided after a testing phase of
self-adaptive strategies and software. The need to provide
such formal guarantees, forces us to think and consider the
other relevant aspects. Probabilistic guarantees trigger the
need for repeated testing, resulting in the need of generating
randomised test cases and to carefully select input data,
therefore triggering CH4. When tests are performed, the
data gathered in the testing phase should be analysed to
quantify the provided guarantees, giving an answer to CH2.
It is also important to quantify the testing adequacy – as
mentioned in CH3 – i.e. to understand if the number of
conducted tests is sufficient or if more tests are needed. This
clearly depends on the nature and type of the probabilistic
guarantees to be produced.
Contribution: In this paper we address the four mentioned
research challenges by leveraging a rigorous probabilistic
approach [25], [26]. The probabilistic approach is beneficial
in two ways: (i) it allows the efficient exploration of large
input and configuration spaces [27], and (ii) it can provide a
quantification of its own adequacy. In the field of probability
theory, the testing adequacy is called confidence.

As discussed in the research challenges above, the uncer-
tain nature of self-adaptive systems does not allow for the
definition of strict guarantees. This limitation mainly arises
from the large (and possibly infinite) number of combina-
tions of inputs that can be provided to the system [14], [16].
Despite this, we need to test self-adaptive systems when said
variability is present, in order to trigger the adaptive behaviour.
Leveraging a probabilistic approach, the uncertainty and
variability can efficiently be explored using randomised
inputs. As a consequence, the measured performance metric
must be treated as a random quantity, and requires statistical
evaluation. We therefore enter the domain of probabilistic
guarantees [25], [28]. The randomised approach allows for
an efficient exploration that is independent from the size
and quantity of the uncertainty that is present in the soft-
ware execution [26], [27].

In this work, we focus on the evaluation of probabilistic
bounds for a given performance metric. In contrast with
conventional testing, statistical testing can only provide con-
fidence values. In conventional testing, a property is either
evaluated to true or false. When the same test is repeated
with a different set of random input values, the property
evaluation becomes a stochastic variable. This means that
the result of the testing process is the confidence in the
property being either true or false, when repeating the test
with a new input set.

According to the probabilistic framework, our aim is
testing what is the value of the performance parameter that
the adaptive software can guarantee in the “majority” of
its execution environments. We formally define majority
in a probabilistic fashion, e.g., that a given performance
bound will hold in 99% of the execution instances. We
also quantify the confidence that we can claim, i.e., the
adequacy of our testing campaign. High confidence means
a high probability that we performed a sufficient number
of randomly generated tests to sustain our claim. In some
sense, this is analogous to a coverage criterion – a reference
for choosing when to stop the testing campaign. One of the
contributions of the paper is the discussion of input data.
We provide guidelines on what needs to be randomised and
what – in contrasts – remains fixed over the set of executed
tests. We also discuss testing a partial system in contrast to
testing the real system in operation, where there is no need
for randomisation of input data because the real execution
uses a realistic set of execution conditions.

In the paper, we discuss traditional tools from statistics
(Monte Carlo and Extreme Value Theory) and highlight

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3

their limitations for testing self-adaptive software. We over-
come these limitations using a tool called Scenario The-
ory [29]. The Scenario Theory was developed in the field of
robust control but can actually be applied to a very general
class of problems. In this paper we show how to apply it to
the problem of testing self-adaptive software. We provide
a thorough comparison between the confidence and the
results obtained with the Scenario Theory and with Monte
Carlo and Extreme Value Theory.
Experimental Evaluation: To support our claims, we use
our methodology to test the behaviour of three self-adaptive
software applications: the Tele-Assistance System [30], the
Self-Adaptive Video Encoder [31], and the Traffic Reconfig-
uration via Adaptive Participatory Planning [32]. We show
the complete application of Monte Carlo, Extreme Value
Theory and the Scenario Theory. In all cases, we discuss how
these methods can be used to: (i) rigorously quantify the
adaptation performance, (ii) evaluate the trade-off between
the number of performed tests and the confidence in the
testing campaign, and (iii) compare adaptation strategies.1

Our experimental results show that the Scenario Theory
provides better guarantees and higher confidence in the
results.
Extension: This paper extends our previous work [24] pro-
viding novel contribution, both on the methodological dis-
cussion, and on the empirical evaluation. For what concerns
the methodology, we present a detailed discussion of the
application of traditional statistical tools to the testing of
self-adaptive systems. We also apply the mentioned tools
in our empirical evaluation, comparing the results obtained
with our proposed testing strategy. We included an addi-
tional case study to evaluate the methodology on a different
software application, in particular with respect to the rele-
vance of the randomisation of the input data.
Paper Structure: In Section 2 we provide an overview of our
proposed testing approach. Section 3 discusses related work.
Section 4 presents our methodology and describes how
it overcomes the limitations of classical statistical testing.
Section 5 presents experimental results. Finally, Section 6
discusses the limitations and threats to validity of the pro-
posed approach and Section 7 concludes the paper.

2 APPROACH OVERVIEW

In this section we provide an overview of our testing ap-
proach (shown in Figure 1). In particular, we discuss: (i)
the definition of test inputs, (ii) the definition of the test
outcome, and (iii) the evaluation of the results of the testing
campaign. In Sections 3.2 and 4 we discuss in detail how to
apply respectively traditional tools and the Scenario Theory
to evaluate the test outcomes and obtain performance bounds
and testing confidence.

The objective of our testing campaign is to empirically
provide guarantees on the system behaviour. These guaran-
tees should be general and independent of the specific test
cases. Practically, we want independence from the variabil-
ity and uncertainty that affects the executed tests. We obtain

1. The implementation of the experiments presented in the paper is
publicly available and has been reproduced through the conference arti-
fact review process https://github.com/ManCla/ESEC-FSE-2020 [33].

this by performing different random tests, each of which
represents a possible system realisation. We then statistically
evaluate the results of the testing campaign.

Performing repeated random tests requires, as a first
step, the definition of what are the test inputs that need
randomisation. The remaining inputs, instead, should be
fixed across the tests. Using the web application example,
we can say that the number of connected users is a parame-
ter that should vary from one test to the next, but (possibly)
the amount of threads that are assigned to serving requests
from clients is fixed and defined by the specification of the
software architecture.

The choice of what to randomise and what to keep
constant highly impacts the significance of the testing cam-
paign. If more than necessary test inputs are randomised,
the testing results can be unnecessarily conservative. Con-
versely, fixing inputs that will actually vary in the actual
software execution – and therefore are uncertain and un-
known – will provide results that do not carry on between
the testing campaign and the actual software implementa-
tion.

The testing engineer should randomise all inputs that
are not known at development time and that will affect
the system performance. Most importantly, these have to in-
clude the exogenous inputs that the software is supposed to
adapt to. In this way, the random sampling will trigger the
adaptation layer and explore the possible performances of
the system. From a practical point of view, the randomised
inputs should be all of those inputs that will make the same
implementation of the system potentially behave at a dif-
ferent performance level. The definition and analysis of the
relevant test inputs are domain and application dependant:
different types of adaptive software are required to respond
to different inputs (e.g. discrete signals or continuous quan-
tities). Moreover, an evaluation on the quality of the test
inputs requires assumptions and modeling efforts so that
an analysis can be carried on. Apparently, this implies that
a significant effort is required to the testing engineer for
the definition of the testing inputs. On the contrary, one of
the main strengths of ST is to include a coverage criteria
that requires minimal assumptions on the testing inputs
definition without loss of guarantees.

Exhaustively listing all the system inputs in an adaptive
system can be a difficult task [34]. In some cases, the test
input definition problem can be circumvented by executing
the actual system with the actual inputs, rather using syn-
thetic random inputs. In the web application example, one
could collect traces from the execution of the actual software
and analyse this data as a set of random test cases. If the
executions are collected systematically (i.e., two different
system executions will differ exclusively by the unknown
inputs), the uncertain inputs are in this way by definition rep-
resentative of a possible realization of the adaptive system.
This is a viable solution thanks to the minimal assumptions
on the distribution of the inputs required by ST.For this
reason, in this paper we build on an approach that does not
require any of such assumptions. As we discuss formally in
Section 4, the fact of not requiring any assumption on the
input probability distributions is one of the strengths of the
proposed scenario theory.

Conversely, in our testing set-up, all the inputs that are

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

4

known and fixed once the system is implemented should
not be randomised. In the web application example, this
could be the number of servers on which the applications is
deployed. If the number is known and fixed at deployment-
time, their number should be fixed also in the tests. Other-
wise, if the application is expected to adapt to a varying
number of severs, their number should be randomised
during and across the tests.

In order to evaluate the effectiveness of the adaptation
strategy, we define a performance parameter that we compute
for each test. The performance parameter is a quantity that
(i) can be measured from the execution of a test case, and
(ii) is higher or lower, according to the degree at which
the adaptation strategy has achieved its goals. In the web-
application case mentioned above, this parameter could be,
for example, the average time spent recovering from server
failures over the whole test duration. The key intuition is
that this performance parameter is itself a random vari-
able [25], and we can therefore use tools from statistics to
deduce properties of its value.

The extraction of such properties can be done in different
ways. Traditional statistics offers different tools that could
be considered. We argue that these tools present funda-
mental limitations that hinder their applicability to test self-
adaptive software. As an alternative, we propose the use of
scenario theory.

Hence, we collect the outcomes of the tests and evaluate
them using the scenario theory. By leveraging this theory
we obtain probabilistic bounds on the chosen performance
metric and a testing confidence. The probabilistic bounds are
in the form of a minimum performance that is guaranteed
in a high percentage of the cases. The testing confidence
is given as a probability. To be precise, the confidence is
the probability that we have missed relevant test cases that
would have changed the obtained bound. Continuing with
the example above, we would obtain a bound like “the time
it takes to recover from a server failure is on average less than
42 seconds in 97% of the cases, with a 95% confidence”. This
means that we have a 100− 95 = 5% probability of having
missed a relevant test case. If the confidence is not sufficient,
the scenario theory allows the testing engineer to directly
compute how many additional tests are needed to increase
it to the desired level.

3 BACKGROUND AND RELATED WORK

This section discusses how this work is connected to the
existing research literature. To start, we present related
work in the software testing research field. Then we present
the traditional statistical tools used to extract probabilistic
properties from test outcomes.

3.1 Testing of Adaptive Systems

Our work connects to different areas of the existing software
testing literature: (i) testing of self-adaptive and context-
aware systems, (ii) testing in the presence of environmental
dependencies, (iii) fuzz testing, and (iv) testing for proba-
bilistic guarantees.

The problem of testing an adaptive software – in some
cases also called context-aware software [22], [35] – is not

a new challenge for the software testing community [14],
[16]. We split the work that addresses the testing of self
adaptive software in design-time and run-time approaches.
For self-adaptive software, the design-time approaches in-
clude SIT [36] and TestDAS [37]. SIT [36] proposes a test
case generation technique for self-adaptive applications. The
sampling of the input space is based on an interactive
model of the application that is being tested. TestDAS [37]
focuses on triggering the adaptations during the test cases. It
leverages models of the software behaviour that are defined
in advance by the programmer. Context-aware software is
close to self-adaptive software, and there is a significant
amount of work addressing the problem of testing context-
aware applications [22], [35], [38], [39]. The self-adaptive
(or context-aware) software observes the execution environ-
ment and selects actions to be performed based on the result
of the observation phase. The research effort for context-
aware software goes in the direction of generating test cases
that trigger the context-aware software layer [22], [38], [39].
In [38], automatically generated bigraphs are used to model
the interactions between the environment and the software,
and to generate the test cases. In [39] the authors propose
a framework for automatically generating test cases with
high-level test data.

Our proposal is different from previous work on context-
aware and self-adaptive software testing, since in our case
the interaction with the environment only needs a prob-
abilistic characterisation, and no further modelling effort.
Moreover, in our contribution, the number of test cases does
not depend on how the interaction with the environment is
performed. This is important since it allows our method to
scale with the amount of interaction between software and
environment.

The literature on software testing also includes efforts
to develop run-time testing methodologies for adaptive
software [3], [40], [41]. Generally speaking, there is a need
to develop models for verification and validation at run-
time [3]. This need is caused by the ever-changing nature of
the environment the adaptive software operates in. We de-
scribe our approach for design-time testing, but in principle2

the resulting method can be applied during the run-time
execution of the software application, since it only requires
data collection and analysis. A clear difference between
our work and the related literature is that we develop a
probabilistic approach.

In our work, we use statistical tools to evaluate the
performance of the adaptation layer of a self-adaptive
software, independently from changes in the environment.
Previous work also addressed the problem of testing a
software regardless of its environmental dependencies [42],
[43]. These works aim at decoupling the tests outcomes
from such dependencies. To test the adaptation layer, we
need to preserve the dependency on the environment, since
it triggers the need for adaptation. However, we aim at
obtaining an evaluation that is general with respect to the
environment changes.

2. The requirement to apply our approach at run-time is that the run-
time tests are considered random independent tests. Testing the system
continuously might not guarantee independence. This can be solved
(for example) by introducing a delay between consecutive tests.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

5

The approach we propose in this paper is based on
random sampling of the system inputs and environment
scenarios. This practice is known to the software testing
community [44], [45], and is often called fuzz testing [25],
[46], [47], [48]. The literature focuses on using random gen-
eration for achieving adequate exploration of the software
behaviour, e.g., code coverage [48]. We take inspiration from
fuzz testing, and use random sampling with two different
objectives: (i) decoupling given inputs or environmental
scenarios from performance parameters that indicate how
well the adaptation layer is performing, and (ii) obtaining a
probabilistic characterisation of the performance metric.

Probabilistic guarantees have been explored [49], [50],
[51]. In some cases this exploration targeted approximate
computing [17], [26], [52], [53], which is not the subject of
this study. Some existing work target service-oriented soft-
ware architectures [54] and how to combine the probabilistic
guarantees given by the different services to obtain guaran-
tees for the complete system [50], [51]. Recent work used a
probabilistic approach to compensate for the uncertainty of
the dependence between system configurations and system
performance [55]. However, no prior work targets dynamic
behaviour (i.e., behaviour that changes during the execution
of the software, as it is the case with the adaptation layer)
and adaptive software, which is the focus of our work.

3.2 Tools from Statistics

In this section, we recall traditional tools from statistics, that
could be used to analyse the result of tests and provide
statistical guarantees on the software behaviour. We both
describe the underlying theory and their application. A
throughout discussion of the limitations that make them
unsuitable for the testing of self-adaptive software is later
presented in Section 4.1. We choose Monte Carlo Sampling
(MC) and Extreme Value Theory (EVT) due to their applica-
tion in software testing, simulations, and rare event analysis.
Statistics offer additional tools, e.g., martingale and black
swan theory, that are less suited to the analysis of a vast
corpus of data or require additional knowledge. We have
not found evidence of application of other theoretical results
to the field of software testing.
Monte Carlo Sampling (MC): Monte Carlo (MC) meth-
ods [27] use repeated random sampling and simulation
to numerically predict the value of parameters. The pa-
rameters are unknown, and usually no exact analysis can
be carried out (for example because there are too many
random variables, i.e., too much uncertainty). Nowadays,
MC methods are employed in many different fields, from
optimisation [56] to decision making [57]. MC methods
leverage the Central Limit Theorem [58] as a main mathe-
matical result. The theorem discusses the mean of a random
variable with an arbitrary probability distribution, under the
assumption that the variance of the distribution is finite. The
theorem states that, if one draws infinitely many samples
from the random variable, the distribution of the arithmetic
mean of the samples asymptotically converges to a normal
distribution, regardless of the original variable distribution.

The application of MC approaches allows to conduct
an arbitrary number n of tests and measure the random
variable X , obtaining a set of outcomes {x1, . . . , xn}. Then

it is possible to determine the mean value x̄ as the arithmetic
average of the tests outputs,

x̄ = 1/n
∑n

i=1
xi. (1)

The computed arithmetic mean x̄ is also a random variable.
The Central Limit Theorem guarantees that its distribution
converges to a normal distribution for increasing n, i.e.,
x̄ ∼ N (E[X], σ2/n), where E[X] is the expected value of
the random variable X and σ2 is the variance of X . When
n is big enough, the observed mean value converges to the
actual expected value for the quantity of interest. This result
is well-known in statistics and it holds irrespective of the
specific software application under test. In fact, convergence
is guaranteed independently from the probability distribu-
tion of the performance metric. However, there is no general
result on the speed of the convergence and it is therefore
application-dependant. With MC sampling, the significance
of the test results and the choice of n is therefore left as an
arbitrary choice to the testing engineer.

MC methods are therefore naturally used to evaluate
the average behaviour of a system. By average behaviour
x̄ we mean a performance that best summarizes the dif-
ferent possible performances that the system can expose.3

The standard deviation σ complements this information by
quantifying instead the spread of the possible performance.
By spread we mean the width of the range of possible per-
formance values. The standard deviation can be estimated
using the sampled standard deviation:

σ̄2 =

√∑
i(xi − x̄)2

n− 1
. (2)

Intuitively, since the sampled mean is a description of the
average behaviour, each randomly generated test carries
significant information about it. For this reason relatively
few test can provide already a good convergence of the
sampled mean x̄ to the expected value E[x]. This is still
application dependant and there is no general approach for
quantifying this convergence.

Using MC methods we could be able to state, using again
the recovery time example from Section 2, that if the variance
is sufficiently low, the system in is most likely recovering from
a server failure in a time close to 42 seconds. Unfortunately
the theory doesn’t allow us to rigorously quantify the “most
likely” words used in the statement. In the same way, also
the word “close” cannot be generally quantified rigorously.
Finally, we cannot quantify the confidence that we can have
in this statement. In fact, the confidence depends on whether
the number of tests is sufficient to apply the central limit
theorem or not.

MC methods have found limited use in the context of
software testing [59], [60]. None of these works focuses on
the testing of self-adaptive software. In [60] MC methods are
used to test the reliability of a software system, while [59]

3. Formally, the average corresponds to a normalized sum of the
possible outcomes weighted by their probability. In general, the average
value is not necessarily the most probable outcome, and it is not even
guaranteed to be an actually possible outcome. For example, if we
average the number of attempts necessary to obtain a response from
a server, the average will likely have decimal values, but the possible
outcome is only an integer. These aspects also limit the effectiveness of
analyzing a performance metric by looking at its (sampled) average.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

6

generally discusses how MC methods can be applied to
software testing.
Extreme Value Theory (EVT): The Extreme Value The-
ory [61] (EVT) study a random variable around the tails of
its distribution. This is opposed to MC methods that study
the behaviour of a variable around its average. EVT could
therefore be used when we specifically want to analyse the
software’s worst-case behaviour, e.g., what is the maximum
memory occupation of a program. The theory is nowadays
widely adopted to study rare phenomena such as earth-
quakes, quantitative risks in finance, but also extreme events
in engineering [62], [63].

The role of the Central Limit Theorem for MC sampling
is taken by the Fisher–Tippett–Gnedenko Theorem [64] for
the EVT. The Fisher–Tippett–Gnedenko theorem defines the
family of distributions to which the maximum value of a set
of samples converges. The family of distributions is called
the Generalised Extreme Value Distribution (GEVD) [61].
To apply EVT, we can look at a set of data (in our case
the performance parameters obtained from the test cases)
and extract a set of samples that belong to the tail of the
dataset – i.e., a set of maxima. We then fit the the GEVD to the
extracted maxima. In this way, we can obtain a probability
distribution for the extreme value of the performance metric
that could be observed in future executions of the system.

There are different practices to extract the maxima from
a dataset. The most common are: (i) the Block Maxima, and
(ii) the Peaks Over Threshold. The former defines a partition
of the dataset and extracts the maximum value from each
subset, the latter takes all the values that exceed some pre-
defined threshold. The difference between the two methods
stems from the possibility of partitioning the dataset or not
(for example in smaller sets of data – acquired with different
software releases). When the data is naturally partitioned
into smaller sets, the block maxima methods is preferred.
Since in our case each data belongs to the same partition we
use the peak over threshold method.

Using the obtained maxima we can estimate the param-
eters of the GEVD. This distribution has the following form:

fGEVD(x) =
1

σ

[
1 +

(
ξ (x− µ)

σ

) − (ξ + 1)/ξ
]
, (3)

where µ is the location parameter, σ is the scale parameter
and ξ is the shape parameter. The location parameter defines
the starting point, the scale parameter defines the weight of
the tail and the shape parameter defines the rate of decrease
of the probability density.

With the obtained distribution we can evaluate a prob-
abilistic bounds τ on the performance of the system, i.e.
P (x > β). To do so we need to account for the probability
that a value is actually a maximum and the probability of
that maximum being greater than the bound. This can be
computed multiplying the two probabilities:

P (x > β) = P (x > β|x > τ) · P (x > τ), (4)

where τ is the threshold used for the selection of the
maxima. The first term in the multiplication is equivalent
to the cumulative probability distribution of the GEVD. The
latter can be estimated as the ratio between the total number
of performed tests and the number of test that resulted in

one of the maxima:

P (x > τ) ≈ nmaxima/ntests.
In this way, we can use EVT to obtain a probabilistic

bound for the performance of the system under test. When
applied to the example from Section 2, we would be able
to provide guarantees in the form: there is a 1.5% probability
that the recovery time is worse than 50 seconds. If needed, a
different numerical bound can be given – apparently with a
different associated probability. This is due to the fact that
EVT allows us to retrieve a complete distribution for the
maximum of the performance.

EVT presents similar limitations compared to MC ap-
proaches [65]. EVT uses an arbitrary number of samples
from the distribution of interest. Moreover, the choice of
which and how many samples can be considered as the
maxima is also arbitrary. There are also no results on the rate
of convergence of the samples to the Generalised Extreme
Value Distribution. Conversely to the MC methods that talk
about the average case EVT discusses the rare cases. For
this reason few tests carry information about such cases.
Therefore the convergence to the GEVD is generally slow.
Finally, as MC, EVT requires finite variance of the parameter
that is sampled.

4 METHODOLOGY

In this section, we describe our approach to obtain proba-
bilistic guarantees and its theoretical underpinning.

4.1 Limitations of Traditional Statistics

In Section 3.2 we described the traditional tools from statis-
tics that could be used to obtain probabilistic guarantees
when testing self-adaptive software: MC and EVT. Both
those methodologies suffer from limitations that make them
inconvenient for analysing the results of the testing cam-
paign – i.e. being used in place of the “Scenario theory”
block in Figure 1. These limitations are: (i) arbitrary choice
of testing parameters, (ii) unknown, case-dependent, testing
confidence (or testing adequacy), and (iii) assumption that the
variance of the measured quantity is finite.

MC and EVT use an arbitrary number of samples for
the desired estimation. The MC approach assumes that
the set of samples is large enough that the Central Limit
Theorem holds [27], and the EVT similarly relies on the
convergence of the maxima samples to the Extreme Value
Distribution [66]. Unfortunately, in both the theories, there
is no general way to define how many samples are needed
to achieve convergence.

The impossibility of quantifying the convergence to the
Gaussian and Extreme Value Distributions has another rel-
evant implication for the testing problem. If the desired
testing confidence is not reached, it is impossible to quantify
how many extra tests are needed to reach it. In other words,
we cannot know a priori how the confidence will change
when performing one extra test.

Another assumption needed by both EVT and MC sam-
pling is that the performance parameter has finite variance.
In practice, this means that either the probability of it being
infinite must be very low, or that the parameter can only

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

7

take finite values. Suppose we are trying to assess the worst-
case execution time of a software function. The presence of
a bug could cause the processor to stall and the function
to never terminate. As long as the occurrence of this bug
is sporadic, it is possible to use EVT and MC to deter-
mine metrics on the execution time. However, if the bug is
triggered more often, the (higher) probability of an infinite
execution time would prevent us from applying EVT and
MC methods. Some commonly used engineering solutions
can enforce finite variance in given performance parameters.
An example of this is the presence of timeouts. Introducing a
timeout does not help overcoming the limitation. In fact, the
test that resulted in a timeout does not provide a sample of
the possible performance of the system (i.e., conveys less in-
formation than its number-based counterpart, resulting only
in a ‘timeout reached’ outcome). Merging this information
in the statistical evaluation is non-trivial, and could even be
detrimental and hide behaviours of the system.

Our proposal overcomes these limitations by formulat-
ing the testing problem as an infinite optimisation problem
and solving it using the scenario theory.

4.2 Scenario Theory for Software Testing

The scenario approach [29] was developed in the field of
robust control [67]. However, it is more generally applicable
than control design. It provides a method to solve infinite
convex optimisation problems. Infinite convex optimisation
problems are a class of optimisation problems that appear
frequently in robust control design. However, they are also
classically found in other fields, such as decision making,
finance, and management [68], [69]. The contribution of
this paper is the formulation of the testing problem with
the scenario approach and the study of the results that
can be obtained for self-adaptive software. We show how
this allows us to overcome the research challenges from
Section 1.

In our testing problem, we want to find bounds for a
performance parameter of an adaptive system (i.e., of the
software and a given adaptation strategy implemented on
top of it). In general, finding a safe and very pessimistic
bound on what the software can achieve is trivial. The in-
teresting question is how much we can move this bound to-
ward higher performance. This problem can be formulated
as: we would like to maximise the value of the performance
parameter that we can safely guarantee when using a given
adaptation algorithm.

The evaluation of this performance bound can therefore
be seen as an optimisation problem. Solving optimisation
problems means finding the extreme value of a quantity,
either the highest or the lowest possible. In the following
sections we introduce optimisation problems, the scenario
theory, and how they can be used to bound the performance
of a self-adaptive software.
Optimisation Problems: Optimisation problems are defined
by: (i) one or more decision variables, (ii) a cost function,
and (iii) a set of constraints. The decision variables are the
quantities we can choose and change. The cost function
is the quantity we would like to maximise or minimise,
and it should be a function of the decision variables. The
constraints are statements about the decision variables that

we want our final solution to satisfy. An example of a
problem that can be formulated as an optimisation problem
is the travelling salesman problem [70]. A salesman needs
to determine a route to visit a given number of cities,
minimising the travelling distance. The decision variables
are the segments to add to the path, the cost function is
the total travelled distance, and the constraint is that all the
cities in the given list are visited at least once.

In our proposed testing methodology the decision vari-
able is the worst-case performance of the adaptation strat-
egy (i.e. the best value of the performance metric that
we can safely guarantee), the cost function is the worst-
case performance itself, and each of the test outcomes is
a constraint. The performance bound evaluation therefore
becomes the following optimisation problem: maximise the
performance that can always be guaranteed, under the constraint
that it cannot exceed what is experienced in the conducted tests.

Being even more practical and using the web applica-
tion example from Section 1, suppose we want to provide
guarantees on its maximum response time thanks to the
adaptation strategy. We conduct a certain number n of tests.
Each test is composed of servicing 1000 requests in random
execution instances of the overall system, and monitoring
their response times. We record the average response times
in the vector r = {r1, r2, . . . , rn}. Where ri is the average
response time of the web application for the 1000 requests
of the i − th test. These values are constraints on what
the software can achieve. We then take the maximum ele-
ment of the vector as our worst-case performance metric,
wmax = max{r1, r2, . . . , rn}. If we tested all the possible
execution cases, we could then say that we guarantee that
the response time will be lower than the maximum value
wmax. However, for self-adaptive software the set of possible
execution cases is likely infinite.

Ideally, if we could perform an infinite number of tests,
we would test the system in every possible situation. In this
way, we could obtain an exact evaluation of the worst case
behaviour of the system. In practice, this is apparently not
achievable, and we have to rely on only a finite number of
tests. Despite this, when the number of tests is sufficiently
large, it will still provide significant information about the
general case.

Infinite Optimisation Problems: If we cast our (ideal)
testing problem into an optimisation problem, we would
have infinite constraints (the infinite test cases). For our web
application example this would mean performing an infinite
number of tests and obtaining the real bound. Unfortu-
nately, solving an optimisation problem with an infinite set
of constraints is not always possible (or desirable). Similarly,
in our testing problem, we cannot perform infinite tests.

Scenario theory: The scenario theory [29] addresses the
problem of solving an infinite optimisation problem while
accounting only for a finite number of the constraints. The
theory provides probabilistic guarantees on the generality
of the solution. The scenario approach is used to solve
infinite optimisation problems. The approach is to transform
the infinite-sized problem into a finite-sized problem by
randomly sampling a finite number of constraints from the
infinite set of possible ones. Then, it is possible to solve
the optimisation problem accounting only for the finite set

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

8

of sampled constraints. The scenario theory allows then to
quantify the uncertainty and the guarantees that are lost by
only considering the finite set.

In the testing of our web application, this corresponds
to obtaining the probabilistic guarantee that the average
response time is lower or equal to wmax in a high percentage
of the cases. This means that, with high probability, the
future executions of the web application would not result
in a higher average response time, i.e., P(rm ≤ wmax | m >
n) = pw ≈ 1.

Using the scenario theory, we can compute the proba-
bility pw that the solution – computed using the finite set
– does not satisfy all the constraints in the possibly infinite
set. For our testing problem, this means that we evaluate the
worst-case performance using only a finite number n of test
results. We then compute the probability that the obtained
worst-case value wmax holds for all of the infinite tests that
we could possibly run – i.e., we compute the probability
that in future tests we would obtain a worse value than
wmax, which is obtained using the first n tests, i.e., that
∃m > n | wm > wmax.

In our specific optimisation problem for testing, we have
only one decision variable (the evaluation of our worst-
case). We now state the relevant result of the scenario theory
in that case.4 We denote with ε the probability of observing
(in future executions) a performance value that is worse than the
observed worst-case up to n tests (i.e., ε = 1 − pw). In the
original optimisation framework this is the probability of
not satisfying all the infinite constraints.

Using the scenario theory, we can evaluate the probabil-
ity that, in our n test cases, we could have missed a test case
with a worse performance than the obtained bound. We call this
probability β and it is computed from ε and n as

(1− ε)n = β. (5)

In the original optimisation problem, ε quantifies the
probability that a new (randomly picked) constraint taken
from the infinite set would invalidate the solution found us-
ing the finite set. In our testing analogy, ε is a quantification
of how tight we want our bound to be. Choosing a lower
probability ε means having a tighter bound, and choosing
a higher value means that we allow for higher risk of not
having observed the true worst-case. We remark that we can
arbitrarily choose ε, but this will result in different degrees
of confidence β that we can have in the obtained result.

The probability β can be seen as a quantification of how
confident we are of our testing campaign result. A lower
value of β implies that we are more confident and a higher
value represents a higher probability that the final result
is not correct. A tighter worst-case bound (lower ε), in fact,
results in a higher β, a higher probability that we could have
“missed” a relevant test case (constraint) in our sampling.
In this sense, β can be seen as a coverage parameter, since it
quantifies our confidence of having explored enough of the
possible instances of the self-adaptive software behaviour.

Figure 2 shows a graphical interpretation of the probabil-
ities ε and β. The dashed line shows the true and unknown
probability distribution of the performance parameter. The

4. We omit the complete formula for an arbitrary number of decision
variables, since it is not of interest in our case.

−1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

Performance

p
(P

er
fo

rm
an

ce
)

0

2

4

6

ε = probability
of observing a
number worse

than the current
worst-case (risk)

β = probability that one
of the n tests should

have been in the ε region,
1 − β: probability of ε being

the true value of the risk

N
um

be
r

of
te

st
ou

tc
om

es

Fig. 2. Graphical representation of the scenario parameters ε and β. In
this case poor performance of the system is captured by high values
of the performance parameter while low values correspond to more
desirable performance. The histogram bars represent the performance
observed in the test cases. The red bar is the observed word case. The
red area corresponds to the probability ε quantified with ST of observing
(in future executions) a performance worse than the worse performance
observed so far. Figure from [24].

histogram represents the observations that we obtained
when measuring the performance of the system in our tests
(i.e., our test results). The red bar indicates the worst case
obtained during the testing campaign. The red area has
size ε, i.e., ε is the probability that in the future we will
experience a worst performance than the observed worst-
case. Here, β is the probability that – assuming that ε is the
correct area – we would not have observed a test case in the
ε area during our n observations. For example, if we had
more test results, these could or could not be lower than the
observed worst-case. In any case, with more observations,
we are able to: (i) tighten the bound (i.e., decrease ε), (ii)
increase the confidence (i.e., decrease β), or (iii) do both
things to a lesser extent. Without running additional tests,
we can tighten the bound at the cost of losing confidence
in it. Alternatively, we could loosen the bound and increase
our confidence.

We highlight that the theory does not require any prior
knowledge on the probability distribution of the perfor-
mance metric (i.e., on the dashed line in Figure 2). This is
the strength of scenario theory with respect to the tradi-
tional methods that require assumptions on this probability
distribution (e.g., its variance being finite).

We also remark that the test cases have to be randomly
generated (or taken from the execution of the software in
different scenarios). This is what guarantees the probabilistic
characterisation. It could be argued, in fact, that what is
actually used is only the test case where the system exposed
the worst behaviour, and therefore this one is the only test
case of interest. But identifying the testing conditions that
expose the worst case might be not be straightforward and
could require a greater effort than running a number of
randomly generated test cases. In other cases, instead, the
worst-case performance could be a trivial, arbitrarily bad
performance. For example, the worst case response time of
a web service will be infinite if all the servers become un-
available. Differently, we ask instead the following question:

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

9

given a number of tests we ran on the real system, what is
the average response time that we can guarantee in 99% of
the cases? We argue that this probabilistic characterisation
of self-adaptive software is (i) simpler to achieve and, (ii)
more interesting than its deterministic counterpart. There-
fore, when taking the probabilistic approach, even though a
new test might not change the worst-case bound, it is still
valuable because it increases the reliability and confidence
in the obtained bound.

This probabilistic characterisation of the guarantees
specifically addresses the research challenge CH1. Our ar-
gument is that, since deterministic guarantees cannot be
given for adaptive systems, we should aim for probabilis-
tic ones. Within the choice of probabilistic guarantees we
have then addressed the other two research challenges. In
fact, we have showed how to apply scenario theory for
quantifying the system performance and testing confidence.
Respectively, ε quantifies the probabilistic bound on the
performance (CH2), and β quantifies the testing adequacy
(CH3).

5 EXPERIMENTS

This section aims at validating the proposed methodology.
Our approach is designed to: (i) provide formal probabilistic
guarantees from experiments (CH1), (ii) allow us to perform
a fair comparison of different adaptation strategies (CH2),
(iii) quantify the trade-off between the number (and cost)
of experiments and the obtained probabilistic confidence
(CH3). Finally, every method has to take into account the
choice of test inputs. Hence, we explain how the choice
of randomized testing inputs can affect the results of the
testing campaign (CH4)

The proposed approach (shown in Figure 1) is application
independent. We highlight this strength presenting experi-
mental data from well-established adaptive software with
different application domains: healthcare, video processing,
and traffic flow optimisation.

In this section we show two different applications of the
approach using the three presented analysis tools: MC, EVT,
and ST. We highlight and discuss the respective limitations
and what each technique can be used for.

In particular, in Section 5.1 we focus the discussion on
the trade-off between the number of performed tests and
the obtained probabilistic confidence using a simulation
tool for the Tele Assistance Service (TAS) [30], [71]. This
shows how we address the research challenges CH1 and
CH3. In Section 5.2 we focus on the comparison of different
adaptation strategies using the Self-Adaptive Video Encoder
(SAVE) [31]. Our approach allows us to address the research
challenge CH2. Furthermore we include a discussion on
the possible consequences of a partition of the test inputs,
this concerns the discussion the research challenge CH4. In
Section 5.3 we use the TRAPP case study to discuss the role
of test inputs definition in our testing methodology: this
discussion addresses the research challenge CH4.

5.1 Data vs. Confidence Trade-Off
Aim: The aim of this case-study is to discuss the different
probabilistic guarantees that can be provided with the dif-
ferent methodologies. To do so we show the complete appli-
cation of the different methodologies (MC, EVT and ST) to

the TAS system and comment the results. The results expose,
among other facts, the limitations of the traditional statis-
tical approaches in terms of confidence evaluation. Con-
versely, we discuss the probabilistic guarantees obtained
with ST: the probabilistic performance bound and the testing
confidence are discussed. More specifically, when using ST,
we can offer guarantees on the software performance level,
even for test cases that have not been explicitly executed
(CH1), and we evidence the direct connection between the
amount of collected experimental data and the probabilistic
testing confidence (CH3).

Self-Adaptive Software: TAS is a service-oriented software
application that provides care and assistance to elderly peo-
ple that suffer from chronic diseases [71]. The software [30]
periodically monitors patients conditions using sensors and
activates a chain of services invocations. First, the patient
conditions are sent to an Analysis Service, that inspects the
data and determines the next steps to be taken for the
patient well-being. The outcome of the analysis is one of the
following: (i) do nothing, (ii) invoke a Drug Service that will
compute a new medicine dosage, or (iii) invoke an Alarm
Service that will dispatch an ambulance.

Each service can be realised by multiple service
providers, potentially doing different computations that
follow the same specification and interface. During the
execution of the software, the selection of which provider
to invoke to obtain a given functionality introduces an
element of choice in the management of each request. Ser-
vice providers have different properties; e.g., quality of the
service, availability, success rate, and failure probability. In
our experiments we focus on service rate and availability
in the presence of failures, i.e., the number of requests pro-
cessed per time unit and the probability of serving incoming
request successfully.

The presence of different service providers and variety
of potential needs for each request introduces the need
to adapt the software behaviour to the current operating
conditions. Adaptation strategies were introduced with the
aim of selecting given services based on properties to be
enforced for the overall system, e.g., [9], [72], [73], [74]. In
our experiments, the adaptation strategy should recognise
the service providers with higher service rates and prioritise
them when distributing the requests. Also, since services
might not always be available, the adaptation layer should
avoid submitting requests to unavailable service providers.

To identify the best choices, the adaptation layer stores
one number per service provider, called weight. For all the
alternatives, the weight is initialised to 1 and incremented
or decremented (using a fixed step equal to 50 in our
experiments) based on the service performance. For each
successfully processed request, the weight increases, and
for each failed invocation the weight decreases. We further
introduce a timeout and reset the weight to 1 if the service
invocation failed for all the requests sent in the timeout
interval.

When distributing the requests, the weights are used to
define a probability distribution over the different providers
of a given service. The probability distribution can be
obtained by normalising each of the weights over their
overall sum. The requests are distributed according to this

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

10

1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

20

40

60

N
um

be
r

of
te

st
ou

tc
om

es

0

20

40

60
p
(P

er
fo

rm
an

ce
)

with 25 tests
with 50 tests
with 100 tests
with 200 tests
with 500 tests

Fig. 3. TAS: Histogram of experienced average number of attempts
and plot of the obtained normal distribution of the sampled average
performance.

probability distribution. We limit the weights to an inter-
val between 1 and 1000. This avoids that overly positive
weights attract all the requests. In the same way, negative
weights imply that the service provider is never chosen,
making it impossible to recover even in case of potentially
correct operation.
Test Design: We use the TAS case study to highlight
the trade off between data and confidence, i.e., how the
exploration of the system’s behaviour improves with the
increasing number of tests. The definition of which inputs
should be randomised is critical for the correct coverage
of the system’s behaviour. Here, we randomise: (i) the
requests profile, i.e., the number of incoming requests; (ii)
the workload mix, i.e., the type of incoming requests; (iii) the
availability of the different service providers, i.e., a provider
being reachable or not; and (iv) the reliability of the service
providers, i.e., request processing may fail due to internal
reasons.

We can use one or more performance parameters, de-
pending on the specific software and on what are the aspects
that we want to test. The performance parameter should
be representative of the behaviour of the adaptation layer.
Practically, this means that it should enable the distinction
of whether the adaptation layer worked well for the specific
test case, or not. In the TAS case we want to build a system
that is robust to the occurrence of failures. We choose as
performance parameter the average number of attempts
needed for a request to be correctly handled. Lower num-
bers indicate better adaptation, 1 being the best possible
value (often not achievable).
Results MC: Figure 3 shows the histogram of the obtained
worst case in the different tests. For each possible per-
formance value on the horizontal axis the column above
is proportional to the number of tests that exposed that
performance. In the same figure, we also plot the gaussian
distributions obtained for the sampled mean and its sam-
pled variance using an increasing numbers of test cases.

We use this figure to investigate what MC methods allow
us to state about the average performance of the system
and comment on its applicability. The obtained gaussian
distributions do not change significantly when increasing
the number of tests – i.e., the different line plots are close
to each other. This shows the quick convergence of the MC
methods: already with 25 tests we obtain some confidence that
we can expect (on average) a performance of around 1.45 number

1.6 1.7 1.8 1.9 2 2.1
0

2

4

6

8

10

G
PD

fit

0

2

4

6

8

10

N
um

be
r

of
te

st
ou

tc
om

eswith 100 maxima
with 75 maxima
with 50 maxima
with 25 maxima

Fig. 4. TAS: Histogram of all the test outcomes that exceed 1.5554
average attempts per request. In red are plotted the GEVDs fitted for
different maxima choices in the TAS case study – namely 100, 75, 50,
25 maxima.

of attempts with this adaptation strategy.
On the other side, this evaluation does not give formal

guarantees on such statement. Specifically, we would like to
quantify the words “around” and “some confidence” from the
statement above, but with MC this cannot be done in the
general case. As an example, we cannot state that 1.45 is the
performance that we are most likely to observe. The most
probable performance, in fact, seems to be slightly lower
according to the histogram.

To summarise, the experiments show that MC methods
can be used to get a rough evaluation of the average be-
haviour of an adaptive system. Their quick convergence al-
lows to achieve this with relatively few experiments. But, if
the purpose of the testing campaign is to formally constrain
the adaptation performance, they lack of a general approach
to the evaluation of the testing confidence.
Results EVT: Figure 4 shows the histogram of 100 maxima
from the testset of the TAS system. Overlying to the his-
togram, are plotted the GEVDs fitted using different num-
bers of maxima, namely: 100, 75, 50, and 25. The application
of EVT provides a full probabilistic characterization of what
can possibly be the worst case performance of the system.

If we take one set of maxima and the associated fit-
ted distribution we can provide probabilistic guarantees
on what is the worst case performance of the adaptation
strategy. For example if we take 1.9 as candidate worst
case the fitted distributions can be used to compute the
probability of obaining a performance worse than that.
Using the distribution fitted to 100 maxima we would obtain
a 0.92% probability of obtaining a performance worse than 1.9.
The same statement could be made for different candidates
for the worst case performance (apparently associated to a
different probability).

Unfortunately, this evaluation doesn’t include a quan-
tification of the confidence we can have on the statement.
This depends on whether the used maxima are sufficient
to obtain convergence to the GEVD and the theory doesn’t
provide a way to quantify it. Experimental evidence of such
statement is that the different choices of the maxima provide
different results for the worst case probability. Using 75
maxima we would have in fact obtained a probability of
0.73%, using 50 maxima we would have obtained a proba-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

11

0 100 200 300 400 500
0

1

2

3

ε: probability
of obtaining a

worse result than
the measured

worst case
1 − β:

probability of
ε being correct

Test (n)

W
or

st
C

as
e

0

0.01

0.02

0.03

C
on

fid
en

ce

Measured worst case
β: Confidence with ε = 0.05
β: Confidence with ε = 0.04
β: Confidence with ε = 0.03
β: Confidence with ε = 0.02
β: Confidence with ε = 0.01

Fig. 5. TAS: Measured worst case and confidence level varying the
number of performed tests using the Scenario Theory. Figure from [24].

bility of 0.58%, or using 25 maxima we would have in fact
obtained a probability of 0.37%. The theory doesn’t provide
a way to evaluate the confidence and therefore to state
which of those choices can be considered more appropriate
or reliable.

Results ST: Figure 5 shows the evolution of our quantities
of interest when we perform an increasing number of tests
and analyse them using ST. In particular, it shows: (i) the
worst experienced average number of attempts needed per
request (using the left y-axis), and (ii) the confidence β in
the test outcome for different values of ε (using the right
y-axis).

In the figure, we highlight with circle markers the newly
experienced worst cases. The worst case is monotonically
increasing with the number of conducted experiments. For
example, in test #226, the average number of attempts per
request to complete the TAS cycle is 2.081. This is a new
worst case, as the previously experienced value was 1.8479
(from test #117).

The probability of not performing a relevant test (i.e., a
test that would lead to a different worst case) is monotoni-
cally decreasing with the number of performed experiments.
Analogously, a higher number of test cases is leading to
a higher test coverage. Despite an unchanged worst case,
between tests #117 and test #226, our confidence in the
experimental results grew (lower values of β).

Decreasing the value of ε means being more conser-
vative with our evaluation. The non-solid lines show the
confidence β with smaller values of ε (up to 1%). Many
more experiments are needed to obtain the same level of
confidence when a smaller ε is selected.

The quantity β is the key difference between ST, and
EVT or MC. Within ST, the test brings information both on
the reliability of the testing process and the system under
test itself. In MC and EVT the information carried by the
tests is used only to evaluate the system’s performance.
Differently from MC and EVT the testing confidence allows
the testing engineer to make a conscious choice on the
number of randomly generated test cases according to the
needed testing confidence and performance evaluation.

Using the scenario theory, we can state:
Based on the results of n = 500 tests, requests sent to TAS
(with the described adaptation strategy) will not need more
than 2.081 attempts on average to complete (despite service
failures) with probability 1 − ε = 0.98. This statement is
correct with probability 1− β = 0.99996.

This performance is apparently strongly dependant on the
chosen adaptation strategy. More interestingly, it does not
depend on the specific values of the quantities that have
been randomised for the test case generation. Conversely,
we could determine the number of tests to be performed
based on the desired ε and β values:

Given the desired probabilistic guarantees of confidence of
1 − β = 0.99996 and a bound that holds in 98% of the
cases, we perform n = 500 tests. In our case, the 500 tests
indicate that in the worst case 2.081 attempts are needed on
average per request.

Suppose that we could afford to conduct only n = 250
tests. In Figure 5 we can see that the measured worst case is
the same as the complete test campaign. However, keeping
1− ε = 0.98, we could only claim a lower confidence in our
test findings:

Based on the results of n = 250 tests, requests sent to TAS
(with the described adaptation strategy) will not need more
than 2.081 attempts on average to complete (despite service
failures) with probability 1 − ε = 0.98. This statement is
correct with probability 1− β = 0.9936.

Vice versa, we could also determine the larger bound ε that
we need to accept for if we wanted the same confidence
1− β = 0.99996 for 250 experiments. In this case we would
obtain 1− ε = 0.9603.

5.2 Adaptation Strategies Comparison
Aim: The aim of this second set of experiments is to show
the use of the proposed methodology for the comparison of
different adaptation strategies. We run the tests and quantify
the performance for each case with all the three discussed
tools. The experiments expose the limitations of MC and
EVT in enabling fair comparison. This is achieved, instead,
with the use of ST (CH2). We aim at using the presented
statistical tools to compare in a fair way the different adap-
tation strategies. Moreover, we also show the application of
the scenario theory for testing with different and conflicting
adaptation requirements (CH1). To further emphasise the
validity of the proposed methodology, in this section we run
the tests using the real software, rather than a simulation
tool.
Self-Adaptive Software: SAVE [31] is a video encoding
tool that aims at automatically achieving the desired size
compression of a video stream whilst preserving as much
as possible of its content. We target video broadcasting
services, where multiple videos are streamed with a fixed
amount of bandwidth and unpredictable demands. We also
assume that the video content is not known a priori and is
expected to change over time. The need for adaptation arises
from the strong dependence of the encoding performance on
the specific content of the video.

The adaptation strategy should leverage the frame char-
acteristics to autonomously find an effective combination

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

12

of encoding parameters. For each frame, the adaptation
layer selects: (i) the quality parameter that specifies the
compression density. It ranges between 1 and 100, where
100 preserves all frame details and 1 produces the highest
compression; (ii) the sharpen parameter, which specifies the
size of a sharpening filter to be applied to the image. The
filter size ranges between 0 and 5 where 0 indicates no
sharpening; (iii) noise correction, which specifies the size of
a noise reduction filter, also between 0 and 5. High filtering
should in general generate a more uniform image, making
it simpler to compress.

For each frame the adaptation layer measures size and
quality and selects the encoding parameters accordingly,
using its own algorithm. The size is measured in bytes
and the quality is measured using the Structural Similarity
(SSIM) index [75]. This index is a unitless metric that ranges
between 0 and 1 and quantifies the similarity between
the original and the encoded frame (high index meaning
high similarity). The measurements are used to evaluate
the size error and the SSIM error as differences between the
measured values and the desired ones.

We compare four different adaptation strategies, two
from the original artifact [31] and two developed specifically
for this work:

• Random: this adaptation strategy (from the original
artifact) selects random encoding parameters. We use
it as a baseline for our evaluation.

• Model Predictive Control (MPC): this adaptation strat-
egy (from the original artifact) exploits model predic-
tive control algorithm [76]. It solves a model-based op-
timisation problem for each frame and uses the result to
determine the encoding parameters for the next frame.
For our tests, we used the tuning parameters from the
original publication [73].

• Integral: we developed an heuristic adaptation strategy,
inspired by control theory principles. Here, the size
error is used to choose the quality parameter. If the size
is larger than the desired one, the quality parameter
is reduced by 5. If smaller, the quality is increased by
5. The SSIM index determines the choice of noise and
sharpen filter radius. Both are increased by 1 if the
quality is more than desired, and reduced otherwise.
From an analytical perspective, the errors are integrated
to perfect the encoding parameters choice.

• ε-Greedy: this adaptation strategy is based on the
homonym machine-learning algorithm [77]. More
specifically it belongs to the class of reinforcement
learning algorithms. It alternatively leverages two
adaptation approaches: (i) a greedy approach that ex-
ploits the knowledge of the best parameters already
encountered with probability 1 − ε, and (ii) a random
approach that explores new possible choices, by ran-
domly selecting new parameters with ε probability.
The performance of a given choice of parameters is
quantified based on the errors and normalised by the
desired values. Higher similarity and lower size are
desired, inducing errors that are close to zero. The
greedy approach chooses the set of parameters that
is associated to the lowest performance value. We use
ε = 0.2.

Test Design: In SAVE, adaptation takes place along a stream
of frames, i.e. the feedback from one frame is used to
improve the encoding of the next frame. To capture the
behaviour of the adaptation strategy, each test should be an
adequately long video, in which changes occur, triggering
the need for adaptation. We would like to evaluate the
performance of the different adaptation strategies indepen-
dently from the content of the processed videos.

According to the proposed methodology, we define a set
of videos that can be considered a random sample, with re-
spect to their content. Here, we used the User Generated Con-
tent dataset from Youtube [78]. This dataset is representative
of videos uploaded by users to Youtube. The videos are
classified in categories and we focused on the sport category,
because, due to the ever-changing scene, these are usually
the most difficult to encode for real-time streaming and will
expose the most of the adaptation strategy properties. The
database contains 160 sport videos.

The adaptation strategy tries to achieve multiple objec-
tives (a given size of the encoded frames, and a given con-
tent loss) at the same time. To capture the results obtained
for both objectives, we define two different performance
parameters, used to measure the outcome of the tests. The
encoding performance on a single frame is directly quanti-
fied as the errors on: (i) the encoding size and (ii) the SSIM.
For performance evaluation, we only consider relevant the
cases in which the size is larger than the desired value or
the quality is lower than the setpoint.

Intuitively, the size error is a problem when the images
require more bytes than desired, and the SSIM quality is a
problem when the image has less information than desired.
We therefore evaluate the performance over a video of an
adaptation strategy as the average of the size and SSIM
errors weighted with the REctified Linear Unit, relu(·) func-
tion. The relu(·) function returns 0 for negative inputs and
leaves the input unchanged for positive values. The com-
plete formula for the performance parameters is shown in
Equation (6), where SSIMv and SIZEv are the integrated
errors on the video v, SSIMsp and SIZEsp are respectively
the SSIM and size setpoints, SSIMi and SIZEi are the
SSIM and size of the i-th frame and nf is the number of
frames in the video.

SSIMv = (1/nf) ·
∑

i
relu(SSIMsp − SSIMi),

SIZEv = (1/nf) ·
∑

i
relu(SIZEi − SIZEsp).

(6)

In our evaluation, we use a SSIM reference of 0.9, preserving
most of the content in the videos, and a frame size reference
of 70% of the size of a frame randomly picked from the
uncompressed video. The choice of having per-video refer-
ences for the size is driven by the strong dependence of the
frame size on the specific video.

Results: We ran the 160 encoding tests with each adaptation
strategy. For each video v, we computed the two perfor-
mance parameters SSIMv and SIZEv defined in Equa-
tion (6). The histograms in Figure 6 show the results of the
tests.5 The dashed grey lines mark the average performance

5. In the figure, we enforce the same scales for the axes to ease the
comparison between the different plots. This results in hiding part of
the plot of the size performance for the Integral strategy.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

13

TABLE 1
SSIM performance [adimensional].

Mean Var Max EVT (30%) EVT (20%) EVT (10%)

Random 0.0710 ±0.0054 0.3251 0.002720 0.002602 0.002264

MPC 0.1145 ±0.0068 0.4565 0.004850 0.005141 0.002810
Integral 0.0315 ±0.0029 0.1685 0.003230 0.002876 0.001808

Greedy 0.0135 ±0.0018 0.1777 0.002010 0.003062 0.003528

TABLE 2
Size performance [bytes].

Mean Var Max EVT (30%) EVT (20%) EVT (10%)

Random 8806 ±1033 82488 0.003925 0.005366 0.004677

MPC 492 ±94 8718 0.006511 0.005625 0.005046
Integral 126373 ±13942 992342 0.006526 0.006001 0.005460

Greedy 1885 ±318 35191 0.004277 0.002834 0.004337

0 0.1 0.2 0.3 0.4 0.5
0
20
40
60
80

Avg 0.0710, Max 0.3251

R
an

do
m

#
of

Te
st

s

0 50000 100000 150000 200000
0
20
40
60
80

Avg 8806, Max 82488

0 0.1 0.2 0.3 0.4 0.5
0
20
40
60
80

Avg 0.1445, Max 0.4565

M
PC

#
of

Te
st

s

0 50000 100000 150000 200000
0
20
40
60
80

Avg 492, Max 8718

0 0.1 0.2 0.3 0.4 0.5
0
20
40
60
80

Avg 0.0315, Max 0.1685

In
te

gr
al

#
of

Te
st

s

0 50000 100000 150000 200000
0
20
40
60
80

Avg 126373, Max 992342

0 0.1 0.2 0.3 0.4 0.5
0
20
40
60
80

Avg 0.0135, Max 0.1777

Performance Metric: SSIM

ε-
G

re
ed

y
#

of
Te

st
s

0 50000 100000 150000 200000
0
20
40
60
80

Avg 1885, Max 35191

Performance Metric: Frame Size [bytes]

Fig. 6. SAVE: performance of the adaptation over the Youtube dataset with different techniques: Random, MPC, Integral, and ε-Greedy. The tables
report the sampled mean and variance, the worst case and the worst case probability computed with EVT using different numbers of maxima. The
histograms show the performance observed in all test cases and highlight the mean (grey dashed line) and worst case (red dotted line). Figure
from [24].

for both similarity index and size, and the red dotted lines
highlight the worst case experienced during the tests.

Tables 1 and 2 respectively show different performance
metrics for the SSIM and frame size. The two leftmost
columns contain the sampled mean and variance, used by
the MC analysis. The Max column displays the maximum
values experienced for the parameters in the tests, rele-
vant for the ST approach. The three rightmost columns
show three different probabilities computed with the EVT
method. These are the probabilities of obtaining a perfor-
mance value worse than the worse experienced value in
the tests. We specifically computed three EVT probabili-
ties using the same threshold value (the maximum value
experienced in the experiments). The three probabilities
correspond to the GEVD being fitted to respectively the
30%, 20%, and 10% largest values from the test outcomes.
The chosen threshold value allows us to directly compare
the results of the EVT approach with the ST probabilistic
bound.

For what concerns the ST analysis, the number of per-
formed tests n = 160 allows for the scenario parameters
ε = 0.03 and β = 0.008. As for the TAS case study, this is
not the only possible choice and a tighter bound could be
traded for lower confidence (e.g. ε = 0.01 and β = 0.04) or
vice versa (e.g. ε = 0.05 and β = 0.0003). Apparently, the
two quantities hold equally for each of the tested adaptation

strategies.

For the size performance, the MPC adaptation strategy
vastly outperforms all the other strategies. This is achieved
at the price of a SSIM adaptation performing worse than
the Random strategy – i.e. the baseline. This is consistent
with the adaptation objectives stated in the design of the
strategy, where the size compression was considered the
main objective [73]. This is equivalently observed by all the
three alternative analysis techniques – i.e. comparing the
first (MC) and third (EVT and ST) columns of the tables.

The Integral adaptation achieves the complementary
result with respect to the MPC strategy. It presents good
performance (among the strategies studied here) from the
point of view of the SSIM but exposes the worse perfor-
mance for what concerns the size. This can be attributed to
the decoupled approach between the adaptation objectives
pursued with this adaptation. Size and quality are not really
decoupled (although the adaptation strategy treats them as
such) and cannot effectively be treated separately.

When we compare the SSIM performance for the Inte-
gral and the ε-greedy strategies, the average and worst-
case metrics are in slight disagreement. Whilst the former
suggests a preference for the ε-greedy approach, the latter
(the bare maximum) favours the Integral adaptation strat-
egy. However, the tail of the histogram obtained with ε-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

14

TABLE 3
Analysis of sampling bias for testing with SAVE. Frame size errors are normalised using the reference value, to allow a fair comparison between

the different input sample sets.

Video resolution 360P 480P 720P 1080P 2160P
Strategy Errors on SSIM Size SSIM Size SSIM Size SSIM Size SSIM Size

Random
Worst case 0.188 20468 0.325 22370 0.208 7743 0.262 82488 0.111 74245

Average 0.070 1786 0.101 3084 0.058 3457 0.096 9418 0.031 25351

MPC
Worst case 0.250 6368 0.457 3044 0.312 799 0.435 8718 0.229 8577

Average 0.142 254 0.177 209 0.129 165 0.186 603 0.091 1186

Integral
Worst case 0.139 44223 0.169 74377 0.098 173045 0.130 377724 0.067 992342

Average 0.031 17714 0.044 27752 0.023 61233 0.046 162939 0.012 347691

Greedy
Worst case 0.035 846 0.178 13309 0.154 25153 0.054 35190 0.018 15967

Average 0.011 265 0.023 1121 0.013 1487 0.017 2543 0.004 3852

greedy approach (Figure 6) seems lighter – i.e., less test cases
performing “around and above” the performance value of
0.1. Intuitively, we would expect this to result in a higher
probability of exceeding this bound. This is the probability
that we computed with EVT in the right-most three columns
of Table 1. Unfortunately, the value significantly depends on
the number of maxima used for the GEVD fitting: if 30%
of the values are considered maxima we should compare
0.32% for the integral adaptation and 0.2% for the ε-greedy
strategy, otherwise 0.28% and 0.3%, or 0.18% and 0.35% if
were respectively 20% and 10% of the values. Apparently,
the conclusion on which is the best strategy will be different
depending on the chosen number of maxima. Using EVT,
we are not equipped with tools to select a number of
maxima. Whilst these might seem minor variations in the
probabilities, we recall that we are discussing probabilities
of rare events (worst cases). Those probabilities are therefore
intrinsically small and also minor variations can have high
relative significance. This exposes one of the main limita-
tions in applying the EVT to the testing of self-adaptive
software. Conversely, ST assigns the same probability to the
two adaptation strategies, leaving in some sense the final
choice to the testing engineer. In this case, the sampled
average from the MC method helps the testing engineer
in choosing which adaptation strategy to favour. Despite
this, it does not allow us to formally state that the ε-greedy
approach outperforms the Integral strategy.

When simultaneously looking at both performance pa-
rameters, the machine-learning based approach achieves
good performance. The SSIM performance is comparable to
the one of the Integral adaptation and the size performance
is in the order of the tens of kilobytes. This latter perfor-
mance parameter can be considered small with respect to
the biggest frames in the dataset, whose size is a few gi-
gabytes. The ε-Greedy adaptation strategy proves therefore
to be the best one at simultaneously achieving both adapta-
tion objectives. This can be attributed to the exploration of
the possible combinations of encoding parameters and the
coupled feedback used for the two objectives.

Our testing methodology, when leveraging ST, guaran-
tees that the comparison between the different adaptation
strategies is fair. This is based on the rigorous quantification
of the confidence we can have in obtained bounds. In

particular, for the ε-Greedy algorithm, ST ensures that with
a probability of 1−ε = 0.97 we will not observe: (i) an error
worse than 0.1777 for the SSIM performance parameter, and
(ii) an error worse than 35191 Kb for the size performance
parameter (see Equation 6 for the performance definitions).
The confidence in our test campaign is of 1 − β = 0.992,
meaning that there is little probability of the choice of the
adaptation strategy being wrong. Conversely, using MC and
EVT, such formal statements would not be possible. Finally,
if there was a need to tighten the bound or increase the
confidence in the test campaign, the scenario theory would
directly provide the extra number of test cases needed.

We highlight the difference between worst-case and
average-case metrics. Analysing the average case (as done
with the MC approaches) for the results in Figure 6, one
would conclude that the Random adaptation strategy actu-
ally performs more or less as well as the others. However,
this is not at all true for the worst-case metrics, which
clearly expose the trade-off between size and quality and
the difference between having an adaptation strategy that
targets one or both these quantities and picking the next
frame configurations at random.
Results with different inputs choices: To conclude the
discussion on the results obtained with SAVE, we would
like to discuss the impact of the choice of input videos.
The discussion belongs to a more general remark on the
choice of representative samples for the random inputs to
be provided to the testing machinery.

Suppose that the broadcast videos are acquired by
surveillance cameras and that we have a set of cameras
with given resolutions. Initially, we envision cameras with
360P, 480P, 720P and 2160P resolutions. We therefore test the
adaptation strategies using a diverse set of videos but only
with the mentioned resolutions and draw some conclusion
on the worst case frame size and similarity errors. When our
system expands, we want to introduce additional cameras,
with a new resolution of 1080P. In the testing phase, we
did not collect collected any data on videos with such a
resolution. However, given that we tested higher and lower
resolutions, we could think that our test results are valid
nonetheless and apply also to the extended set. We could
then use the measured worst case in our tests and assume
this is (most likely) not going to be violated. However, the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

15

input set of videos was not representative of the data that
we then experience from the actual system.

To show this, we partition our initial data set in different
subset with the given resolutions. Table 3 shows the worst
case and average case errors for the subsets of our initial
input sample. Computing the worst case value excluding
videos from the 1080P resolution shows that it was neces-
sary to test for this specific resolution and the corresponding
test output changed our worst case. In fact, if one looks at
the column representing the 1080P resolution videos, the
worst case errors for the size of the resulting frames is
much higher than it is for the other videos. Excluding the
1080P videos from the dataset would result is a much more
favourable worst-case, which is not representative of what
would have happened had the test sample being complete.
On the contrary, including these tests from the beginning
(i.e., before our system expansion) would have resulted in a
conservative value being computed for the first setup.

The same remarks apply to average performance metrics
and similar considerations hold for the video quality metric
(SSIM) when one removes the 480P subset.

This shows that there is indeed a need for a represen-
tative set of input videos to properly provide guarantees
on the worst-case experienced values. This does not simply
apply to the video streaming service, but to any system that
is tested using statistical methods (including ST).

5.3 Test Input Definition

Aim: The aim of this case study is to discuss how to
define test inputs in a randomized testing campaign. We
introduce and analyse an adaptive software application for
traffic flow optimisation [32]. We assume that the software is
utilised to understand if a given traffic adaptation strategy
(implemented in the original artifact) is beneficial or not.
We formally define the objectives of the testing campaign
and show how those map to the choice of which inputs to
randomise and which inputs have to be fixed across the tests
(CH4). Leveraging ST we define the number of tests that
are needed according to the desired probabilistic guarantees
on the software performance (CH1). We ran two rounds of
experiments (with and without adaptation) to identify the
potential benefits of enabling the adaptation strategy. We
discuss the connection between the outcome of the testing
campaign and the choices made for the input randomisa-
tion. This case study shows the practical applicability of the
proposed testing approach to the performance testing and
evaluation of an adaptation strategy.
Self-Adaptive Software: TRAPP [32] is a self-adaptive
framework for decentralized traffic optimization. It is based
on the microscopic traffic simulator SUMO [79], and imple-
ments the interoperation with the decentralised combina-
torial optimizer EPOS [80]. Within TRAPP, smart vehicles
populate a simulated network of roads defined by the user.
Vehicles can be introduced in the map in arbitrary points
and will drive to reach a desired destination. Each vehicle
produces different possible routes that it can take to reach its
destination. The generated routes are associated to a specific
cost that captures the preferences of the passengers. The
routing options of every vehicle, together with their cost, are
periodically collected. The EPOS optimiser is then executed

to produce a route choice for each vehicle that accounts at
the same time for both the desires of the car passengers and
the overall efficiency of the road network. We extended the
TRAPP artifact to enable repeated randomised testing.6

The traffic optimisation problem complexity grows expo-
nentially with the number of cars, and achieving the global
optimum in a general fashion is impossible. Moreover, the
best approach to the optimisation problem depends on the
current state of the network: e.g. the distribution of the cars
in the streets, the specific destinations of the cars, and more.
For this reason, adaptive approaches to the execution of the
optimisation in EPOS have been proposed. The adaptation
idea is to monitor in real-time the performance of the
network and of the traffic flow optimisation. Leveraging this
information, the EPOS optimisation can be adapted in order
to improve the overall performance of the system. Among
others, in TRAPP can be adapted the planning horizon, the
planning fairness, or the agents selfishness.

In our case study, we assume a scenario in which the
administration of a city wants to improve the city mobility
by adopting the framework proposed by TRAPP. An adap-
tation strategy has been developed and needs to be tested
in order to assess the potential benefit. More specifically, we
consider the strategy avoid-overloaded-streets proposed in the
original paper [32]. The idea is that the adaptive software
layer monitors in real time which streets are closer to the
limit of their capacity and adapts the EPOS optimisation so
that those streets are avoided if possible.

Test Design: Analogously to the original paper [32], we
quantify the performance of the adaptation strategy as the
average trip overhead of the trips completed by all the cars.
The trip overhead is defined as the ratio between the trip
duration and the ideal trip duration that would be achieved
in absence of other vehicles (hence if the vehicle was trav-
elling always at the maximum allowed speed). A well per-
forming adaptation strategy will be able to redirect the cars
through the fastest route, thus reducing their traveling time
and consequently the average trip overhead. Conversely,
if the starting and end points of the cars are changed, the
average trip is also likely to change. In this latter case, the
performance change is related to the specific change in the
testing scenario and not to the quality of the adaptation
strategy. Leveraging the probabilistic approach taken in this
paper, we therefore randomise the origin and destination of
each trip over repeated tests. In this way, leveraging ST we
obtain an evaluation of the adaptation performance that is
independent of the source and destination parameters.

More in general, we depict a scenario in which the
administration of the city mentioned above, wants a per-
formance evaluation that is independent of both the specific
vehicles and drivers that are currently populating the net-
work, and also of the total number of vehicles in the streets.
Following this specification, in our simulations we random-
ize these specific quantities. When a car is introduced in
the network, we randomly pick values for its acceleration
and deceleration (representing how performing are the en-
gine and brakes of a car or driving style of the driver).
Namely, for respectively the acceleration and deceleration

6. The code used for this set of experiments can be found in this
repository: https://github.com/ManCla/TRAPP.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

16

0 50 100 150 200 250 300

2.6

2.8

3

3.2

Test (n)

W
or

st
C

as
e

0

0.01

0.02

0.03

C
on

fid
en

ce

Measured worst case – with adaptation
Measured worst case – without adaptation

β: Confidence with ε = 0.03

Fig. 7. TRAPP: Measured worst case with adaptation stratergy (in red),
without adaptation (in blue), and confidence level (in black) according to
the desired 97% probabilistic bound computed using Scenario Theory.

we used two truncated normal distributions N (4, 2) and
N (6, 2), both with unit of measure [kmh/s]. In order to
avoid unrealistic car performances both values are forced
to be at least 1. Said distributions represent a statistical
knowledge of the cars used in the city. To account for the
preferences of the different drivers, we select the weights
for the different routing options from a uniform distribution
between 0 and 1. The different routing options can optimise
the length of the trip, the expected average speed, or a
combination of the two. To achieve independence from the
specific trips, the cars are introduced in random points in
the network and are supposed to drive to equally random
points. Finally, we assume that the city administration has
an evaluation of the possible number of cars that populate
the network. Specifically, it has been estimated that the
number of cars can be any value between 800 and 1200 with
equal probability. Therefore, the number of cars included in
each test is chosen according to the estimated distribution.

Conversely, in the testing of the adaptation strategy,
it will not be relevant to randomize parameters that will
be fixed once the system is deployed. Examples of such
parameters are: the network, the triggering period of the
adaptation, and the duration of each test. While randomis-
ing those parameters will provide a more general evaluation
of the chosen adaptation strategy, it will not provide fur-
ther information concerning the actual use of the adaptive
system. For example, it is not important that an adaptation
strategy performs well independently from the specific city
where the TRAPP framework is implemented. Once the
system is deployed, the network is not expected to change
significantly and require a consequent reaction of the adap-
tive system. For what concerns instead the triggering period,
its analysis should be systematic rather than randomised, so
that an optimal choice can be made in the system design.
This kind of analysis is out of the scope of this paper and
has been discussed in recent related research [55], hence we
chose the arbitrary period of 100 simulation ticks. The last
mentioned parameter is the duration of the simulation. The
choice of this parameter is driven by a trade-off between
the efficiency and the relevance of the testing campaign.
Apparently, efficiency purposes call for a simulation that is
as short as possible. In our case study, we consider a test to

have achieved significance when most cars have indicatively
performed more than one trip. Since car trips can take from
tens to hundreds of simulation ticks we chose for our tests
a fixed value of 1000 simulation ticks.

In the depicted testing problem, we assume that a risk
analysis requires that the obtained performance bound will
hold in 97% of the cases. Equivalently, it is accepted a
3% probability that the adaptive system will not provide
the expected performance: thus, for the application of ST
ε is set to 0.03. Finally, we consider 1 − β = 0.9999 and
acceptable confidence in the final result – i.e. the proba-
bility that ε is effectively equal to 0.03 and not larger. By
applying Equation 5 we obtain the number n = 300 of
required tests. In order to evaluate the effectiveness of the
proposed framework, we ran two separate round of tests:
one including the proposed strategy and another one where
the EPOS optimisation is never executed.

Results: Figure 7, shows the worst case performance ob-
served along the two rounds of tests together with the con-
fidence increase (quantified using ST). In the figure, the blue
plot shows the worst case observed without adaptation, the
red plot shows instead the worst case in presence of the
adaptation. The tests on the adapted system showed an
overall worst case of 3.0223 for the average trip overhead.
The tests on the system without adaptation showed an
overall worst case of 3.0568. Under the light of the chosen
scenario parameters, we can state that, with a confidence of
99.99%, there is a 3% probability that a combination of the
randomised parameters will lead to an average trip overhead
larger than 3.0223 and 3.0568 for respectively the adapted and
non adapted cases. Conversely, the obtained bounds will not
hold if different choices are made for the fixed parameters:
the network, the adaptation triggering period, and the test
duration. If these latter parameters are changed, the tests
would have to be performed again in order to obtain bounds
that are valid for the new set-up.

The experiments did not show a significant difference in
the performance of the network when the adaptation was
introduced. Hence, it can be concluded that the proposed
adaptation strategy does not provide any relevant contribu-
tion to the traffic flow, and the city administration should
investigate different solutions. In fact, given the choices
that were made for the random parameters, there is a 97%
probability that this conclusion will hold for any number of
cars between 800 and 1200. On the other side, if a different
map was to be chosen, the obtained values wouldn’t hold
anymore and the obtained conclusion would not be valid
anymore.

6 LIMITATIONS AND VALIDITY THREATS

In this section, we discuss validity threats to the proposed
approach. Validity threats can be divided into internal and
external. The methodology of the paper is a direct appli-
cation of ST [29] and as such does not pose any internal
validity threat. On the contrary, we identify external va-
lidity threats in how the test inputs are collected, how the
scenarios are randomised, and how many sample data are
available. These external validity threats result in three main
limitations of the proposed approach.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

17

The first one is rooted in the definition of the testing of an
adaptive system. The need for adaptation in a system rises
from limited knowledge of the operational environment.
This generates an intrinsic limitation to the definition of test
cases, since the software, as a requirement, should adapt
to new unforeseen circumstances. On the other side the
testing process is only as effective as the test cases are
representative of the real use case. These two objectives of
the introduction of adaptation and rigorous definition of
test cases are colliding [17]. The software engineer needs
to synthesise a definition of the set of tests that adequately
covers the adaptation use cases. However, the adaptive layer
programmer has an interest in leaving the use cases as un-
defined as possible, for generality. In the TAS example, we
would like the adaptation layer to handle general providers
failures. However, this also means that (for proper testing)
we need to define possible service failure patterns.

The second limitation arises from the interpretation of
the performance parameters as random variables, and for
this reason it is common to all the three statistical tools
discussed. This interpretation is the key to exploit random
sampling and to leverage the different theories that are
based on probability theory. The roots of the limitation
reside in the assumption of unbiased random sampling.
Achieving unbiased random sampling can be challenging,
especially when randomness cannot be quantified. The test-
ing engineer must select a significant and relevant set of
samples, e.g., sport videos with random content to test
SAVE. The Scenario Theory reduces this limitation by not
requiring any assumption on the probability distribution of
the performance parameter. This allows to process data from
tests that are conducted in a production environment (when
available) and hence are, by definition, representative of the
actual distributions.

A last limitation arises from the need to conduct many
tests to achieve high confidence. EVT and ST are particularly
affected by this, whilst MC seems to require a smaller
number of tests – even though this cannot be generally guar-
anteed. Conducting many test cases can, in fact, be time-
consuming and the process needs to be automated. On the
other side, the number of needed tests is known a priory and
allows for timely allocation of the resources. Also, within
scenario theory the confidence grows exponentially with
respect to the number of tests, avoiding the uncontrolled
“explosion” of the number of tests to be executed.

7 CONCLUSIONS

In this paper we addressed the problem of testing the
performance of a self-adaptive software system. Conven-
tional testing techniques are limited in the guarantees they
provide, due to the adaptation presence. The presence of
adaptation makes this problem challenging, due to the need
to test the system in the presence of uncertainty.

To deal with uncertainty, we investigated probabilistic
techniques to analyse the resulting data. Moving to the
probabilistic framework gave us the possibility of obtaining
formal (albeit probabilistic) guarantees on the results of our
testing campaign. We investigated classical statistical tools,
like Monte Carlo Simulations and the Extreme Value Theory.

In this investigation, we highlighted their limitations and
shortcomings for the testing of adaptive software.

To overcome said limitations, we leveraged the scenario
theory, a tool from robust control that was originally in-
tended for the design of control systems in the presence
of uncertainty. We reinterpreted the scenario theory results
in light of our software testing problem. This allows us to
provide formal probabilistic guarantees on the adaptation
performance. Moreover, our method provides a probabilistic
quantification of the testing adequacy, that can be used for
the evaluation of testing coverage.

Finally, we empirically evaluated the effectiveness of our
approach using three self-adaptive applications. We showed
the trade-off between the experimental campaign volume
and the confidence that can be obtained, demonstrated how
to formally compare different adaptation strategies, and
how to select randomised inputs for the testing process de-
pending on the specified experimental evaluation objective.
In our experimental results, we provided a thorough com-
parison of the application of Monte Carlo, Extreme Value
Theory and the Scenario Theory. Our comparison showed
why the latter is a better tool to test adaptive software.

ACKNOWLEDGEMENTS

This work was partially supported by the Wallenberg
AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation. The
project has received funding from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement No 871259 (ADMORPH). The responsibil-
ity for the content remains with the authors.

REFERENCES

[1] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape
and research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4,
no. 2, May 2009. [Online]. Available: https://doi.org/10.1145/
1516533.1516538

[2] B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Ander-
sson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Marzo Seru-
gendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi,
G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mi-
randola, H. A. Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli,
D. Weyns, and J. Whittle, “Software engineering for self-adaptive
systems,” in Software Engineering for Self-Adaptive Systems: A Re-
search Roadmap, B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, and
J. Magee, Eds. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 1–26.

[3] B. H. C. Cheng, K. I. Eder, M. Gogolla, L. Grunske, M. Litoiu,
H. A. Müller, P. Pelliccione, A. Perini, N. A. Qureshi, B. Rumpe,
D. Schneider, F. Trollmann, and N. M. Villegas, Using Models at
Runtime to Address Assurance for Self-Adaptive Systems. Cham:
Springer International Publishing, 2014, pp. 101–136. [Online].
Available: https://doi.org/10.1007/978-3-319-08915-7 4

[4] A. Filieri, C. Ghezzi, A. Leva, and M. Maggio, “Self-adaptive
software meets control theory: A preliminary approach supporting
reliability requirements,” in 2011 26th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE 2011). Lawrence,
KS, USA: IEEE, 2011, pp. 283–292.

[5] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl, “Proactive
self-adaptation under uncertainty: A probabilistic model checking
approach,” in Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, ser. ESEC/FSE 2015. Bergamo, Italy:
ACM, 2015, pp. 1–12.

[6] A. Filieri, H. Hoffmann, and M. Maggio, “Automated
design of self-adaptive software with control-theoretical
formal guarantees,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE. New York,
NY, USA: ACM, 2014, pp. 299–310. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568272

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

18

[7] V. Gulisano, A. V. Papadopoulos, Y. Nikolakopoulos,
M. Papatriantafilou, and P. Tsigas, “Performance modeling
of stream joins,” in Proceedings of the 11th ACM International
Conference on Distributed and Event-based Systems, ser. DEBS ’17.
New York, NY, USA: ACM, 2017, pp. 191–202. [Online]. Available:
http://doi.acm.org/10.1145/3093742.3093923

[8] N. D’Ippolito, V. Braberman, J. Kramer, J. Magee, D. Sykes, and
S. Uchitel, “Hope for the best, prepare for the worst: Multi-tier
control for adaptive systems,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New York, NY,
USA: Association for Computing Machinery, 2014, p. 688–699.
[Online]. Available: https://doi.org/10.1145/2568225.2568264

[9] S. Shevtsov and D. Weyns, “Keep it simplex: Satisfying multiple
goals with guarantees in control-based self-adaptive systems,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2016. New
York, NY, USA: ACM, 2016, pp. 229–241. [Online]. Available:
http://doi.acm.org/10.1145/2950290.2950301

[10] G. A. Moreno, A. V. Papadopoulos, K. Angelopoulos, J. Cámara,
and B. Schmerl, “Comparing model-based predictive approaches
to self-adaptation: Cobra and pla,” in Proceedings of the 12th
International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, ser. SEAMS ’17. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 42–53. [Online]. Available:
https://doi.org/10.1109/SEAMS.2017.2

[11] D. Weyns, “Towards an integrated approach for validating
qualities of self-adaptive systems,” in Proceedings of the Ninth
International Workshop on Dynamic Analysis, ser. WODA 2012.
New York, NY, USA: Association for Computing Machinery, 2012,
p. 24–29. [Online]. Available: https://doi.org/10.1145/2338966.
2336803

[12] L. Briand, S. Nejati, M. Sabetzadeh, and D. Bianculli, “Testing
the untestable: Model testing of complex software-intensive
systems,” in Proceedings of the 38th International Conference on
Software Engineering Companion, ser. ICSE ’16. New York,
NY, USA: ACM, 2016, pp. 789–792. [Online]. Available:
http://doi.acm.org/10.1145/2889160.2889212

[13] C. A. González, M. Varmazyar, S. Nejati, L. C. Briand, and
Y. Isasi, “Enabling model testing of cyber-physical systems,”
in Proceedings of the 21th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, ser. MODELS ’18.
New York, NY, USA: ACM, 2018, pp. 176–186. [Online]. Available:
http://doi.acm.org/10.1145/3239372.3239409

[14] B. R. Siqueira, F. C. Ferrari, M. A. Serikawa, R. Menotti, and
V. V. de Camargo, “Characterisation of challenges for testing of
adaptive systems,” in Proceedings of the 1st Brazilian Symposium on
Systematic and Automated Software Testing, ser. SAST. New York,
NY, USA: Association for Computing Machinery, 2016. [Online].
Available: https://doi.org/10.1145/2993288.2993294

[15] A. Bertolino and P. Inverardi, Changing Software in a Changing
World: How to Test in Presence of Variability, Adaptation and Evolu-
tion? Cham: Springer International Publishing, 2019, pp. 56–66.
[Online]. Available: https://doi.org/10.1007/978-3-030-30985-5 5

[16] V. de Oliveira Neves, A. Bertolino, G. De Angelis, and
L. Garcés, “Do we need new strategies for testing systems-
of-systems?” in Proceedings of the 6th International Workshop on
Software Engineering for Systems-of-Systems, ser. SESoS ’18. New
York, NY, USA: ACM, 2018, pp. 29–32. [Online]. Available:
http://doi.acm.org/10.1145/3194754.3194758

[17] R. I. Bahar, U. Karpuzcu, and S. Misailovic, “Special session: Does
approximation make testing harder (or easier)?” in 2019 IEEE 37th
VLSI Test Symposium (VTS), April 2019, pp. 1–9.

[18] A. Bertolino, P. Inverardi, and H. Muccini, Formal Methods
in Testing Software Architectures. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 122–147. [Online]. Available:
https://doi.org/10.1007/978-3-540-39800-4 7

[19] F. Munoz and B. Baudry, “Artificial table testing dynamically
adaptive systems,” CoRR, vol. abs/0903.0914, 2009. [Online].
Available: http://arxiv.org/abs/0903.0914

[20] T. Tse, S.-S. Yau, W. Chan, H. Lu, and T. Chen, “Testing context-
sensitive middleware-based software applications,” in Proceedings
- International Computer Software and Applications Conference, vol. 1,
2004, pp. 458–466.

[21] K. Welsh and P. Sawyer, “Managing testing complexity in dy-
namically adaptive systems: A model-driven approach,” in 2010
Third International Conference on Software Testing, Verification, and
Validation Workshops, April 2010, pp. 290–298.

[22] Z. Micskei, Z. Szatmári, J. Oláh, and I. Majzik, “A concept for
testing robustness and safety of the context-aware behaviour of

autonomous systems,” in Proceedings of the 6th KES International
Conference on Agent and Multi-Agent Systems: Technologies
and Applications, ser. KES-AMSTA’12. Berlin, Heidelberg:
Springer-Verlag, 2012, p. 504–513. [Online]. Available: https:
//doi.org/10.1007/978-3-642-30947-2 55

[23] F. C. Ferrari, J. Noppen, R. Chitchyan, and A. R. Lancaster, “In-
vestigating testing approaches for dynamically adaptive systems
work in progress,” in Environment, 2011.

[24] C. Mandrioli and M. Maggio, “Testing self-adaptive software with
probabilistic guarantees on performance metrics,” in Proceedings
of the 28th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ser.
ESEC/FSE 2020. ACM, 2020.

[25] M. Böhme, “Assurance in software testing: A roadmap,”
in Proceedings of the 41st International Conference on Software
Engineering: New Ideas and Emerging Results, ser. ICSE-NIER
’19. Piscataway, NJ, USA: IEEE Press, 2019, pp. 5–8. [Online].
Available: https://doi.org/10.1109/ICSE-NIER.2019.00010

[26] S. Dutta, W. Zhang, Z. Huang, and S. Misailovic, “Storm:
Program reduction for testing and debugging probabilistic
programming systems,” in Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser.
ESEC/FSE 2019. New York, NY, USA: Association for
Computing Machinery, 2019, p. 729–739. [Online]. Available:
https://doi.org/10.1145/3338906.3338972

[27] C. P. Robert and G. Casella, Monte Carlo Statistical Methods
(Springer Texts in Statistics). Berlin, Heidelberg: Springer-Verlag,
2005.

[28] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning
From Data. AMLBook, 2012.

[29] G. C. Calafiore and M. C. Campi, “The scenario approach to robust
control design,” IEEE Transactions on Automatic Control, vol. 51,
no. 5, pp. 742–753, May 2006.

[30] D. Weyns and R. Calinescu, “Tele assistance: A self-adaptive
service-based system examplar,” in Proceedings of the 10th
International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, ser. SEAMS ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 88–92. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2821357.2821373

[31] M. Maggio, A. V. Papadopoulos, A. Filieri, and H. Hoffmann,
“Self-adaptive video encoder: Comparison of multiple adaptation
strategies made simple,” in Proceedings of the 12th International
Symposium on Software Engineering for Adaptive and Self-
Managing Systems, ser. SEAMS ’17. Piscataway, NJ, USA:
IEEE Press, 2017, pp. 123–128. [Online]. Available: https:
//doi.org/10.1109/SEAMS.2017.16

[32] I. Gerostathopoulos and E. Pournaras, “Trapped in traffic? a self-
adaptive framework for decentralized traffic optimization,” in
2019 IEEE/ACM 14th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS), 2019, pp. 32–
38.

[33] C. Martina Maggio, “Artifact esec/fse 2020,” 2020. [Online].
Available: https://zenodo.org/record/3896795

[34] C. Trubiani and S. Apel, “Plus: Performance learning for uncer-
tainty of software,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering: New Ideas and Emerging Results (ICSE-
NIER), 2019, pp. 77–80.

[35] H. Wang, W. K. Chan, and T. H. Tse, “Improving the effectiveness
of testing pervasive software via context diversity,” ACM Trans.
Auton. Adapt. Syst., vol. 9, no. 2, Jul. 2014. [Online]. Available:
https://doi.org/10.1145/2620000

[36] Y. Qin, C. Xu, P. Yu, and J. Lu, “Sit: Sampling-based interactive
testing for self-adaptive apps,” Journal of Systems and Software,
vol. 120, pp. 70 – 88, 2016. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0164121216301029

[37] I. d. S. Santos, “Testdas: Testing method for dynamically adaptive
systems,” Ph.D. dissertation, Universisdade Federal do Ceara,
Fortaleza, Brazil, 2017.

[38] L. Yu, W. T. Tsai, Y. Jiang, and J. Gao, “Generating test cases
for context-aware applications using bigraphs,” in 2014 Eighth
International Conference on Software Security and Reliability (SERE),
June 2014, pp. 137–146.

[39] M. A. Mehmood, M. N. A. Khan, and W. Afzal, “Automating test
data generation for testing context-aware applications,” in 2018
IEEE 9th International Conference on Software Engineering and Service
Science (ICSESS), Nov 2018, pp. 104–108.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

19

[40] J. Hänsel, T. Vogel, and H. Giese, “A testing scheme for self-
adaptive software systems with architectural runtime models,”
in 2015 IEEE International Conference on Self-Adaptive and Self-
Organizing Systems Workshops, Sep. 2015, pp. 134–139.

[41] A. Reichstaller and A. Knapp, “Risk-based testing of self-adaptive
systems using run-time predictions,” in 2018 IEEE 12th Inter-
national Conference on Self-Adaptive and Self-Organizing Systems
(SASO), Sep. 2018, pp. 80–89.

[42] A. Arcuri, G. Fraser, and J. P. Galeotti, “Automated unit
test generation for classes with environment dependencies,”
in Proceedings of the 29th ACM/IEEE International Conference
on Automated Software Engineering, ser. ASE ’14. New York,
NY, USA: ACM, 2014, pp. 79–90. [Online]. Available: http:
//doi.acm.org/10.1145/2642937.2642986

[43] A. Hervieu, B. Baudry, and A. Gotlieb, “Managing execution
environment variability during software testing: An industrial ex-
perience,” in Testing Software and Systems, B. Nielsen and C. Weise,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.
24–38.

[44] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, “Adaptive
random testing: The art of test case diversity,” J. Syst. Softw.,
vol. 83, no. 1, pp. 60–66, Jan. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2009.02.022

[45] A. Arcuri and L. Briand, “Adaptive random testing: An
illusion of effectiveness?” in Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ser. ISSTA ’11. New
York, NY, USA: ACM, 2011, pp. 265–275. [Online]. Available:
http://doi.acm.org/10.1145/2001420.2001452

[46] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler,
“The fuzzing book,” in The Fuzzing Book. Saarland University,
2019, retrieved 2019-09-09 16:42:54+02:00. [Online]. Available:
https://www.fuzzingbook.org/

[47] K. Yatoh, K. Sakamoto, F. Ishikawa, and S. Honiden,
“Feedback-controlled random test generation,” in Proceedings
of the 2015 International Symposium on Software Testing and
Analysis, ser. ISSTA 2015. New York, NY, USA: Association
for Computing Machinery, 2015, p. 316–326. [Online]. Available:
https://doi.org/10.1145/2771783.2771805

[48] P. Tramontana, D. Amalfitano, N. Amatucci, A. Memon, and
A. R. Fasolino, “Developing and evaluating objective termination
criteria for random testing,” ACM Trans. Softw. Eng. Methodol.,
vol. 28, no. 3, pp. 17:1–17:52, Jul. 2019. [Online]. Available:
http://doi.acm.org/10.1145/3339836

[49] R. M. Hierons and M. G. Merayo, “Mutation testing from
probabilistic and stochastic finite state machines,” J. Syst. Softw.,
vol. 82, no. 11, pp. 1804–1818, Nov. 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2009.06.030

[50] S. Rosario, A. Benveniste, S. Haar, and C. Jard, “Probabilistic qos
and soft contracts for transaction-based web services orchestra-
tions,” IEEE Transactions on Services Computing, vol. 1, no. 4, pp.
187–200, Oct 2008.

[51] S.-Y. Hwang, H. Wang, J. Tang, and J. Srivastava, “A probabilistic
approach to modeling and estimating the qos of web-services-
based workflows,” Inf. Sci., vol. 177, no. 23, pp. 5484–5503, Dec.
2007. [Online]. Available: https://doi.org/10.1016/j.ins.2007.07.
011

[52] K. Joshi, V. Fernando, and S. Misailovic, “Statistical algorithmic
profiling for randomized approximate programs,” in Proceedings
of the 41st International Conference on Software Engineering, ser.
ICSE ’19. IEEE Press, 2019, p. 608–618. [Online]. Available:
https://doi.org/10.1109/ICSE.2019.00071

[53] S. Dutta, O. Legunsen, Z. Huang, and S. Misailovic, “Testing
probabilistic programming systems,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2018. New York, NY, USA: Association for
Computing Machinery, 2018, p. 574–586. [Online]. Available:
https://doi.org/10.1145/3236024.3236057

[54] G. Canfora and M. Di Penta, “Testing services and service-centric
systems: challenges and opportunities,” IT Professional, vol. 8,
no. 2, pp. 10–17, March 2006.

[55] J. Dorn, S. Apel, and N. Siegmund, “Mastering uncertainty
in performance estimations of configurable software systems,”
in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 684–696.
[Online]. Available: https://doi.org/10.1145/3324884.3416620

[56] C. P. Robert and G. Casella, Monte Carlo Optimization. New York,
NY: Springer New York, 2010, pp. 125–165. [Online]. Available:
https://doi.org/10.1007/978-1-4419-1576-4 5

[57] A. Jiménez-Martı́n, A. Mateos, and S. Rı́os-Insua, “Monte carlo
simulation techniques in a decision support system for group
decision making,” Group Decision and Negotiation, vol. 14, pp. 109–
130, 01 2005.

[58] O. Johnson, Information Theory and the Central Limit Theorem.
Imperial College Press, 2004. [Online]. Available: https://books.
google.se/books?id=r5XI8a0lYykC

[59] B. Korver, “The monte carlo method and software reliability
theory,” 1994.

[60] H. Singh and P. Pal, “Software reliability testing using monte carlo
methods,” International Journal of Computer Applications, vol. 69, pp.
41–44, 05 2013.

[61] L. de Haan and A. Ferreira, Extreme Value Theory: An Introduction
(Springer Series in Operations Research and Financial Engineering),
1st ed. Springer, 2010.

[62] L. Santinelli, J. Morio, G. Dufour, and D. Jacquemart, “On the
sustainability of the extreme value theory for wcet estimation,”
in OpenAccess Series in Informatics, vol. 39, 07 2014.

[63] F. J. Cazorla, T. Vardanega, E. Quiñones, and J. Abella,
“Upper-bounding Program Execution Time with Extreme Value
Theory,” in 13th International Workshop on Worst-Case Execution
Time Analysis, ser. OpenAccess Series in Informatics (OASIcs),
C. Maiza, Ed., vol. 30. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2013, pp. 64–76. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2013/4123

[64] R. Fisher, The Genetical Theory of Natural Selection. OUP Oxford,
1930.

[65] P. Embrechts, “Extreme value theory: Potential and limitations as
an integrated risk management tool,” Derivatives Use, Trading and
Regulation, vol. 6, 02 2000.

[66] P. Embrechts, T. Mikosch, and C. Klüppelberg, Modelling Extremal
Events: For Insurance and Finance. Berlin, Heidelberg: Springer-
Verlag, 1997.

[67] B. Francis and P. Khargonekar, Robust control theory, ser. The
IMA volumes in mathematics and its applications. Springer-
Verlag, 1995. [Online]. Available: https://books.google.se/books?
id=81vvAAAAMAAJ

[68] F. A. Ramponi and M. C. Campi, “Expected shortfall: Heuristics
and certificates,” European Journal of Operational Research, vol. 267,
no. 3, pp. 1003 – 1013, 2018. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0377221717310330

[69] G. C. Calafiore, “Direct data-driven portfolio optimization with
guaranteed shortfall probability,” Automatica, vol. 49, no. 2, pp.
370 – 380, 2013. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0005109812005481

[70] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, The Traveling
Salesman Problem: A Computational Study, ser. Princeton Series in
Applied Mathematics. Princeton University Press, 2011. [Online].
Available: https://books.google.se/books?id=zfIm94nNqPoC

[71] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini,
“Validation of web service compositions,” IET Software, vol. 1,
no. 6, pp. 219–232, December 2007.

[72] M. Caporuscio, R. Mirandola, and C. Trubiani, “Building
design-time and run-time knowledge for qos-based component
assembly,” Softw. Pract. Exper., vol. 47, no. 12, pp. 1905–1922, Dec.
2017. [Online]. Available: https://doi.org/10.1002/spe.2502

[73] M. Maggio, A. V. Papadopoulos, A. Filieri, and H. Hoffmann,
“Automated control of multiple software goals using multiple
actuators,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2017. New
York, NY, USA: ACM, 2017, pp. 373–384. [Online]. Available:
http://doi.acm.org/10.1145/3106237.3106247

[74] R. Edwards and N. Bencomo, “Desire: Further understanding
nuances of degrees of satisfaction of non-functional requirements
trade-off,” in Proceedings of the 13th International Conference on
Software Engineering for Adaptive and Self-Managing Systems, ser.
SEAMS ’18. New York, NY, USA: ACM, 2018, pp. 12–18.
[Online]. Available: http://doi.acm.org/10.1145/3194133.3194142

[75] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612,
April 2004.

[76] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive
control: Theory and practice—a survey,” Automatica,
vol. 25, no. 3, pp. 335–348, May 1989. [Online]. Available:
http://dx.doi.org/10.1016/0005-1098(89)90002-2

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

20

[77] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[78] Y. Wang, S. Inguva, and B. Adsumilli, “Youtube ugc dataset
for video compression research,” 2019. [Online]. Available:
https://media.withyoutube.com/

[79] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P.
Flötteröd, R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and
E. Wießner, “Microscopic traffic simulation using sumo,” in

The 21st IEEE International Conference on Intelligent Transportation
Systems. IEEE, 2018. [Online]. Available: https://elib.dlr.de/
124092/

[80] E. Pournaras, P. Pilgerstorfer, and T. Asikis, “Decentralized
collective learning for self-managed sharing economies,” ACM
Trans. Auton. Adapt. Syst., vol. 13, no. 2, Nov. 2018. [Online].
Available: https://doi.org/10.1145/3277668

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3101130, IEEE
Transactions on Software Engineering

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

