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Letures on Input-Output Stability and IntegralQuadrati ConstraintsUlf J�onssonDivision of Optimization and Systems TheoryRoyal Institute of Tehnology10044 Stokholm, SwedenMay 24, 20011 IntrodutionThe basi system under study in the ourse is pitured in the blok-diagram in Figure 1.Here G is a stable linear system, � is an unertainty, d is a disturbane input, and z is theoutput. We will disuss1. How to verify stability (of lower loop) for various unertainty lasses(a) unertain dynamis(b) parametri unertainty() time-varying parameters(d) various nonlinearities(e) strutured unertainty, for example, a ombination of the above.2. How to investigate the performane of the losed loop(a) energy gain d! z(b) energy to peak gain d! z() exploit spetral harateristis of the disturbane d3. The whole story from theory to software!!z dv wG�Figure 1: Basi system under onsideration.1



We will fous on a relatively new method for robust stability analysis, namely the frame-work of Integral Quadrati Constraints (IQC). The IQC framework did not appear fromnowhere. In fat, it has its roots in at least three strong researh �elds: The input-outputtheory developed by Zames, Sandberg, Willems and many others [41, 42, 43, 29, 28, 31,4, 26℄, the absolute stability theory with extraordinary ontributions from Yakubovih andPopov [32, 33, 34, 35, 36, 37, 38, 24℄, and �nally the robust ontrol �eld with ontribu-tions from, for example, Doyle, Safonov, Zames, and many others [5, 22, 1, 6, 44, 27℄. Therelationship is indiated in Figure 2It was A. Megretski, originally from Yakubovih group at S.t Petersburg state university,who �rst started to merge the western input/output tradition with the absolute stabilitytheory of Soviet Union into uni�ed framework. Some of the early work was in fat publishedas tehnial reports at KTH, where Megretski was a post-do in 1992, see [14, 15, 17, 16, 20℄.Further generalization was done in ollaboration with A. Rantzer (alumni from KTH) andwe will use their paper [19, 25℄ as the basis for an important part of these letures.We should also note that Yakubovih, who have ontributed to many of the main ideasbehind IQC framework, is a frequent visitor at KTH. Indeed, Yakubovih introdued thenotion of IQCs in stability theory [36, 38, 40℄, he pioneered the use of the S-proedure insystems analysis [37, 39℄, and he developed the Kalman-Yakubovih-Popov Lemma [32℄,whih will be used later in the ourse when we disuss omputational robust ontrol. Still,there are some oneptual as well as tehnial di�erenes in the use of IQCs in these leturenotes ompared to [36, 38, 40℄. For example, our development will be developed for anoperator representation of the system, and our well-posedness assumption is di�erent fromthe minimal stability assumption in [36, 38, 40℄. These distintions will not be addressed inthe ourse. The preliminary outline of the ourse is the following:1. Introdue an abstrat framework so that many di�erent ases an be treated with onetheory. This involves(a) a disussion of funtion spaes and operators(b) introdue the onepts of extended spae, ausality, and well-posedness of sys-tems.Good referenes for this material an be found in [4, 31℄.2. The small gain theorem and the passivity theorem.3. Integral quadrati onstraints(a) de�nition and examples(b) the IQC stability theorem() examplesWe base the disussion on [19, 17℄. The �rst an be obtained at http://www.lib.kth.se/(Go to E-tidskrifter i fulltext and then IEE/IEEE se IEL Online.)4. The S-proedure. Here we disuss results in [20, 39℄.5. Unertain system models(a) strutured unertainty(b) linear frational transformations6. Performane analysis and signal haraterizations7. A useful formulation of the Kalman-Yakubovih-Popov lemma.8. Optimization of IQCs and the IQCbeta toolbox.2
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Influenced by all three fields

Figure 2: The IQC-theory that will be disussed in this ourse is essentially a uni�ationof ideas from three now lassial and very important researh �elds: 1) The input-outputtheory that was developed in the west in 1960-1970; 2) The abstrat stability theory thatwas developed in the Soviet Union during 1960-1975, and �nally 3) the robust ontrol �eldin 1980-1990.
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2 Funtion Spaes and OperatorsIn the input-output theory for stability analysis we represent the systems as operators andtheir input and output signals as funtion from appropriate vetor spaes. It is remarkablethat only the most basi onepts from operator theory are needed to develop a rih anduseful stability theory.2.1 Normed Vetor SpaesA normed vetor spae L is a linear vetor spae equipped with a norm. We will onsidervetor spaes onsisting of funtions that map an in�nite \time axis" T into another vetorspae V . We assume T � R. Examples are the integers Z = f: : : ;�2;�1; 0; 1; 2 : : :g,Z+ = f0; 1; 2 : : :g, or the real numbers R = (�1;1) or R+ = [0;1). V will always be Rnfor a suitable dimension n. This means that we only onsider vetor spaes over the realsalar �eld in the leture notes.Every pair of funtions f; g 2 L satis�es the properties (linear vetor spae properties)(f + g)(t) = f(t) + g(t)(�f)(t) = �f(t)where � 2 R.The norm on L is a funtion k � k : L ! R+ (i.e. a nonnegative funtional) that satis�esthe properties(i) kfk = 0 , f � 0,(ii) k�fk = j�j � kfk,(iii) kf + gk � kfk+ kgk.Every f 2 L is supposed to have �nite norm, i.e. kfk <1. The norm measures the size ofthe signal.The most frequently appearing funtion spaes in ontrol appliations are the lp and Lpspaes, p � 1. The �rst onsists of disrete time funtions, i.e. they map from Z or Z+ intoR. The funtions in these disrete time spaes an be represented as in�nite sequenes ofnumbers (: : : ; f�2; f�1; f0; f1; f2; : : : ); fi 2 R (Z)(f0; f1; f2; : : : ); fi 2 R (Z+)where fi represents the funtion value at time i. We will use notations as lp(Z+) or lp(Z)if we expliitly want to speify the time axis.The norms are de�ned as followskfkp =  1Xi=1 jfijp!1=p lp(Z+); p = 1; 2; 3::kfk1 = supi�0 jfij l1(Z+)The norms for the ases with bi-in�nite time axis are de�ned orrespondingly.The ontinuous time spaes, Lp, onsists of funtions de�ned on the real axis. We usenotation as Lp(�1;1) and Lp[0;1) to expliitly de�ne what time axis is used. For our4



means it is enough to know that the vetor spaes Lp[0;1) onsists of funtions f : R+ ! Rwith norms kfkp = �Z 10 jf jp dt�1=p Lp[0;1); p = 1; 2; :::kfk1 = ess supt2R+ jf(t)j L1[0;1)The norms for the ases with bi-in�nite time axis are de�ned orrespondingly.We often need to use vetor valued funtions. We use the notation Lmp [0;1) to denotethe funtions f : R+ ! Rm with norm de�ned as above where now the spatial norm is theEulidean norm jf j = (fT f)1=2.Remark 1. All the normed vetor spaes mentioned above are also omplete, i.e., theirCauhy sequenes onverge. Suh normed vetor spaes are alled Banah spaes. We willnot exploit the ompleteness property.2.2 Inner produt SpaesWe often have additional struture on our vetor spae L in terms of an inner produt. Theinner produt is a bilinear funtional h�; �i : L�L ! R (a sesquilinear funtional in omplexinner produt spaes) satisfying the following properties (where f; g 2 L and � 2 R)(i) hf; gi = hg; fi(ii) h�f; gi = � hf; gi(iii) hf1 + f2; gi = hf1; gi+ hf2; giVetor spaes with an inner produt are alled inner produt spaes and the norm on thesespaes an be de�ned in terms of the inner produt askfk =phf; fi:There are several useful inequalities that hold for inner produts. The following are parti-ularly useful hf; gi � kfk � kgk (Cauhy Shwartz)� 2 hf; gi � kfk2 + kgk2kf + gk2 � 2(kfk2 + kgk2)The last inequality holds for any normed vetor spae.Notation: All inner produt spaes onsidered below are omplete, i.e., their Cauhysequenes onverge. Complete inner produt spaes are alled Hilbert spaes. We will de-note Hilbert spaes by H in order to distinguish their speial struture from the normedvetor spaes L.Remark 2. We will only use the ompleteness in order to ensure existene of an adjointoperator in the Hilbert spae in a later setion. Most results hold for any inner produtspae, but we will not distinguish the two ases.The Hilbert spaes lm2 (Z+) and Lm2 [0;1) have inner produts de�ned ashf; gi = 1Xi=0 fTi gi = 12� Z ��� bf(j!)�bg(j!) d! lm2 (Z+) (1)hf; gi = Z 10 f(t)T g(t)dt = 12� Z 1�1 bf(j!)�bg(j!) d! Lm2 [0;1) (2)5



where the onnetion with the frequeny domain integrals follows from the Planherel for-mula. Here bf and bg denote the Fourier transforms of f and g, de�ned asbf(j!) = limN!1 NXk=0 fke�j!k; ! 2 [��; �℄bf(j!) = limT!1 Z T0 f(t)e�j!tdt; ! 2 Rfor the disrete and ontinuous time respetively. The above relations are de�ned in ananalogous way for the bi-in�nite ase.2.3 OperatorsAn operator H is a mapping from one normed spae into another. We will only onsiderthe ase when both spaes are the same, i.e. H : L ! L. This means that H(f) 2 L for allf 2 L. We an think of the operators as mathematial objets that represent our system.Any pair, H1; H2, of operators on L satisfy the following properties(i) The omposition H1H2 is also an operator on L de�ned by (H1H2)(f) = H1(H2(f))(ii) The sum �H1+�H2 for any �; � 2 R is an operator on L de�ned by (�H1+�H2)(f) =�H1(f) + �H2(f)An operator is linear if H(�f + �g) = �H(f) + �H(g)We often use the shorthand notation G(f) = Gf for the mapping of a linear operator G.We will always assume that our operators satisfyH(0) = 0. This is often not a restritionand it will simplify the future development1 An operator H : L ! L is alled bounded if thefollowing \gain" is �nite2 kHk = supf2Lf 6=0 kH(f)kkfkIt satis�es the important submultipliativity rulekH1H2k � kH1k � kH2kExamples of operatorsMost of the systems we onsider have a linear time invariant (LTI) part that is desribed interms of a transfer funtion G with poles stritly in the left half plane. If the system is �nitedimensional then the transfer funtion has realizations on the form G(s) = C(sI�A)�1B+D. All ontinuous time LTI systems de�nes operators on Lm1 [0;1);Lm2 [0;1) and Lm1[0;1)in terms of onvolutions. Let g(t) = L�1fGg be the weighting funtion orresponding toG(s) (here L�1 denotes the inverse Laplae transform). Then G is de�ned by the onvolution(Gf)(t) = (g � f)(t) = Z t0 g(t� �)f(�) d�1The assumptionH(0) = 0 implies that the initial ondition of operators with dynamis (suh as operatorsde�ned in terms of a state spae equation) is assumed to be zero. Instead the transient due to the initialondition is assumed to be part of the input signal.2This is the indued norm in the ase of linear operators.6



It is well known from the linear systems ourse that G(s) must have all poles stritly in theleft half plane in order to be an operator on any of Lmp [0;1) p � 1. At this point it may lookas if we have the same operator independently of whih of these spaes we onsider. Thisis not the ase sine the indued norms (gains) are di�erent and the norm is an importantmeasure of how the signal through the system is ampli�ed.Remark 3. To see that a transfer funtion with poles in the right half plane annot bebounded on Lmp [0;1) (p = 1; 2;1 (or any other p)) we onsider an example. Let G(s) =1=(s� 1) and let u(t) = (1; t 2 [0; 1℄0; otherwiseWe get (Gu)(t) = Z t0 et��u(�)d� = (et � 1; t 2 [0; 1℄et(1� e�1); t > 1whih has unbounded norm in any of the Lmp [0;1)-spaes.For example, if G is an operator on Lm2 [0;1) then the norm gives an exat measure ofthe worst ase energy gain in the system and it is given bykGk = sup!2R�max(G(j!))On the other hand, if G instead is viewed as an operator on L1[0;1) (SISO for sim-pliity) then the norm is a exat measure of the worst ase inrease of the peak-value of thesignals and it is given by (the proof of this is a Homework problem)kGk = Z 10 jg(t)j dtIt is interesting to note that if G has poles in the right half plane then it is not an operatoron Lm2 [0;1) but an operator from either of Lm2 [0;1) or Lm2 (�1;1) into Lm2 (�1;1). Theoperator is now de�ned in terms of a bi-in�nite integral(Gf)(t) = Z 1�1 g(t� �)f(�) d�but the norm is unhanged. We will disuss this in more detail later when we have disussedthe onept of ausality.Next follows two examples of nonlinear operators.Example 1. Consider a nonlinear funtion ' : R ! R with the property that j'(x)j �kjxj for some positive onstant k. The nonlinearity de�nes a bounded operator on any ofLp[0;1), sine Z 10 j'(f(t))jpdt � kp Z 10 jf(t)jpdtess supt2[0;1)j'(f(t))j � k � ess supt2[0;1)jf(t)jwhih implies that k'k � k. The operator ' is often alled memoryless nonlinearity orstati nonlinearity sine its output at time t only depends on the input at time t.7



H1u1 e1 y� H2 e2 u2Figure 3: Blok diagram for the system (4).Example 2. Consider the nonlinear dynami operator de�ned by the input output relationy = H(u) , ( _x = f(x) + g(x)u; x(0) = 0y = h(x)where f; g; h are nonlinear funtions of suitable dimension and suh that f(0) = 0, andh(0) = 0.Assume there exists a ontinuously di�erentiable positive semi-de�nite funtion3 V withV (0) = 0 suh that dV (x)dx (f(x) + g(x)u) � 2juj2 � jh(x)j2 (3)for all (x; u) 2 Rn�Rm. Then the system is L2-bounded with gain less that . To see thislet us integrate (3). This givesV (x(t)) � 2 Z t0 juj2d� � Z t0 jh(x)j2d�:where we used V (0) = 0. If u 2 L2[0;1) then we see that h(x) 2 L2, sine otherwise theright hand side tends to �1 as t ! 1, whih ontradits the positive semi-de�niteness ofV . It then follows that Z 10 jh(x)j2d� � 2 Z 10 juj2d�;whih proves the gain bound.3 The System under onsiderationWe will onsider stability of the systeme1 = u1 �H2(e2)e2 = u2 +H1(e1) (4)whih is also illustrated in Figure 3. There are many important issues that must be resolvedbefore we an derive a reasonable stability theory for this system. For example,� In many appliations we want to onsider inputs u1 and u2 that are unbounded in thenorm we want to onsider. For example, f(t) = sin(t) is not in L2[0;1) but it is inL1[0;1). Does this mean that it is impossible to exploit the additional struture ofthe inner produt when analyzing systems with sinusoidal inputs?3V is positive semi-de�nite if V (x) � 0 for all x. 8



� Even if the input u1 and u2 are in some appropriate normed vetor spae L there is noway we an ensure a priori that the signals in the loop are bounded (has �nite norm).This would almost be the same as assuming stability before it is proven.� Even if both H1 and H2 are reasonable models of a physial systems it need not meanthat the losed loop makes sense. Suh systems are ill-posed and we will soon givesome examples of ill-posed systems.� Physial systems are always ausal in the sense that the systems response at a par-tiular time instant is only dependent on the history of the input signal and not thefuture of it. The onept of ausality need to be formalized.Example 3. Consider the feedbak interonnetion of H1(s) = 1=(s + 1) and the nonlin-earity H2(x) = �x�x2. Let the injeted signals be u1(t) = �(t) and u2 = 0 (where � is theunit step funtion). The losed loop system is desribed by the di�erential equation_x = x2 + 1; t � 0The solution artan(x) = t for t � 0 or equivalently x(t) = tan(t)�(t), t � 0 goes to in�nityas t! �=2. Hene the system has �nite esape time and we will onsider it to be ill-posed.The next two examples are taken from [31℄.Example 4. Let H1(s) = 1; H2(s) = e�sT � 1 and u2 � 0. In this ase we get the losedloop system operator (I +H1(s)H2(s))�1H1(s) = esT , and thus y(t) = u1(t + T ). Hene,the system is not ausal.Example 5. Consider the ase when H1 = 1, H2 = k and u2 = 0. If k = �1, then thereturn ratio (I +H1H2) is not invertible and the system is learly ill-posed. For all otherases of k we get (I + H1H2)�1H1 = 1=(1 + k). However, even now it is questionablewhether the system is well-posed or not in the ase jkj > 1. For example, if the system isa model of two interonneted physial systems then there will always be some small delayin the loop. In this ase it an be shown that the step response for the physial system isunstable, i.e., y(t) ! 1 as t ! 1. This is in onit with the expeted solution from themodel y(t) = 1=(1+ k)�(t). Hene, for some appliations this system should be regarded asill-posed.Example 6. In systems with disontinuous nonlinearities there may appear hattering.For example, we may have a relay that swith in�nitely fast between its two output values.Suh a signal is not suÆiently regular to be integrable and it does not belong to any of thefuntion spaes above. There is a theory that deals with suh problems but it is beyond thesope of this ourse.As we have seen, many strange things an happen in a losed loop system and themethods we will develop are not able to detet some of the problems in the examples above.In fat, all the methods to be presented rely on an assumption that the loop signals e1and e2 exist and are suÆiently regular over any �nite time interval. This exludes the�rst example from onsideration. Another de�ieny of the forthoming results is thatthey generally annot detet if the loop signals depends ausally on the inputs or not. Inorder to make reasonable assumptions on system (4) we will introdue extended spaes, thenotion of ausality, and well-posedness. In short well-posedness is just an assumption onthe mathematial model (4) to make sense as a model of a physial system.9



Extended spaesAn extension of a normed vetor spae onsists of signals that may not be bounded in thenorm of the vetor spae but where any trunation to a �nite time intervals is bounded.This leads us to the introdution of extended spaes. We will onsider extended spaes onlyfor time-axes T � R+. The reason is that we only onsider ausal systems starting at timezero. To formalize the de�nition of extended spae we introdue the trunation operator PTde�ned as follows. Let f : T ! V . Then(PT f)(t) = (f(t); t � T (t; T 2 T )0; t > TNotation: We will often use the notation fT = PT f .De�nition 1. The extended spae Le is then de�ned asLe = ff : T ! V : kfTk <1; 8T � 0gwhere k � k is the norm on L. We will assume that the norm k � k is suh that� For every f 2 Le we have kfT1k � kfT2k for all T2 � T1 .� For all f 2 L we have kfT k ! kfk as T !1.These above onditions hold for the spaes lpe(Z+) and Lpe[0;1), p = 1; 2; 3; : : : ;1that will be onsidered in our appliations.Example 7. We have1. sin(t) 2 Lpe[0;1)2. et 2 Lpe[0;1)3. 2k 2 lpe(Z+)Causality of operators on extended spaesAn operator H : Le ! Le (or H : L ! L) is said to be ausal (nonantiipative) ifPTHPT = PTH; for all T 2 T .This means that the value at a ertain time instant does not depend on future values ofthe argument. To see this we just note that the de�nition means that H(fT )(t) = H(f)(t)when t � T . In other words, it does not matter if we trunate the future of the input signalwhen onsidering the output at a ertain time instant. In other words the system is not a\rystal ball".An operator4 H : L ! L is said to be nonausal if it is not ausal. The purest form ofnonausality is antiausality. H is said to be antiausal if (I �PT )H = (I �PT )H(I �PT ),for all T � 0. This means that the value at a ertain time does not depend on past valuesof the argument. Figure 4 illustrates the onepts of ausality and anti-ausality.4We will only onsider nonausal operators on bi-in�nite spaes as analysis �lters in IQC analysis. That'sthe reason we do not disuss nonausality in onnetion with extended spaes.
10



Anti-causal operatorCausal operator

u
H(u)

u
H(u)

Figure 4: The left hand side illustrates the operation of an ausal operator. Only the pastof the input a�et the output at a ertain time instant. The right hand side illustrates ananti-ausal operator.Boundedness of a Causal Operator:A ausal operator H : Le ! Le is bounded if the gain de�ned as5kHk = supf2Lf 6=0 kH(f)kkfk (5)is �nite. Note that the gain is de�ned in terms of funtions in L and not the orrespondingextended spae. However, the de�nition in (5) implies boundedness on Le, sinekPTH(f)k = kPTH(fT )k � kPT k � kHk � kPT fk = kHk � kPT fkfor all f 2 Le and all T 2 T . It an be shown that kHk is the smallest suh bound, see [31℄.It is lear that a bounded ausal operator on Le is also a well de�ned bounded ausaloperator on L. This follows sine if f 2 L then kPTH(f)k � kHk � kfk for all T 2 T . Wealso have the reverse impliation: A bounded ausal operator on L is also a well de�nedbounded ausal operator on Le, beause PTH(u) = PTH(uT ), and uT 2 L. We have thusshown that H is ausal and bounded on Le , H is ausal and bounded on LExamplesWe will �rst introdue notation that will be used extensively in the leture notes.RLm�m1 The spae onsisting of proper real rational matrix funtions with no poles onthe imaginary axis.RHm�m1 The subspae of RLm�m1 onsisting of funtions with no poles in the losedright half plane.5The de�nition implies that H(0) = 0, whih means that operator (system) is assumed to have a zerotransient response. This is often a reasonable assumption sine the initial ondition often an be representedas a input or output disturbane of the system. 11



Example 8. Eah operator G 2 RHm�m1 has a state spae realization G(s) = C(sI �A)�1B+D and orresponding weighting funtion g(t) = CeAtB�(t)+DÆ(t). The operationon u 2 Lmp [0;1) is de�ned in terms of the onvolutiony(t) = (Gu)(t) = (g � u)(t) = Z t0 CeA(t��)Bu(�)d� +Du(t);whih shows that G is ausal. Proposition 1 below shows that the operator is bounded onall Lmpe[0;1).Example 9. An operator G 2 RLm�m1 is generally nonausal. It an be split into a ausalterm G and an antiausal term Ga, suh that G = G + Ga. This is done using partialfrations expansion in suh a way that G 2 RHm�m1 and Ga(�s) 2 RHm�m1 , i.e., Gontains the stable poles and Ga ontains the unstable poles. As an example, we haveG(s) = 2(s+ 1)(s� 1) = �1s+ 1| {z }G + 1s� 1| {z }GaWe have already seen in Remark 3 that 1=(s�1) annot be bounded on Lpe[0;1). However,it turns out that it is a bounded antiausal operator on Lp(�1;1). In fat, any G(s) =C(sI � A)�1B + D, with A unstable (all eigenvalues in the right half plane) de�nes anantiausal operator on Lp(�1;1) by the onvolution(Gu)(t) = Z 1t CeA(t��)Bu(�)d� +Du(t):In the general ase an operator G 2 RLm�m1 is de�ned by onvolution with its weightingfuntion g(t) = g(t)+ga(t), where6 we have g(t) = L�1fG(s)g and ga(t) = L�1fGa(s)g.We get (the diret term an be inluded in either of g and ga as a dira distribution)(Gu)(t) = Z 1�1 g(t� �)u(�)d� = Z t�1 g(t� �)u(�)d� + Z 1t ga(t� �)u(�)d�:The next proposition an be used to show boundedness of the linear operators in the previoustwo examples.Proposition 1. The operator de�ned by the onvolution(Hu)(t) = Z 1�1 h(t� �)u(�)d�where h 2 L1(�1;1) is bounded on Lp(�1;1), p � 1 with gain kHk � khk1 (and equalto7 khk1 for L1(�1;1)). Furthermore, if h(t) = 0, for t � 0, then H is also ausal.Remark 4. Note that the proposition is also valid when the operator is onsidered as amapping H : Lp[0;1)! Lp(�1;1) (Note H : Lp[0;1)! Lp[0;1) if H is ausal.)6We are here onsidering one sided Laplae transforms. For G = C(sI �A)�1B, where A is stable,we have g(t) = CeAtB for t � 0 and zero otherwise. Then L(g(t)) = R10 e�stg(t)dt with absoluteonvergene for Re s � 0 (in fat, for Re s > �max(A). For ga we use a one sided Laplae transformde�ned over negative times7This is what you prove in Homework set 1 12



Proof. We follow the proof in [4℄. Let u 2 Lp(�1;1), and let 1p + 1q = 1. Then����Z 1�1 h(t� �)u(�)d� ���� � Z 1�1 jh(t� �)j1=pju(�)j � jh(t� �)j1=qd�:We an now use H�olders inequality kfgk1 � kfkp � kgkq with f(�) = jh(t� �)j1=pju(�)j 2 Lpand g(�) = jh(t� �)j1=q 2 Lq . This gives����Z 1�1 h(t� �)u(�)d� ���� � �Z 1�1 jh(t� �)j � ju(�)jpd��1=p�Z 1�1 jh(t� �)jd��1=q ;where we note that the last term is khk1=q1 . If we take Lp-norms on both sides of thisinequality then we getkh � ukp � khk1=q1 �Z 1�1�Z 1�1 jh(t� �)jju(�)jpd�� dt�1=p� khk1=q1 � khk1=p1 � kukp = khk1 � kukpwhere we used that kh � fk1 � khk1 � kfk1 for any h; f 2 L1.It now follows from Proposition 1 and the two examples above that� Eah G 2 RH1 is a bounded ausal operator on Lp[0;1).� Eah G 2 RL1 is a bounded operator on Lp(�1;1).Remark 5. We will only onsider systems with asual operators. However, nonausal op-erators will be used as \analysis �lters" or \multipliers" in the disussion on IQCs. Theywill only be used for analysis of norm bounded signals i.e., signals in H for funtion spaeswhere the time axis is bi-in�nite, e.g. T = R.The gain bound in Proposition 1 an be improved for L2-spaes.Proposition 2. We have1. Let G 2 RL1 be an operator on L2(�1;1) thenkGk = max!2[0;1℄�max(G(j!))whih often is denoted kGkH1.2. Let G 2 RH1 be an operator on L2[0;1) thenkGk = max!2[0;1℄�max(G(j!)):Proof. See [44℄. The idea is to onsider the frequeny domain representation of the operatorby(j!) = G(j!)bu(j!)If the input bu has a Dira at the frequeny where the optimization problem below takes inmaximum then it is possible to ahieve the gain bound.Example 10. An operator de�ned by a nonlinearity ' : R ! R as in Example 1 is bothausal and anti-ausal. Suh operators are alled memoryless.Example 11. A nonlinear operator de�ned by a state spae representation as in Example 2is ausal sine the integration is assumed to be done forward in time.13



Well-posedness and StabilityIn the system (4) we assume that H1 and H2 are ausal operators on Le. Well-posedness isde�ned as follows:De�nition 2 (Well-posedness). The system in (4) is well-posed if for any u1; u2 2 Lethere exist a solution e1; e2 2 Le. Furthermore, the loop signals e1; e2 depends ausally onu1 and u2.De�nition 3 (Stability). The system (4) is stable if it is well-posed and if there are pos-itive onstants 1; 2; 3; 4 suh thatke1T k � 1ku1Tk+ 2ku2Tkke2T k � 3ku1Tk+ 4ku2Tkfor all T 2 T .Remark 6. If the system is stable and if u1 and u2 are norm bounded, i.e., u1; u2 2 L, thene1; e2 2 L.Remark 7. A well posed system is not the same as a stable system. In a system that iswell-posed but not stable, there may not be a (time) uniform gain as above de�nite. Forexample, if we an have keTk = O(eT kuTk) then the system is not stable.Remark 8. Well-posedness is a generi property for any good model of a physial system.Conditions for well-posedness are disussed in detail in [31℄.Let us trunate all terms on both sides of both equations in (4). We use the notationPT e1 = e1T and the fat that ausality implies that PTH1(e1) = PTH1(e1T ). We gete1T = u1T � PTH2(e2T )e2T = u2T + PTH1(e1T ) (6)If the system (4) is well-posed then its trunated version is a well de�ned equation systemin the normed spae L for all T 2 T . This means that we an take norms on both sides ofthe equations in (6). This will be used in the derivation of the small gain theorem.4 The Small Gain TheoremThe small gain theorem is a fundamental result in stability theory. It generally gives on-servative results but this an sometimes be alleviated by the use of loop transformationsand multipliers, as is disussed in Setion 6.Theorem 1. Assume that(i) the system in (4) is well-posed,(ii) kH1k � kH2k < 1.Then the system is stable.Proof. Consider the trunated system equations in (6). Using e2T = u2T + PTH1(e1T ) inthe �rst equation gives e1T = u1T � PTH2(u2T + PTH1(e1T )) (7)e2T = u2T � PTH1(e1T ) (8)14



If we take norms in (7) then we getke1T k � ku1Tk+ kH2k � ku2T k+ kH2k � kH1k � ke1T kHene, ke1Tk � 11� kH1k � kH2kku1Tk+ kH2k1� kH1k � kH2kku2Tk (9)Finally, take norms of (8) and use (9). We getke2Tk � kH1k1� kH1k � kH2kku1Tk+ 11� kH1k � kH2kku2Tk (10)Example 12. Consider the system in (4) whenH1 is an LTI operator with transfer funtionG(s) = C(sI � A)�1B +D and when kH2k � 1 (for both signal spaes onsidered below).The small gain theorem ensures that the losed loop system is stable if kGk < 1. If we letthe signal spae Le be L2e[0;1) then the stability ondition beomeskGkH1 = sup!2[0;1℄ jG(j!)j < 1If the signal spae is L1e[0;1) then the stability ondition beomeskGk1 = Z 10 jCeAtBj dt+ jDj < 1We an now argue that the L1-norm ondition gives a more onservative ondition forstability than the H1-norm. This follows sine (the weighting funtion g(t) = CeAtB�(t)+DÆ(t)) jG(j!)j = j Z 10 g(t)e�i!t dtj � Z 10 jCeAtBj dt+ jDjHene, if kGk1 < 1, then kGkH1 < 1. So is there any point in using the funtion spaeL1[0;1)? There is an important point. The stability bounds (9) and (10) gives bounds onthe magnitudes of e1T ; e2T that hold at any time instant when we use L1e[0;1) whereaswe get energy bounds when we use L2e[0;1). The hoie of signal spae must reet ourrequirements on the real system.Example 13. Let H1 = G 2 RH1 and a let H2 be a setor bounded nonlinearity H2 ='(x) 2 setor[�k; k). If the signal spae is L2[0;1) then the system is stable if kGkH1 <1=k.5 The Passivity TheoremThe passivity theorem is another fundamental result in stability theory. It has gainedwidespread appliation in analysis of eletri iruits, see [4℄, and mehanial systems, see [3℄.The passivity theorem exploits the additional struture of the inner produt in a Hilbertspae. We will assume that the inner produt satis�es the following propertieshy; uiT := hyT ; uT i = hy; uT i = hyT ; uiand, as before, kuT k is a nondereasing funtion of T and if u 2 H then limT!1 kuTk = kuk,where kuk = phu; ui. These properties are satis�ed in our standard spaes l2e(Z+) andL2e[0;1). 15



De�nition 4. A ausal operator H : He ! He is� passive if hHu; uiT � 0 for all u 2 He, 8T � 0� stritly output passive (SOP) if there exists an " > 0 suh thathHu; uiT � "kPTH(u)k2; 8u 2 He; 8T � 0Remark 9. Note that we do not require the operator to be bounded in the de�nition ofpassivity, see Example 16 for a passive operator with in�nite gain. However, a stritlyoutput passive operator is always bounded sine"kPTH(u)k2 � hHu; uiT � kPTH(u)k � kuT k;whih implies that kHk � 1=".Example 14. An LTI system G(s) 2 RHm�m1 is� passive if G(j!) +G(j!)� � 0 for all !,� SOP if there exists " > 0 suh that 12 (G(j!) +G(j!)�) � "G(j!)�G(j!); 8!,We prove this in Example 20 in Setion 7.Example 15. In this example we onsider the operatorH de�ned by the input-output mapof the nonlinear system _x = f(x) + g(x)u; x(0) = 0y = h(x)where f(0) = 0 and h(0) = 0. Then H is SOP if there exists a ontinuously di�erentiablepositive semide�nite funtion V with V (0) = 0 suh that�V�x f(x) = �kh(x)Th(x);�V�x g(x) = hT (x)where k > 0. The system is passive if the above holds with k = 0. The proof follows sine_V (x) = �V�x (f(x) + g(x)u) = �kjyj2 + yTu. Integration givesV (x(T ))� V (x(0)) = Z T0 yTu dt� k Z T0 jyj2 dtSine, V (x(0)) = 0 and V (x(T )) � 0, we get hy; uiT � kkyTk2.Example 16. Consider the following simpli�ed version of the LuGre-frition model [21, 2℄dzdt = v � jvjg(v)z; z(0) = 0g(v) = 1�0 (FC + (FS � FC)e�(v=vs)2)F = �0z (11)16



where F denotes the frition fore, v is the relative veloity of the surfaes, �0 is a sti�nessoeÆient, FS is the Stribek frition, and FC is the Columb frition. It is assumed thatFS � FC > 0 This frition model is passive as an operator H : v 7! F on L2e[0;1) sineFv = �0(z dzdt + jvjg(v)z2) � �0z dzdt :Integration gives hF; viT � 12�0z(T )2 � 0;whih proves passivity. It is easy to see that the frition operator is unbounded sine a smallinput pulse an make z stay at a nonzero value when the input has turned to zero. Thismeans that the L2-norm of the output is in�nity.We will next prove one of the simpler formulations of the passivity theorem.Theorem 2 (The Passivity Theorem). Assume that(i) the system in (4) is well-posed, u2 = 0(ii) H1 : He ! He is stritly output passive(iii) H2 : He ! He is passiveThen the system is stable in the sense ke2Tk � 1"ku1Tk, for all T � 0, where " is from thede�nition of strit output passivity.Remark 10. The theorem shows that e2 is bounded but note that e1 may not be bounded(in L2-norm). However, if H2 is bounded then we also have ke1T k � ku1T k for all T � 0for some  > 0.Proof. The trunated system now beomese1T = u1T � PTH2(e2)e2T = PTH1(e1)We get hu1; H1(e1)iT = he1; H1(e1)iT + hH2(e2); e2iT � "kPTH1(e1)k2This gives kPTH1(e1)k2 � 1"ku1Tk � kPTH1(e1)k, i.e., kPTH1(e1)k � 1"ku1Tk.Example 17. Consider the system in Figure 5, whih models position ontrol of a servowith frition. We assume that the frition an be modeled as the LuGre frition in Exam-ple 16 and that the PD-ontroller has transfer funtion K(s) = k1 + k2s, where k1; k2 > 0.The system an equivalently be represented ase1 = d�H(v)v = Ge1where H denotes the LuGre frition model and G(s) = sms2+k2s+k1 . We know that H ispassive and we have Re fG(j!)g = k2jG(j!)j2;i.e., G is stritly output passive. Hene, it follows from the Passivity theorem that kvT k �kdT k for some  > 0. 17
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Figure 6: A Loop Transformation6 Loop Transformations and MultipliersThe small gain theorem and the passivity theorem generally give onservative stabilityonditions. Loop transformations and the introdution of multipliers in the feedbak loopare means to redue onservatism.Loop TransformationsFigure 6 shows a loop transformation of the system in (4), whih we assume to be well-posed. Here K : Le ! Le is a suitably hosen linear bounded and ausal operator. Theloop transformation is well-posed if fH1 = (I +H1K)�1H1 is a well de�ned operator on Le.Then the transformed system is well-posed and stability of the system (4) is equivalent tostability of its transformed version.
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Figure 7: Introdution of multipliersMultipliersFigure 7 shows how a multiplier and its inverse have been introdued in the feedbak loop.If both M and its inverse M�1 are bounded ausal operators on Le then stability of thesystem in Figure 7 implies stability of the system in (4). It is also possible to onsidernonausal �lters M but then several tehnial onditions need to be introdued.The main point with the loop transformations and the multipliers is that it may be easierto prove stability for the transformed system than the original system.We will in the next setion disuss the IQC framework for stability analysis in Hilbertspaes. The introdution of multipliers and loop transformations is done impliitly andwith great simpliity in the IQC framework. This is very onvenient in advaned systemsanalysis. We will in a later setion disuss the onnetion between the IQC tehnique andthe lassial loop transformation and multiplier ideas disussed above.Equivalene between Possitivity and Unity GainWe will end this setion with a peuliar little result whih exempli�es that basi mathemat-ial ideas often extends to muh more general situations.Proposition 3. Let H : H ! H and assume that H + I is invertible on H. De�ne S :H ! H as S = (H � I)(H + I)�1. Then we have the following propertyhf;Hfi � 0; 8f 2 H , kSk � 1:Remark 11. The proposition is a generalization of the onformal mapping S(z) = z�1z+1 be-tween the right half omplex plane and the uni irle to nonlinear operators on a Hilbertspae.Proof. Let g 2 H. Then f = (H + I)�1(g) satis�es(i) S(g) = (H � I)(f)(ii) g = (H + I)(f)If we use (i) and (ii) respetively then we getkS(g)k2 = kH(f)k2 + kfk2 � 2 hH(f); fikgk2 = kH(f)k2 + kfk2 + 2 hH(f); fiAfter subtration we get kgk2 � kS(g)k2 = 4 hH(f); fiwhih proves the laim. 19



7 Adjoint operators and Quadrati FormsThe integral quadrati onstraints, whih we disuss in the next setion, are de�ned interms of time-invariant quadrati forms. In order to introdue the time invariant quadratiforms we need to disuss the Hilbert adjoint operator, self-adjoint operators, and positive-de�niteness of self-adjoint operators.De�nition 5. Let H : H ! H be a bounded linear operator. Then the Hilbert adjoint H�of H is the operator H� : H ! H suh thathHf; gi = hf;H�gi 8f; g 2 HExample 18. A matrix M 2 Rn�n de�nes a bounded linear operator on the Hilbert spaeRn equipped with the standard inner produt hx; yi = xT y. The Hilbert adjoint M� is thetranspose of the matrix, i.e., M� = MT (if the matrix is omplex-valued then M� = MT ).This follows sine hMx; yi = xTMT y = 
x;MT y� :Example 19. LetH 2 RHm�m1 be an operator on Lm2 (�1;1) with state spae realizationH(s) = C(sI � A)�1B + D, where A is a stable matrix. Then H has Hilbert adjointH�(s) = H(�s)T = �BT (sI + AT )�1CT + DT . We will derive this in the time-domain.Let h0(t) = CeAtB�(t), thenhHf; gi = Z 1�1�Z t�1 h0(t� �)f(�)d� +Df(t)�T g(t)dt= Z 1�1 f(�)T �Z 1� h0(t� �)T g(�)dt+DT g(t)� d� = hf;H�giwhih shows that the adjoint is an anti-ausal operator with state spae realization H�(s) =H(�s)T = �BT (sI +AT )�1CT +DT .More generally, the adjoint of an operator H 2 RLm�m1 is H�(s) = H(�s)T . This anbe shown by spliting H into its ausal and antiausal term and then ompute the adjointof these two terms and �nally add them to get the result. However, a more diret way is toonsider the frequeny domain representation of the inner produthHf; gi = Z 1�1(H(j!) bf(j!))�bg(j!)d!= Z 1�1 bf(j!)�(H(j!)�bg(j!))d! = hf;H�giand use the fat H(j!)� = H(�j!)T .We have now seen two examples where it was possible to onstrut the adjoint. Next westate the reassuring fat that there always exists an Hilbert adjoint. Several useful propertiesare also stated.Theorem 3. The Hilbert adjoint H� in De�nition 5 exists uniquely and it is a linear oper-ator with kH�k = kHk. Furthermore, for bounded linear operators H;H1; H2 : H ! H wehave the following propertiesa) (�H)� = �H� b) (H1 +H2)� = H�1 +H�2 ) (H�)� = Hd) (H1H2)� = H�2H�1 e) kT �Tk = kTT �k = kTk2 f) (H�)�1 = (H�1)�where in the last statement we assume that H is invertible.20



Proof. See [12℄ for a full proof. The existene and uniqueness is a onsequene of the Rieszrepresentation theorem. The properties a)�f) are rather straightforward to derive. In fat,the proof is ompletely analogous to the matrix ase.We will next introdue the onept of self-adjoint operator and positive de�niteness ofa self-adjoint operator.De�nition 6. A bounded linear operator H : H ! H is self-adjoint if H� = H . A self-adjoint operator isPositive semi-de�nite, denoted H � 0 if and only if hHf; fi � 0 for all f 2 H.Positive de�nite, denoted H > 0, if and only if there exists " > 0 suh thathHf; fi � "kfk2; 8f 2 H:H is said to be negative semi-de�nite if �H is positive semi-de�nite and H is negativede�nite if �H is positive de�nite.The integral quadrati onstraints in the next setion are de�ned in terms of time-invariant quadrati forms on a Hilbert spae. A bounded self-adjoint operator � = �� :H ! H de�nes a (bounded) quadrati form � : H ! R as �(f) = h�f; fi. The quadratiform is positive semi-de�nite if �(f) � 0 for all f 2 H and stritly positive de�nite ifthere exists " > 0 suh that �(f) � "kfk2, for all f 2 H. Negative semi-de�niteness andnegative de�niteness are de�ned analogously. It follows from De�nition 6 that � is positivesemi-de�nite (positive de�nite) if and only if � � 0 (� > 0).For a subspae eH � H we also have that � = �� : H ! H de�nes a quadrati form� : eH ! R by the relation �(f) = h�f; fi, f 2 eH. It is obvious that � � 0 in this ase alsoimplies that � � 0. The reverse impliation is not at all lear. However, it turns out thatthe reverse impliation holds when H = L2(�1;1) and eH = L2[0;1). Here we use thatL2[0;1) � L2(�1;1) if for eah f 2 L2[0;1) we de�ne f(t) = 0 for t � 0. We use thisassumption from now on.Proposition 4. Let � = �� 2 RLm�m1 and de�ne the quadrati form �(f) = h�f; fi onL2[0;1). Then the following are equivalent(i) �(f) � 0 for all f 2 L2[0;1)(ii) �(j!) � 0 for all ! � 0.Proof. The proof is taken from [20℄. The impliation (ii) ) (i) is more or less obvioussine L2[0;1) � L2(�1;1) and � � 0 implies that � � 0 on L2(�1;1). For theother diretion we use that the quadrati form is time-invariant on L2(�1;1). Indeed, ifS� : L2(�1;1) ! L2(�1;1) is the shift operator de�ned by (S�f)(t) = f(t � �), thenwe have �(S�f) = h�S�f; S�fi = Z 1�1( bf(j!)e�j!� )��(j!) bf(j!)e�j!�d!= Z 1�1 bf(j!)��(j!) bf(j!)d! = h�f; fi = �(f):Hene, if � � 0 on L2[0;1) then � � 0 on L2[�;1) for any � > �1. Next, we use that[�>�1L2[�;1) is dense in L2(�1;1) and that � is ontinuous on L2(�1;1) to inferthat � � 0 on L2[0;1) implies � � 0 on L2(�1;1). The later is equivalent to �(j!) � 0for all ! � 0. 21



Example 20. We will here prove that G 2 RHm�m1 is stritly output passive if 12 (G(j!)+G(j!)�) � "G(j!)�G(j!) for some " > 0. This follows sinehGu; uiT � "kPTGuT k2 = hGuT ; uT i � "kPTGuT k2� 12 h(G+G�)uT ; uT i � "kGuT k2= �(12(G+G�)� "G�G)uT ; uT� � 0;where we used the above proposition in the last inequality.8 Integral Quadrati ConstraintsIntegral Quadrati Constraints (IQCs) give useful haraterizations of the struture of agiven operator on an Hilbert spae. The IQCs are de�ned in terms of quadrati formswhih are de�ned in terms of self-adjoint operators. The resulting stability theory uni�esand extends the lassial passivity based multiplier theory. The stability onditions areomputationally attrative and we will disuss a method for omputing the multipliers thatappear in the stability riterion later.We onsider systems on the form (4) for the speial ase when H1 is de�ned in terms ofa ausal and bounded LTI transfer funtion G, and when H2 = ��, where � is a boundedand ausal operator on H. The system equations beome8v = Gw + ew = �(v) (12)We will be partiularly interested in the ase when the operators are de�ned on either ofthe extended spaes He = Lm2e[0;1) or He = lm2e[0;1).Next we de�ne the IQC for operators on He. It is important to notie that the IQCis de�ned on the Hilbert spae H and does not involve trunations of the signals. This ismakes it muh easier to obtain general and exible results ompared to when multipliers andloop transformations are used in the framework of the small gain theorem or the passivitytheorem. We will disuss this in the next setion.De�nition 7 (IQC). Let � be a bounded and self-adjoint operator. Then � satis�es theIQC de�ned by � if��(v;�(v)) = �� v�(v)�;� � v�(v)�� � 0; 8v 2 H (13)We often all � the multiplier that de�nes the IQC. We will sometimes use the shorthandnotation � 2 IQC(�) to mean that � satis�es the IQC de�ned by �.Remark 12. If H = Lm2 [0;1), then � an be taken as a transfer funtion satisfying �(j!) =�(j!)�. The ondition in (13) redues to��(v;�(v)) = Z 1�1 " bv(j!)[�(v)(j!)#��(j!)" bv(j!)[�(v)(j!)# � 0; 8v 2 Lm2 [0;1) (14)8A disturbane in the seond equation an be inluded in e sine G is linear and bounded.22



If H = lm2 [0;1) then � an be taken as a transfer funtion satisfying �(ej!) = �(ej!)� forall ! 2 [��; �℄. The ondition in (13) redues to��(v;�(v)) = Z ��� " bv(ej!)[�(v)(ej!)#��(ej!)" bv(ej!)[�(v)(ej!)# � 0; 8v 2 lm2 (Z+)Remark 13. The two simplest examples of multipliers are�1 = �I 00 �I� ; and �2 = �0 II 0�We see that �1 de�nes a valid IQC for operators that have gain less than one. The multiplier�2 orresponds to passivity.Let us onsider a ouple of examples.Example 21. Let ' be a nonlinearity that satis�es the setor ondition �x2 � '(x; t)x ��x2, for all (x; t) 2 R�R+. Then ' satis�es the IQC de�ned by�(j!) = ��2�� � + �� + � �2 �To see this we notie that (this relation is in the time domain)� v'(v)�T � � v'(v)� = 2(�v � '(v))('(v) � �v) � 0;where the inequality is an immediate onsequene of the setor ondition. Integration givesthe desired result.Example 22. Let � orrespond to multipliation with a real salar Æ 2 [�1; 1℄, i.e.,(�v)(t) = Æv(t). Then � satis�es the IQC de�ned by�(j!) = �X(j!) Y (j!)Y (j!)� �X(j!);�where X(j!) = X(j!)� � 0 and Y (j!)� = �Y (j!). This follows sine� bv(j!)Æbv(j!)�� �X(j!) Y (j!)Y (j!)� �X(j!)�� bv(j!)Æbv(j!)�= bv(j!)�(X(j!)� Æ2X(j!) + Æ(Y (j!)� Y (j!)))bv(j!) � 0:Integration gives the result.Example 23. Consider the saturation nonlinearity'(x) = (x; jxj � 1sign(x); jxj > 1We will show that ' satis�es the IQC de�ned by�(j!) = � 0 1 +H(j!)1 +H(j!)� �2(1 + Re H(j!))�23



where H is the Fourier transform of a funtion h : R ! R that satisfy the L1-normonstraint khk1 = Z 1�1 jh(t)jdt � 1To see this we notie that (here � denotes onvolution)[v(t)� '(v(t))℄ � ['(v(t)) + (h � '(v))(t)℄� [v(t)� '(v(t))℄ � ['(v(t)) � sign(v(t)) supv2R j'(v)j � khk1℄� [v(t)� '(v(t))℄ � ['(v(t)) � sign(v(t))℄ = 0Integration and use of Parsevals theorem gives the desired result:0 � Z 10 2[v � '(v)℄ � ['(v) + h � '(v)℄dt= Z 1�1 2Re [bv(j!)� d'(v)(j!)℄�[d'(v)(j!) +H(j!)d'(v)(j!)℄d!= Z 1�1 � bv(j!)d'(v)(j!)���(j!) � bv(j!)d'(v)(j!)� d!The multipliers in this example an atually be used to desribe any nonlinearity with sloperestrited to the interval [0; 1℄. This is proved in the lassial paper [43℄. Note that H anbe viewed as a non-ausal �lter, i.e., the H an have poles both in the left half plane andthe right half plane.We have the following stability result.Theorem 4. Assume that(i) for � 2 [0; 1℄, the interonnetion (G; ��) is well-posed,(ii) for � 2 [0; 1℄, �� 2 IQC(�),(iii) there exists " > 0 suh that9 �GI ��� �GI � � �"I (15)Then the system in (12) is stable.Remark 14. When H = Lm2 [0;1) then (15) is equivalent to the ondition�G(j!)I ���(j!) �G(j!)I � � �"I; 8! 2 Rand when H = lm2 [0;1) then it is equivalent to the ondition�G(ej!)I ���(ej!) �G(ej!)I � � �"I; 8! 2 [��; �℄9This means that the self-adjoint operator"I + �GI �� ��GI �is negative semi-de�nite. 24
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� IQC(�1)IQC(�2)Figure 8: The more IQCs we have the better haraterization we get of the unertainty�. The grey area represents the set of unertainties � and the shaded area represents theomplete set of ausal bounded operators that satisfy the IQC.Remark 15. If � = ��11 �12��12 �22�has �11 � 0 and �22 � 0, then the ondition � 2 IQC(�) implies that �� 2 IQC(�) forall � 2 [0; 1℄. This is often the ase in appliations.Remark 16. Assume that � 2 IQC(�k), k = 1; : : : ; N . Then it is easy to see that � 2IQC(PNk=1 �k�k), where �k � 0. The stability test now beomes the onvex feasibility test:Find �k � 0 suh that �GI �� NXk=1 �k�k!�GI � � �"IRemark 17. In the ase when �22 � 0 the lass of unertainties � 2 IQC(�) is onvex andwe an look at the IQC as a way to over � (whih may belong to a set of unertainties)with a larger set of operators. The more IQCs we have the better haraterization we have,see Figure 8.Proof. We will prove the theorem under a somewhat stronger well-posedness assumptionthan neessary10. We will assume that there exists a unique solution v; w 2 He in thesystem (12) for every e 2 He (we did not require uniqueness in the previous well-posednessassumption). This means that I �G� has a ausal inverse on He. The proof follows if wean show that (I � G�)�1 is bounded. The idea for proving this is illustrated in Figure9 and Figure 10. We need to show that stability of the interonnetion of (G; ��) impliesstability of the interonnetion (G; (� + ��)�) for all j��j � , where  is independent of � .We prove this in two steps below. The proof of the theorem then follows from the iterativeargument that is illustrated in Figure 10.Step 1: There exists 0 > 0, whih is independent of � , suh that kvk � 0k(I��G�)(v)k; 8v 2H. Let us prove this. Let w = ��(v) and assume that all signals are in H. We have0 � ��vw�;� �vw�� = ��v �Gw +Gww �;� �v �Gw +Gww ��= ��v �Gw0 �;� �v �Gw0 ��+ 2��v �Gw0 �;� �Gww ��+��Gww �;� �Gww ��� k�11k � k(I � �G�)(v)k2 + 2(k�11k � kGk+ k�12k)k(I � �G�)(v)k � kwk � "kwk210A slight variation of this proof gives the proof under the weaker well-posedness assumption.25



G�����
(I � �G�)�1G

Figure 9: Stability of the feedbak interonnetion (G; ��) implies stability of the feedbakinteronnetion (G; (� + ��)�) for all j��j � , where  is independent of � . This meansthat we an insert the dashed branh in the system without loosing stability. This allowsus to infer stability of (G;�) through an iterative argument, see Figure 10.where the �rst inequality follows sine �� 2 IQC(�) and the last inequality follows fromstandard use of Cauhys inequality and the stability ondition (15). Use of the impliation(we assume a > 0,  < 0)(ax2 + 2bxy + y2 � 0x � 0 ) x � � bay +r b2a2 y2 � ay2with a = k�11k; b = k�11k � kGk+ k�12k;  = �"; x = k(I � �G�)(v)k, and y = kwk giveskwk � 11 k(I � �G�)(v)kwhere 1 = � ba +r b2a2 + "a :On the other hand, when k�11k = 0 we get the same inequality with 1 = "=(2(k�11k �kGk+ k�12k)). Hene,kvk = kv � Gw + Gwk � (1 + kGk=1)k(I � �G�)(v)k = 0k(I � �G�)(v)k;i.e., 0 = (1 + kGk=1). This proves the laim.Step 2: Boundedness of (I � �G�)�1 for some � 2 [0; 1℄ implies boundedness of (I � (� +��)G�)�1 for all j��j � , where  is independent of �Before we prove this we need to remark again that we only know that the system isbounded at � = 0. If we assume that (I � �G�)�1 is bounded, then follows from step 1that k(I � �G�)�1k � 0We will make ruial use of this inequality when we prove step 2. It is important to notethat the inequality from step one by no means imply stability by itself unless we add someextra ondition. The extra ondition is supplied in step two, whih we prove now.Now onsider the fatorization(I � (� + ��)G�) = (I � �G�)(I � (I � �G�)�1G���)26



) ) ) ): : :stable stable stable stable0 � 2� �G G G G
Figure 10: The left hand system is stable sine G is bounded. Iterative use of the resultillustrated in Figure 9 shows that all the systems in the �gure are stable.The �rst fator on the right hand side has a bounded inverse by assumption. To proveboundedness of the seond fator we use the small gain theorem on the system in Figure 9.Due to our strong well-posedness assumption we have that (I � (I � �G�)�1G���) isinvertible if k���k � k(I� �G�)�1Gk < 1, whih holds if (here we use k(I� �G�)�1k � 0)�� <  = 10kGk � k�k (16)Hene, the ondition in (16) ensures boundedness of (I � (� + ��)G�)�1 and we see that is independent of � . This proves the laim.Let us onsider a simple example.Example 24. Consider the system in Figure 11. Here G is a stritly proper SISO systemand ' is a nonlinearity that satis�es the setor ondition �x2 � '(x; t)x � �x2, wherewe assume that � � 0 � �. Under reasonable regularity assumptions on ' (for exampleontinuity) we have well-posedness for all � 2 [0; 1℄. We also have that �' 2 IQC(�) for all� 2 [0; 1℄ when �(j!) = ��2�� � + �� + � �2 �This follows from Example 21 sine �x2 � �'(x; t)x � �x2 for all � 2 [0; 1℄ when � < 0 < �.The system in (12) is a positive feedbak interonnetion and we need to inlude theminus sign in G. The stability ondition beomes��G(j!)I �� ��2�� � + �� + � �2 � ��G(j!)I � = �2Re (G� + 1)�(G� + 1) < 0multiplying this inequality with �1=(2��) gives the stability onditionRe (G(j!) + 1=�)(G(j!) + 1=�) < 0; 8! 2 [0;1℄This is a version of the famous irle riterion. The stability ondition is illustrated inFigure 12.9 Relation to the Classial Methods1112 The use of multipliers in stability analysis with the small gain theorem or the passivitytheorem an generally redue onservatism of the analysis extensively. We will here disuss11This setion is optional reading.12The material is taken from [8℄. 27



G�'w v eFigure 11: The feedbak system for Example 24.
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stable�1=� �1=�
Figure 12: Graphial illustration of the irle riterion. The system is stable if the Nyquisturve of G is within the shaded area.the lassial multiplier theory and relate it to the IQC approah for stability analysis. Welimit our disussion to the methodology that was introdued in [43℄, see also [31℄ and [4℄.The theory is restrited to square systems for reasons that will beome apparent. The maintool in the derivation of the results is the passivity theorem.Theorem 5 (Passivity Theorem). Assume that the feedbak interonnetion of G and� in (12) is well-posed and that the following onditions holdhuT ; GuT i � �"kuTk2;huT ;�uT i � 0;for all u 2 Lm2e[0;1). The system is then stable.Proof. The proof is similar to the proof of Theorem 2. See, for example, [4℄ for a fullproof.We will next follow the arguments in [43℄ and [4℄ that lead to the multiplier theorem.The idea is the following. Assume that we want to study stability of system S1 in Figure13. We introdue an invertible multiplier M into the system. This results in the system S2in Figure 13. The multiplier is assumed to be a bounded linear operator.The multiplier M and its inverse are assumed to be bounded but not neessarily ausal.The passivity theorem requires ausal operators in the feedbak interonnetion and it an28



g fu yG� S1g Mfu yG MM�1� S2
M��g M+fu y(M��)�1 G M+M�� � M�1+ S3Figure 13: In the lassial input{output theory a multiplier M is inserted in the loopresulting in system S2. The passivity theorem annot be applied if M or M�1 is nonausal.In this ase it is required thatM an be fatored intoM =M�M+, whereM��,M+ and theirinverses are ausal and bounded. If suh a fatorization exists, stability of S1 is equivalentto stability of S3. The stability onditions an be stated in terms of IQCs involving themultiplier M .
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therefore not be applied to system S2 if M or M�1 is nonausal. In this ase it is requiredthat there exists a fatorization M = M�M+, where M+;M�1+ ;M��; (M��)�1 are boundedand ausal. If suh a fatorization exists we use the following lemma from [43℄.Lemma 1. The following are equivalent:(i) For some " > 0, hv;MGvi � �"kvk2;hv;M��(v)i � 0; (17)for all v 2 Lm2 [0;1).(ii) For some " > 0, 
uT ;M+G(M��)�1uT � � �"kuTk2;
uT ;M���(M�1+ uT )� � 0; (18)for all u 2 Lm2e[0;1) and for all T � 0.Proof. Let u 2 Lm2e[0;1). Then,
uT ;M+G(M��)�1uT � = 
M��v;M+Gv�= hv;MGvi � �"k(M��)�1k2kuT k2:This follows sine v = (M��)�1uT 2 Lm2 [0;1) and from the �rst ondition in (17). In thesame way we get
uT ;M���(M�1+ uT )� = 
M+v;M���(v)� = hv;M��(v)i � 0;where v =M�1+ uT 2 Lm2 [0;1).Consider now system S3 in Figure 13. Stability and well-posedness of system S1 andS3 are equivalent onditions. This follows sine all the multipliers in S3 are bounded andausal. We arrive at the multiplier theorem below by applying the passivity theorem tosystem S3. The onditions in the passivity theorem follow from the assumptions in thetheorem statement and from Lemma 1.Theorem 6 (Multiplier Theorem). Assume that(i) the feedbak interonnetion of G and � is well-posed,(ii) � satis�es the IQC de�ned by �(j!) = � 0 M�M 0 � ; (19)(iii) M an be fatored into M =M�M+, where M+;M�� and their inverses are ausal andbounded,(iv) there exists " > 0 suh that�G(j!)I ���(j!) �G(j!)I � � �"I; 8! 2 R:30



�H2G�H1 M
M�1H2�H1e�(ev) �(v) v eve�

eG

Figure 14: Loop transformations an be used to transform � into a new perturbation e�that is suitable for appliation of the multiplier theorem.Then the interonnetion of G and � is stable.Remark 18. If we ompare this result with the orresponding result obtained with Theorem4 we see that the fatorization ondition is not needed in the IQC framework. The priepaid for this is that well-posedness is required for every feedbak interonnetion of G and��, when � 2 [0; 1℄. This ondition is in most appliations weak. In fat, we have seenin Remark 15 that if it holds at � = 1 then it often holds for all � 2 [0; 1℄. Note that ��satis�es the IQC de�ned by (19) for every � 2 [0; 1℄.It is often neessary to transform the feedbak loop in order to obtain a system that issuitable for appliation of the multiplier theorem. Figure 14 shows suh a loop transfor-mation. Here H1 and H2 are bounded ausal linear operators. We assume that the looptransformation is well-posed in the sense that the operatorseG = (G�H2)(I +H1G)�1 and e� = (� +H1)(I �H2�)�1are well-de�ned on Lm2e[0;1). We an formulate the following loop transformation result.Proposition 5 (Loop Transformation). Assume that(i) the feedbak interonnetion of G and � is well-posed,(ii) � satis�es the IQC de�ned by� = � I �H2H1 I �� � 0 M�M 0 � � I �H2H1 I � ; (20)31



where the transformation operator � I �H2H1 I �and (I �H2�) are invertible on Lm2 [0;1),(iii) M an be fatored into M =M�M+, where M+;M�� and their inverses are ausal andbounded,(iv) there exists " > 0 suh that�G(j!)I ���(j!) �G(j!)I � � �"I; 8! 2 R:Then the feedbak interonnetion of G and � is stable.Proof. We need to show that e� and eG satisfy ondition (ii) and (iv) in Theorem 6. Let usverify ondition (ii). We notie that� eve�(ev)� = � I �H2H1 I �� v�(v)� ;where the notation refers to Figure 14. The assumptions on the transformation operatorimplies that e� is well-de�ned. It remains to show that assumption (ii) in the propositionimplies (ii) in Theorem 6. This follows sine2Dev;M� e�(ev)E = �� v�(v)�;� � v�(v)�� � 0;for all v and hene for all ev in Lm2 [0;1). Condition (iv) is veri�ed in a similar way.The invertibility ondition on the transformation operator and the fatorization ondi-tion on M is not needed for the orresponding result derived in the IQC framework. Theproposition also indiates a very fruitful approah to obtain multipliers for the IQC frame-work. Loop transformations and multipliers from the lassial theory an be used to obtainthe IQC multiplier in (20). Hene, it is possible to inlude loop transformations in the IQCmultipliers.10 The S-Proedure Lossless TheoremThe S-proedure is frequently used in system theory to derive stability and performaneresults for nonlinear and unertain systems. In fat, the idea has been used in the formerSoviet Union sine the work of Lure and Postnikov [13℄. The idea has sine then beendeveloped by many researhers. The most notable early results are due to Yakubovih,who pioneered the use of the S-proedure in systems analysis and optimal ontrol, see, forexample, [37, 39℄ and the referenes therein. The S-proedure beame popular in the robustontrol ommunity during the 1990s, largely due to a new development by Megretski andTreil [20℄. We prove a version of Megretski and Treils result in this setion and show how itan be used to prove neessary onditions for stability.The basi idea behind the S-proedure is simple. De�ne the quadrati forms �k : H ! Ras �k(f) = h�kf; fi ; k = 0; 1; : : : ; N (21)where �k are linear bounded self-adjoint operators on H. Now onsider the following twoproblems 32



S1 : �0(f) � 0 for all f 2 H suh that �k(f) � 0, k = 1; : : : ; N .S2 : There exists �k � 0, k = 1; : : : ; N suh that�0(f) + NXk=1 �k�k(f) � 0; 8f 2 H:It is a obvious fat that S2 implies S1. The two onditions S1 and S2 are in general notequivalent. However, there are some speial ases when S1 , S2 and the S-proedure is thenalled lossless. Yakubovih proved losslessness of the S-proedure in [37℄ for the followingtwo ases1. H = Rn and N = 1.2. H = Cn and N = 2.Megretski and Treils losslessness result holds for the ase of any �nite number of time-invariant quadrati forms on L2.Before stating a number of important lossless results for the S-proedure we supply someremarks and give an appliation of the S-proedure in the �nite dimensional ase.� Note that there generally is a massive omputational advantage in using the S-proedure.To understand this we notie that the onstraint in S1 generally is nononvex. Forexample, in the ase when H = Rn we have�k(f) = fT�kf;where �k = �Tk 2 Rn�n in general may be inde�nite. The problem in S2 is thenequivalent to the linear matrix inequality�0 + NXk=1 �k�k � 0;whih an be solved eÆiently. The situation is similar for the robust ontrol applia-tions we onsider.� We often use the S-proedure in appliations where it an be lossy. This will in appli-ations for ontrol system stability mean that we obtain suÆient but not neessaryonditions for stability. However, the omputational advantage disussed in the pre-vious remark justi�es the potential onservatism.Example 25. We will here derive a neessary and suÆient ondition for quadrati stabilityof the system _x = Ax +Bw; x(0) = x0v = Cxwhere the input and output satis�es the setor onstraint�1(v; w) = (�v � w)(w � �v) = 12 �vw�T ��2�� � + �� + � �2 � �vw� � 0;where � < � are real numbers. In order to have quadrati stability it is neessary andsuÆient that there exists P = P T > 0 suh that the Lyapunov funtion V (x) = xTPxsatis�es xTP (Ax+Bw) < 0; 8(x;w) 6= 0 suh that �1(Cx;w) � 0:33



This is equivalently stated as�0(x;w) := �xw�T �ATP + PA PBBTP 0 � �xw� < 0; 8(x;w) 6= 0 s:t: �1(Cx;w) � 0:It follows from [37℄ that the S-proedure is lossless for this ase of two quadrati forms(and strit/nonstrit inequality). Hene, the above riterion is equivalent to the existene of� � 0 suh that �0(x;w) + ��1(Cx;w) < 0 for all (x;w) 6= 0. It is easily seen that we need� > 0 for this to hold. We an then normalize suh that � = 1 (and P=� ! P ). We havethus shown that quadrati stability of a linear system with setor unertainty is equivalentto feasibility of the linear matrix inequality: 9P = P T > 0 suh that�ATP + PA� 2��CTC PB + (� + �)CTBTP + C(� + �) �2 � < 0:We will next formulate the S-proedure lossless result for the ase of time-invariantquadrati forms on a Hilbert spae. We state a somewhat more general result than in [20℄.To do this we will use the following properties given in [39℄, where [20℄ was extended to amore general ase.Assumption 1. Let the quadrati forms �k : H ! H be de�ned as in (21) and let S� : H !H be the shift operator de�ned by (S�f)(t) = f(t� �). We assume that the Hilbert spae,its inner produt, and the self-adjoint operators �k are suh that the following propertieshold(i) if f 2 H then S�f 2 H for all � � 0(iia) h�kS�f1; f2i ! 0 as � !1(iib) h�kf1; S�f2i ! 0 as � !1(iii) �k(S�f) = �k(f) for all � � 0 and all f 2 HExample 26. If � = �� 2 RLm�m1 and H = L2[0;1), and �(f) = h�f; fi then all theabove properties hold due to the time-invariane of � and the standard properties of the L2integrals.Theorem 7 (S-Proedure Lossless Theorem). Assume the quadrati form satis�es theproperties in Assumption 1 and that there exists f� 2 H suh that �k(f�) > 0 for k =1; : : : ; N . Then the S-proedure is lossless, i.e., the following are equivalentS1 : �0(f) � 0 for all f 2 H suh that �k(f) � 0, k = 1; : : : ; N .S2 : There exists �k � 0, k = 1; : : : ; N suh that�0(f) + NXk=1 �k�k(f) � 0; 8f 2 H:Proof. The diretion S2 ! S1 is obvious so it remains to prove (S1 ) S2). De�neK = f(�0(f); �1(f); : : : ; �N (f)) : f 2 Hg;N = f(n0; n1; : : : ; nN) : nk > 0; k = 0; 1; : : : ; Ng:We will �rst prove that the losure of K is onvex. Then S1 implies that K\N = ; and wean use the separating hyperplane theorem to prove that S2 holds.34



Convexity of K: Let f1; f2 2 H and de�nek1 = ((�0(f1); �1(f1); : : : ; �N (f1)) 2 Kk2 = ((�0(f2); �1(f2); : : : ; �N (f2)) 2 KWe have �k(p�f1 +p1� �S�f2) = ��k(f1) + (1� �)�k(f2) +p�(1� �)(h�f1; S�f2i+ h�S�f2; f1i)! ��k(f1) + (1� �)�k(f2);as � !1. Hene(�0(p�f1 +p1� �S�f2); : : : ; �N (p�f1 +p1� �S�f2))! �k1 + (1� �)k2;as � !1 and it follows that �k1 + (1� �)k2 2 K. This proves the laim.The separation argument: The statement in S1 implies that K \ N = ;. Hene, sineK and N are onvex and N is open there exists a separating hyperplane. In other words,there exists a nonzero N + 1-tuple (0; 1; : : : ; N ) suh that0n0 + 1n1 + : : :+ NnN > 0; 8(n0; n1; : : : ; nN ) 2 N (22)0�0 + 1�1 + : : :+ N�N � 0; 8(�0; �1; : : : ; �N ) 2 K (23)Consider (22). For any given " > 0, we have (n0; "; : : : ; ") 2 N , for all n0 > 0. This impliesthat 0 � 0. We an in the same way show that k � 0, k = 1; : : : ; N . Let �k = �k(f�),then by assumption �1; : : : ; �N > 0. Using this in (23) shows that 0 > 0. This shows thatS2 holds with �k = k=0, for k = 1; : : : ; N .The next proposition shows that the ondition in the IQC-theorem sometimes also anbe neessary and not only suÆient for stability.Proposition 6. Consider the system v = Gw + ew = �(v)where G 2 RHm�m1 , e 2 Lm2 [0;1), and � is any bounded ausal operator on Lm2 [0;1) suhthat � 2 IQC(�k), for k = 1; : : : ; N . Here the IQCs are de�ned as usual��k(v; w) = Z 1�1 �bv(j!)bw(j!)���k(j!) �bv(j!)bw(j!)� d! � 0; 8w = �(v); v 2 L2[0;1):Assume ondition (i) and (ii) of Theorem 4 holds and that there exists a pair (v�; w�) 2L2m2 [0;1) suh that ��k(v�; w�) > 0, for k = 1; : : : ; N . Under these onditions a neessaryand suÆient ondition for stability is that there exist �k � 0 suh thatNXk=1 �k �G(j!)I ���k(j!) �G(j!)I � d! < 0; 8! 2 [0;1℄: (24)
35



Proof. SuÆieny follows from Theorem 4 and Remark 16. To prove neessity we introdueH = f(v; w; e) 2 L3m2 [0;1) : v = Gw + eg�0(v; w; e) = kGwk2 + kwk2 � kek2:�k(v; w; e) = ��k (v; w)Stability of the system means that�0(v; w; e) � 0; for all (v; w; e) 2 H suh that �k(v; w; e) � 0This is by the S-proedure lossless theorem equivalent to the existene of �k � 0 suh that�0(v; w; e) + NXk=1 �k�k(v; w; e) � 0; (v; w; e) 2 H:On the subspae (v; w; 0) 2 L3m2 [0;1) : v = Gwg � H this is equivalent tokGwk2 + kwk2 + NXk=1 �k�k(Gw;w; 0)= *w; ( NXk=1 �k �GI ���k �GI �+G�G+ 1)w+ � 0; 8w 2 Lm2 [0;1)This is by Proposition 4 equivalent toNXk=1 �k �G(j!)I ���k(j!) �G(j!)I � � �(G(j!)�G(j!) + I); 8! 2 R:This proves that (24) is neessary for stability.11 Unertain SystemsWe will here disuss how to treat various forms of system unertainty with IQCs. Both un-ertainty in the system model and various disturbane and noise signals will be onsidered.System unertainty System unertainty an be due to approximations in the model-ing of the system, errors during identi�ation, hange of parameters and nonlinearities dueto wear, hange of operating onditions (for example in gain sheduled systems), et. Nextfollows a list of unertainties with a short disussion of their sope of appliation. A list ofIQCs for these unertainties an be found in, for example, [19, 17℄ and the toolbox [18℄.LTI Dynami Unertainty: This type of unertainty is used to represent unmodeleddynamis or model error from identi�ation. It is represented as a stable transferfuntion with bounded H1-norm. It is ommon to normalize suh that k�kH1 =sup!2R �(�(j!)) � 1 and insert weights W (s) that are used to determine the fre-queny distribution of the unertainty, i.e., where it is large and small. One anonsider either additive or multipliative unertainty, see Figure 15.Parametri Unertainty Parametri unertainty an be used to model unertain gainsor unertainty in the loation of real poles or zeros of the system.36



G W� GW�
Figure 15: The left blok diagram illustrates multipliative output unertainty and the rightblok diagram illustrates additive unertainty.General L2-bounded unertainty In situations when we do not have muh knowledgeof the unertainty then we use the least informative IQC possible�(v; w) = Z 10 (jv(t)j2 � jw(t)j2)dt � 0:Hene, the only thing we assume about the unertainty is ausality and a norm bound.This an be used to haraterize fast time-varying parameters or time-varying and/ornonlinear operators.Slowly Time-varying Parameters Slowly time-varying parameters an be used to rep-resent a hange in the operating onditions of the system. This an, for example, beused for analysis of some gain-sheduled system.Memoryless Nonlinearities The IQCs for memoryless nonlinearities in previous setionsare valid for a large lass of setor bounded nonlinearities. This allows for unertaintyin our knowledge of the true nonlinearity.Disturbane Signals We an use IQCs to haraterize the spetral ontents of load dis-turbanes and measurement noise in the system. Early ontributions along this line an befound in [17, 23℄.De�nition 8. A signal set E � Lq2[0;1) satis�es the IQC de�ned by 	 = 	� 2 RLq�q1(E 2 IQC(	)) if �	(e) = Z 1�1 be(j!)�	(j!)be(j!)d! � 0 (25)for all e 2 E .We give two examples.Dominant Harmonis: Let e 2 Lq2[0;1) be a bandpass signal with supp be 2 [�b;�a℄ [[a; b℄, where supp be denotes the support of the Fourier transform of e. Then we anuse 	(j!) = (0; j!j 2 [a; b℄;�1I; otherwise:in (25). Rational approximations of 	 an easily be obtained.Signals with Given Spetral Charateristi: Consider a signal with spetrumjbe(j!)j2 = kek2kHk22 jH(j!)j2 (26)37



z ev wG�Figure 16: The LFT in (27).where H is a given transfer funtion. Suh signals an be used to model �ltereddeterministi white noise or the initial onditions response of a linear system. If 	satis�es Z 1�1	(j!)jH(j!)j2 d! � 0then the IQC (25) holds for all signals with spetrum (26). This follows sineZ 1�1	(j!)jbe(j!) j2d! = kek2kHk22 Z 1�1	(j!)jH(j!)j2 d! � 0;Linear Frational TransformationsIt is ommon in robust ontrol to represent an unertain system with disturbane signalsas a Linear Frational Transformation (LFT). We will see later that this is not ruial forthe treatment of robust ontrol systems. However, it is a onvenient mathematial notationand it has a ruial role in many robust ontrol papers and toolboxes, see, for example [1℄.If the transfer funtion G 2 RH(q+m)�(q+m)1 has blok strutureG = �G11 G12G21 G22�then the (lower) LFT with respet to � is de�ned asFl(G;�) = G11 +G12�(I �G22�)�1G21: (27)This LFT orresponds to the blok diagram in Figure 16. As an example onsider thefeedbak system in Figure 17. The system on LFT form is given in Figure 18 where ' isthe saturation nonlinearity andG = 24 P P 1�KP �KP �KP P 0 35 :An IQC for the diagonal operator �' 00 ��an easily be obtained from IQCs of the two diagonal elements. Indeed, if ' satis�es theIQC de�ned by �1 and � satis�es the IQC de�ned by �2, where the matries has blokstruture �i = ��i(11) �i(12)��i(12) �i(22)� ;38
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Figure 17: Control system with saturation and unertainty.G' 00 �
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Figure 18: The system in Figure 17 on LFT form.then the diagonal operator satis�es the IQC de�ned by� = 26664 �1(11) �1(12)�2(11) �2(12)��1(12) �1(22)��2(12) �2(22) 37775 :This is easily seen by writing out the expression for the IQC.Diagonal unertainty strutures are normally alled strutured unertainty in the robustontrol literature.Robust Performane AnalysisConsider now the system �zv� = G � ew� (28)w = �(v)see also Figure 16. Assume G 2 RH(m+q)�(m+q)1 . We want to investigate if the losed loopsystem satis�es various performane objetives. The most ommon performane measure isthe L2-gain of the system. This orresponds to the IQC�P (z; e) = Z 10 (jz(t)j2 � 2je(t)j2)dt � 0:39



Other examples are the L2 ! L1 gain and various weighted sensitivity measures. Robustperformane is formally de�ned as follows.De�nition 9. Assume e 2 E � Lq2[0;1). Then the system in (28) has robust performanewith respet to the performane IQC �P if(i) the system is stable(ii) �P (z; e) � 0 for all z = Fl(G;�)e, e 2 E .To derive a ondition for robust performane assume that we have the noise IQC�	(e) = Z 1�1 be(j!)�	(j!)be(j!)d! � 0; e 2 E (29)and the IQC��(v;�(v)) = Z 1�1 " bv(j!)[�(v)(j!)#��(j!)" bv(j!)[�(v)(j!)# d! � 0; 8v 2 Lm2 [0;1); (30)for the unertainty. We assume that � has the blok struture� = ��11 �12��12 �22� :We an now prove the following robust L2-performane result.Proposition 7. Assume that E satis�es (29) and � satis�es (30). Then the system (28)has robust L2-gain  if(i) it is stable(ii) the frequeny domain inequality�G(j!)I �� 26664 I 0 0 00 �11(j!) 0 �12(j!)0 0 �2I +	(j!) 00 ��12(j!) 0 �22(j!) 37775�G(j!)I � � 0;holds for all ! 2 [0;1℄.Furthermore, if ondition (i) and (ii) in Theorem 4 hold and the frequeny domain inequalityabove holds stritly then the system is also stable.Proof. The result follows from the trivial diretion of the S-proedure. LetH = �(z; v; e; w) 2 L2m+2q2 [0;1) : �zv� = G �ew�� :We need �P (z; e) � 0; for all (z; v; w; e) 2 H suh that �	(e) � 0; ��(v; w) � 0:This is learly the ase if �(z; v; e; w) := �P (z; e)+�	(e)+��(v; w) � 0 for all (z; v; w; e) 2H. Using that (z; v) = G(e; w) gives the equivalent statement�(z; v; e; w) = Z 1�1 �bebw�� �GI �� 26664 I 0 0 00 �11 0 �120 0 �2I +	 00 ��12 0 �22 37775�GI � �bebw� d! � 0 (31)for all (e; w) 2 Lm+q2 [0;1). Appliation of Proposition 4 shows that the frequeny domaininequality in (ii) is equivalent to (31). The last laim is easy to verify.40



12 The Kalman Yakubovih Popov LemmaWe will next show that the frequeny domain riterion�G(j!)I ���(j!) �G(j!)I � < 0; 8! 2 [0;1℄ (32)is equivalent to a number of onditions on the system matries in the realization of thetransfer funtions G and �. The disrete time ase an be treated similarly.We will �rst derive an LQ optimal ontrol formulation of (32). Let � have the realization� = �(j!I �A�)�1B�I ��M� �(j!I �A�)�1B�I � ; (33)where B� = �B�;v B�;w� and A� is Hurwitz. Using (33) and G(s) = CG(sI �AG)�1BG+DG (where AG is Hurwitz) shows that (32) an be formulated as13�(j!I �A)�1BI �� � Q SST R� �(j!I �A)�1BI � > 0 (34)where A = �A� B�;vCG0 AG � ; B = �B�;vDG +B�;wBG � ;and � Q SST R� = �264 I 0 00 CG DG0 0 I 375T M� 264 I 0 00 CG DG0 0 I 375 :From Proposition 4 it follows that (34) is equivalent to existene of " > 0 suh that"kwk2 � Z 1�1 �(j!I �A)�1B bw(j!)bw(j!) �� � Q SST R� �(j!I �A)�1B bw(j!)bw(j!) � d!= Z 10 (xTQx+ 2xTSw + wTRw)dt; (35)for all pairs (x;w) 2 L2[0;1) suh that _x = Ax + Bw; x(0) = 0, w 2 Lm2 [0;1). This isan LQ optimal ontrol problem. The Kalman Yakubovih Popov Lemma shows that (34)and the LQ optimal ontrol problem above are equivalent to an LMI ondition, a Riatiequation ondition, and an eigenvalue ondition on the Hamiltonian matrix orrespondingto the LQ problem.13Here we used the following rule for system omposition: IfGi(s) = Ci(sI � Ai)�1Bi +Di = " Ai BiCi Di #for i = 1; 2, then G1G2 = 264 A1 B1C2 B1D20 A2 B2C1 D1C2 D1D2 375 :41



Theorem 8 (\KYP-Lemma"). Assume the pair of matries (A;B) is stabilizable and Ahas no eigenvalues on the imaginary axis14. Then the following statements are equivalent:(i) there exists � > 0 suh that15Z 10 (xTQx+ 2xTSw + wTRw)dt � � Z 10 (jxj2 + jwj2)dt;for all pairs (x;w) 2 L2[0;1) suh that _x = Ax+Bw; x(0) = 0.(ii) we have �(j!I �A)�1BI �� � Q SST R� �(j!I �A)�1BI � > 0; 8! 2 [0;1℄(iii) there exists P = P T suh that�PA+ATP PBBTP 0 �+ � Q SST R� > 0:(iv) R > 0, and the Riati equationQ+ PA+ATP = (PB + S)R�1(BTP + ST ) (36)has a stabilizing solution P = P T , i.e., bA = A�BR�1(PB + S)T is Hurwitz.(v) R > 0, and the Hamiltonian matrixH = �A�BR�1ST BR�1BTQ� SR�1ST �AT + SR�1BT�has no eigenvalues on the imaginary axis.Proof. See, for example, [30℄.Optimization of IQCsLet us onsider the feasibility problem: Find �k � 0 suh thatNXk=1 �k �G(j!)I ���k(j!) �G(j!)I � < 0; 8! 2 [0;1℄: (37)It is no loss of generality to assume thatNXk=1 �k�k(j!) = �(j!I �A�)�1B�I ��M�(�) �(j!I �A�)�1B�I � ;where again B� = �B�;v B�;w�, A� is Hurwitz, and M� is linear in the �k , i.e.,M�(�) = NXk=1 �kMk;14The ondition that A has no eigenvalues on the imaginary axis an be removed, but then ondition (ii)needs to be slightly hanged.15This orresponds to (35) sine there A was Hurwitz and then we have k(sI�A)�1Bwk � kwk for some > 0. Hene, we ould use " = (+ 1)� in (35) 42



where eah Mk is a real valued symmetri matrix. We an again use the state spae real-ization G(s) = CG(sI �AG)�1BG +DG to formulate (37) as: Find �k � 0 suh thatNXK=1 �k �(j!I �A)�1BI �� �Qk SkSTk Rk��(j!I �A)�1BI � > 0 (38)where the matries are de�ned in the same way as before. By the KYP lemma (38) isequivalent to the following feasibility problem for linear matrix inequalities: Find P = P Tand �k � 0 suh that �PA+ATP PBBTP 0 �+ NXk=1 �k �Qk SkSTk Rk� > 0:Suh problems an be solved using, for example, LMIlab [7℄.The Bounded Real LemmaAs a speial ase of the equivalene (ii) , (iii) in Theorem 8 we onsider the importantbounded real lemma.Let G(s) = C(sI � A)�1B +D, where A is Hurwitz. Then the following are equivalentstatements(i) kGkH1 < 1,(ii) G(j!)�G(j!) < I; 8! 2 [0;1℄,(iii) there exists P = P T > 0 suh that�ATP + PA PBBTP 0 �+ �CTC CTDDTC �(I �DTD)� < 0:To see this we �rst note that the equivalene between (i) and (ii) follows sine kGk1 =sup!2[0;1℄ �max(G(j!)) and sine the ondition �max(G(j!)) < 1 is equivalent with theondition G(j!)�G(j!) < I . The equivalene between (ii) and (iii) follows from the KYPLemma, sine G(j!)�G(j!) < I, �G(j!)I �� �I 00 �I� �G(j!)I � < 0, �(j!I �A)�1BI �� �C D0 I �T �I 00 �I��C D0 I �| {z }24CTC CTDDTC �(I �DTD)35 �(j!I �A)�1BI � < 0:
We �nally note that P > 0 sine A is Hurwitz and sine CTC � 0. Another importantspeial ase, the positive real lemma, will be proven as a homework problem.13 IQC analysis of Complex SystemsIn this setion we onsider IQC analysis of omplex systems, i.e., system of high omplexity.The setion ontains an alternative view of the development of the material in the previous43



setions. In fat, we show how the ideas in the previous setions an be used as a theoretialfoundation for a Matlab toolbox for systems analysis. One suh Matlab toolbox is theIQCbeta toolbox, whih was developed at LIDS-MIT in 1997. The most urrent version ofthe toolbox an be found at http://web.mit.edu/ykao/www/index.html.The system under onsideration an in general be written as, see also the blok diagramin Figure 19, z = NXj=1G0jwj + e0vi = NXj=1Gijwj + eiwi = �i(vi) (39)where the Gij are stable LTI transfer funtions, �i are bounded ausal operators, and thedisturbane signals ei belong to subsets Ei � L2[0;1). We assume that we want to �nd anupper bound on the L2-gain of the losed loop system, i.e., an as small as possible  > 0suh that Z 10 (jzj2 � 2jej2)dt � 0;for all input output pairs of (39). We will show how this an be done in a way that an beimplemented in a software pakage as Matlab.We next use IQCs to haraterize the operators �k and the signals ek, k = 0; 1; : : : ; N .Assume that �k 2 IQC(�k(��k )), where ��k 2 ��k is a parameterization of the IQCs. Itis assumed that �k is linear in ��k and that ��k is a onvex one. We further assume that�k has the realization�k(j!; ��k ) = �(j!I �A�k )�1B�kI ��M�k(��k ) �(j!I �A�k )�1B�kI � ; (40)where A�k is Hurwitz, B�k = �B�k;v B�k;w�, and M�k is linear in ��k . The IQC �k 2IQC(�k(��k )) an now be formulated in state spae asZ 10 Q�k(x�k ; vk; wk; ��k )dt � 0; 8(x�k ; vk; wk) 2 L2[0;1) suh that( _x�k = A�kx�k +B�k;vvk +B�k;wwk; x�k (0) = 0;wk = �k(vk)where Q�k(x�k ; vk; wk ; ��k) := 24x�kvkwk 35T M�k(��k )24x�kvkwk 35 : (41)
Similarly, we assume that the disturbane signals satis�es the IQCs Ek 2 IQC(	k(� k )) (seeDe�nition 8), where � k is a linear parameterization of the IQCs. Again we assume that� k belongs to a onvex one � k and that the 	k have state spae realizations	k(j!; � k ) = �(j!I �A k )�1B kI ��M k(� k ) �(j!I �A k)�1B kI � ;44
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Figure 19: A blok diagram of the system in (39).
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where A k is Hurwitz and M k is aÆne in � k . Then the IQCs Ek 2 IQC(	k(�)) anequivalently an be formulated asZ 10 Q k (x k ; ek; � k )dt � 0; for all (x k ; ek) 2 L2[0;1) suh that_x k = A kx k +B kek; x k (0) = 0; ek 2 Ekwhere Q k(x k ; ek; � k ) := �x kek �T M k(� k ) �x kek � (42)Examples of aÆne parameterization of IQCs an, for example, be found in the manual forIQCbeta [18℄.Let us de�ne the set valued funtions16 Dk : Lmk2 [0;1)� ��k ! P(Lmk2 [0;1)) de�nedas wk 2 Dk(vk ; ��k), whereDk(vk; ��k ) = fwk 2 Lmk2 [0;1) : Z 10 Q�k(x�k ; vk; wk; ��k )dt � 0;_x�k = A�kx�k +B�k;vvk +B�k;wwk ; x�k (0) = 0g:Let us also introdue the setsEk(� k ) = fek 2 Lmk2 [0;1) : Z 10 Q k(x k ; ek; � k )dt � 0;_x k = A kx k +B kek; x k (0) = 0g:We will initially assume that the losed loop system is stable, whih means that all signalsin the loop belongs to L2. The operators �k in (39) an then be replaed by Dk and thenoise signals ek an be replaed by arbitrary signals ek 2 Ek. This follows sine� every wk = �k(vk) also belongs to Dk due to the IQC onstraint (41)� every ek 2 Ek also belongs to Ek due to the IQC onstraint (42)This implies that all possible solutions of the original system also are valid solutions of thenew system, whih is illustrated in Figure 20.Next we use state spae realizations of the Gij to obtain a realization of the linear partof the system on the form_xG = AGxG + NXk=1BG;kwk ; xG(0) = 0z = C0xG + NXk=1D0;kwk + e0vi = CixG + NXk=1Di;kwk + ei; i = 1; : : : ; N (43)
An upper bound to our robust performane ondition an now be obtained as (here wT =�wT1 ; : : : ; wTN�T , vT = �vT1 ; : : : ; vTN �T , and �nally eT = �eT1 ; : : : ; eTN�T )inf  subj to 8><>:R10 (jzj2 � 2jej2)dt � 0; 8(z; v; w; e) 2 L2 s.t.(43), wk 2 Dk(vk ; ��k), and ek 2 Ek(� k ) � 0; ��k 2 ��k ; � k 2 �	k ; 8k: (44)16P(Lmk2 [0;1)) denotes the set of all subsets of Lmk2 [0;1)46
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The above optimization problem is generally not onvex sine the IQC onstraints wk 2Dk(vk; ��k ), and ek 2 Ek(� k ) are not onvex in general. However, it is possible to use theS-proedure to obtain a onvex optimization problem. The following steps will do the job� Combine the dynamis in (43) with the dynamis in Dk and Ek. The total state spaeequation for the optimization problem (44) an now be written _x = Ax+B1w+B2e,x(0) = 0, where xT = �xTG; xT�1 ; : : : xT�N ; xT 0 ; : : : ; xT N �T , wT = �wT1 ; : : : ; wTN�T , and�nally eT = �eT0 ; eT1 ; : : : ; eTN�T . The matrix A will be Hurwitz.� In order to de�ne the IQCs in terms of the omplete state spae vetor we introduethe quadrati forms eQ�k(x;w; e; ��k ) : = Q�k(x�k ; vk; wk; ��k )eQ k(x;w; e; � k ) : = Q k(x k ; ek; � k)where vk is de�ned as a funtion of x;w; e from the state spae equation in (43).� De�ne17 Qp(x;w; e; ) = jzj2 � 2jej2. Then the performane onstraint in (44) anequivalently be writtenZ 10 Qp(x;w; e; )dt � 0; 8(x;w; e) 2 H s.t. (R10 eQ�k(x;w; e; ��k )dt � 0R10 eQ k(x;w; e; � k )dt � 0where H = f(x;w; e) 2 L2[0;1) : _x = Ax +B1w + B2eg. This is by the S-proedureimplied by18 the ondition: There exists ��k ; � k � 0 suh thatZ 10 (Qp(x;w; e; ) +Xk [��k eQ�k(x;w; e; ��k ) +� k eQ k(x;w; e; � k ℄)dt � 0; 8(x;w; e) 2 H: (45)� Linearity of the quadrati form gives ��k eQ�k(x;w; e; ��k ) = eQ�k(x;w; e; ��k��k), but��k��k 2 ��k , sine ��k is a onvex one. The same holds for the other quadratiforms. This means that we an remove all the � from the problem.� If we replae (45) by its strit ounter part then we also have robust stability (thisfollows as in Proposition 7) given that the two tehnial onditions (i) and (ii) inTheorem 4 hold.� De�ne � = (��1 ; : : : ; � N ), � = f(��1 ; : : : ; � N ) : ��k 2 ��k ; � k 2 � kg andQ(x;w; e; �; ) = �QP (x;w; e; )� NXk=1 eQ�k(x;w; e; ��k )� NXk=0 eQ k(x;w; e; � k ):17We just use that z = C0xG + e0 +PNk=1D0;kwk and that x has xG as its �rst omponent18even equivalent if there exists (x�; w�; e�) 2 H suh that R10 eQ�k (x�; w�; e�; ��k )dt � "(kx�k2+kw�k2+ke�k2) and R10 eQ k (x�; w�; e�; � k )dt � "(kx�k2 + kw�k2 + ke�k2) for k = 1; : : : ; N48



Then it follows from the above that the optimization probleminf  subjet to8><>:R10 Q(x;w; e; �; )dt � "(kxk2 + kwk2 + kek2)_x = Ax+B1w +B2e; x(0) = 0 � 0; " > 0; � 2 � (46)gives an upper bound on the indued L2-gain of the system in (39).� We will have Q(x;w; e; �; ) = 264 xwe 375T � Q(�; ) S(�; )S(�; )T R(�; )�264 xwe 375where all matries Q;S;R are aÆne in (�; ). It is now possible to use Theorem 8(KYP lemma) to obtain an LMI optimization problem, whih is equivalent to (46). Itan be formulated asinf  subjet to8><>:9P = P T ;  � 0; � 2 � suh that"PA+ATP PBBTP 0 #+ " Q(�; ) S(�; )S(�; )T R(�; )# > 0: (47)We have now presented the theoretial bakground behind IQCbeta. More details are givenin the manual [18℄, whih an be obtained from:http://web.mit.edu/ykao/www/index.html. See also the transparenies for next leture.14 AppliationsAppliations of IQC analysis have been reported in the following publiation� Analysis of an antiwindup sheme was onsidered in [10℄.� An seletor system was analysed in [9℄� Robust stability analysis of the longitudinal ontrol system of a tail-less airraft wasdisussed in [11℄During the ourse we disussed [9℄ in detail.AknowledgmentI am indebted to A. Megretski and A. Rantzer who introdued me to the subjeted ofintegral quadrati onstraints. Their inuene has been important for my view of systemstheory. Collaboration with F.J. D'Amato and Chung-Yao Kao have also been inuential onthe material in the report.Many errors and typos have been found and orreted by my olleague A. Hansson atDepartment of Automati Control, KTH, and by Ryozo Nagamune at Optimization andSystems Theory, KTH. This have improved the readability a great deal.49
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