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A Grand Challenge

A control system should be delivered with

1 A specification of closed loop requirements

2 A network of interconnected process models
(including controller hardware)

3 A controller code

4 A certificate proving that code and processes together
meet the requirements. Validation of certificates must
scale linearly with the number of interconnected
components.

Is this possible?

:

A Standard Setup

For quadratic requirements, linear process model and linear
control algorithm, verification is straightforward...

... but is it scalable?
:
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A servo with friction
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Simulations show stability.

The circle criterion can prove stability.

But what if the feedback controller induces time delays?
:

A servo with friction

2s  +2s+12

.01s  +s2

Transfer Fcn
Sum1Sum

Step

Scope

Saturation

s
1

Integrator1
s
1

Integrator

-K-

Gain2

-1

Gain1

10

Gain

Simulations show stability.

The circle criterion can prove stability.

But what if the feedback controller induces time delays?
:

A servo with friction

2s  +2s+12

.01s  +s2

Transfer Fcn
Sum1Sum

Step

Scope

Saturation

s
1

Integrator1
s
1

Integrator

-K-

Gain2

-1

Gain1

10

Gain

Simulations show stability.

The circle criterion can prove stability.

But what if the feedback controller induces time delays?
:

Stability by simulation

Every cross represents a stable simulation.

But what about in between?:



Verification of Complex Systems
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Integral Quadratic Constraint

∆ ✲✲ ∆vv

The (possibly nonlinear) operator ∆ on Lm2 [0,∞) is said to
satisfy the IQC defined by Π if

∫ ∞

−∞

[
v̂(iω )

(̂∆v)(iω )

]∗

Π(iω )

[
v̂(iω )

(̂∆v)(iω )

]
dω ≥ 0

for all v ∈ L2[0,∞).

:

∆ structure Π(iω ) Condition

∆ passive

[
0 I

I 0

]

%∆(iω )% ≤ 1

[
x(iω )I 0

0 −x(iω )I

]
x(iω ) ≥ 0

δ ∈ [−1, 1]

[
X (iω ) Y(iω )
Y(iω )∗ −X (iω )

]
X = X ∗ ≥ 0
Y = −Y∗

δ (t) ∈ [−1, 1]

[
X Y

YT −X

]

∆(s) = e−θ s − 1

[
x(iω )ρ(ω )2 0

0 −x(iω )

]
ρ(ω ) =

2max'θ '≤θ0 sin(θω/2)

:



IQC Stability Theorem

G(s)

τ ∆

❝

❝

✛✛

✲✲

❄

✻

Let G(s) be stable and proper and let ∆ be causal.

For all τ ∈ [0, 1], suppose the loop is well posed and τ ∆
satisfies the IQC defined by Π(iω ). If

[
G(iω )
I

]∗

Π(iω )

[
G(iω )
I

]
< 0 for ω ∈ [0,∞]

then the feedback system is input/output stable.

:

S-procedure

The inequality

σ 0(h) ≤ 0

follows from the inequalities

σ 1(h) ≥ 0, . . . ,σ n(h) ≥ 0

if there exist τ1, . . . ,τn ≥ 0 such that

σ 0(h) +
∑

k

τ kσ k(h) ≤ 0 ∀h

:

Underlying Math Problem

Given a number of symmetric matrices, find a convex
combination that is positive definite!
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A Matlab toolbox for system analysis
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G(iω )

>> abst_init_iqc;
>> G = tf([10 0 0],[1 2 2 1]);
>> e = signal
>> w = signal
>> y = -G*(e+w)
>> w==iqc_monotonic(y)
>> iqc_gain_tbx(e,y)

:

An analysis model defined graphically
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:

>> iqc_gui(’fricSYSTEM’)

extracting information from fricSYSTEM ...

scalar inputs: 5
states: 10
simple q-forms: 7

LMI #1 size = 1 states: 0
LMI #2 size = 1 states: 0
LMI #3 size = 1 states: 0
LMI #4 size = 1 states: 0
LMI #5 size = 1 states: 0

Solving with 62 decision variables ...

ans = 4.7139

:

Verification by IQCs

IQCs prove stability below the lower line.
:



A library of analysis objects

1
Out

window

white noise
performance

unknown const

slope nonlinearity

sector+popov

sector
sat-int

Popov

popov IQC

polytope with
restrict rate

polytope
performance

odd slope nonlinearity

norm bounded

monotonic with 
restrict rate

harmonic

encapsulated odd deadzone

encapsulated deadzone

diagonal structure

 Exp(-ds)-1

cdelay

(s-1)
s(s+1)

Zero-Pole

1
s+1

Transfer Fcn

|D(t)|<k

TV scalar

Sum
Step Source

x’ = Ax+Bu
 y = Cx+Du

State-Space

STV scalar

Mux

Mux

K

Matrix
Gain

LTI unmodeled

1

Gain

Demux

Demux

1
In

:

The friction example in text format

d=signal; % disturbance signal

e=signal; % error signal

w1=signal; % friction force

w2=signal; % delay perturbation

u=signal; % control force

v=tf(1,[1 0])*(u-w1) % velocity

x=tf(1,[1 0])*v; % position

e==d-x-w2;

u==10*tf([2 2 1],[0.01 1 0.01])*e;

w1==iqc_monotonic(v,0,[1 5],10)

w2==iqc_cdelay(x,.01)

iqc_gain_tbx(d,e)
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A Matrix Decomposition Theorem

A banded matrix is positive semi-definite if and only if it can be
written as a sum of positive semi-definite matrices with the
structure on the right.
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Proof idea

The decomposition follows immediately from the band structure
of the Cholesky factors:
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[Martin and Wilkinson, 1965]

:

Example: Vehicle formation

The first vehicle is controlled to maintain a constant speed:

x1 = G1C1x1 +w1

Every other vehicle controls the distance to preceeding vehicle:

xk = GkCk(xk−1 − xk) +wk k = 1, . . . ,N

Is it true that 'x' ≤ γ 'w' for all w?

(Other requirements can be handled similarly.)

:

Example: Vehicle formation

w =

⎡

⎢⎢⎢⎢⎣

1+ G1C1 0

−G2C2
. . .

. . .

0 −GNCN 1+ GNCN

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
M(s)

x

Hence 'x' ≤ γ 'w' if and only if (1+ GkCk)
−1 stable for all k and

M(iω )∗M(iω )− γ −2 =

⎡

⎢⎢⎢⎢⎢⎣

∗ ∗
∗ ∗ ∗

∗ ∗
. . .

. . . ∗ ∗
∗ ∗

⎤

⎥⎥⎥⎥⎥⎦

is positive semi-definite for all ω .:

Example: Vehicle formation

The vehicle formation satisfies 'x' ≤ γ 'w' for all w if and only if
there exist K1, . . . , KN with KN = 0, K1 = '1+G1C1'

2 such that

[
'GkCk'

2 + Kk−1 − γ −2 C∗
kG

∗
k(1+ GkCk)

(1+ GkCk)∗GkCk '1+ GkCk'
2 − Kk − γ −2

]
≽ 0

for k = 2, . . . ,N.

Complexity: Separate test for each vehicle 2, . . . ,N.

Confidentiality: Distributed seach for K2, . . . , KN−1.

Transparency: Use H∞ optimization to improve Ck.

If Ck,Gk transfer functions, then Kk frequency dependent.

Simplify Kk by model reduction.

:
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S-procedure for IQC Analysis

Find τ1, . . . ,τn ≥ 0 such that σ 0(h) +
∑
kτ kσ k(h) becomes

negative semi-definite:

* * *
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*

* * *

*
**
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*

*
**

*
*
*

**
*

*
*

*
*

***

*
+τ1 +τ2

:

Decomposing IQC Analysis

Find τ1, . . . ,τn ≥ 0 such that σ 0(h) +
∑
kτ kσ k(h) has a

negative semi-definite decomposition:

* * *
*
*

*
*

*
*

* * *

*
**

**
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*
**

*
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***

*
+τ1 +τ2
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* * *
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*

*
*

*
*

*
*
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*
*

*
*
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Distributed certificates!
:

Chordal Decompositions

Cholesky factors inherit the sparsity structure of the symmetric
matrix if and only if the sparsity pattern corresponds to a
“chordal” graph.
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[Blair & Peyton, An introduction to chordal graphs and clique trees, 1992]
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Example: Non-chordal graph

:

Example: Chordal graphs

If T is a tree, then Tk is chordal for every k ≥ 1.

T T2

:

Network congestion control

Maximize
∑
i Ui(x) over xi ≥ 0 subject to

∑
i Rlixi ≤ cl

Alternatively: minpl≥0 maxxi≥0
∑
i [Ui(xi)−

∑
l pl (Rlixi − cl)]

A model for Internet dynamics can look like this:

ẋi(t) = kixi(t)

(
1−

∑
l Rlipl(t− τ li)

U ′i(xi(t))

)

β l ṗl(t) + pl(t) =
∑

i

xi(t− τ il)

Scalable stabilty conditions by Low, Paganini, Doyle,
Papachristodolou, Vinnicombe, Lestas, Pates, . . .

Is there a connection to scalable IQC analysis?
:

Network congestion control

Yes!
[Pates/Vinnicomb 2012]:

Separate the ellipse{
z∗L(iω )z
z∗z : z ∈ Cn

}
from −1
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Sources for conservatism: fixed decomposition
fixed separating hyperplane

:
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Distributed Verification
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[Feron (2010)]: “The credible autocoder produces not only a target

code that implements control-system specifications but also

documents the target code with its properties and their proofs.”
:

 D
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C
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ERIC FERON

From
 Control System

s 
to Control Software

P
rovable closed-loop stability constitutes an essential attribute of control 
system

s, especially w
hen hu

m
an safety is involved, as in m

ed
ical and 

aeronautical system
s. M

otivated by such applications, there exist m
any 

theorem
s to support system

 stability and perform
ance u

nder various 
assu

m
ptions [1]–[3].

Stability criteria apply to a class of dynam
ical system

s for w
hich a stability proof 

is established. For exam
ple, the R

outh-H
urw

itz stability criterion addresses the 
class of linear, tim

e-invariant system
s, and a proof of stability for the linear system

 
is given in term

s of the system
’s characteristic polynom
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Line 8 is inform
ative since it forces y

c  to be bounded by 
one in absolute value. This inform

ation can be encoded in 
various w

ays. For exam
ple, this inform

ation can be incorpo-
rated verbatim

, therefore leading to the triple 5x
c
[
E

P 6 8
:
 

y
c
 
=
 
m
a
x
(
m
i
n
(
y
 -
 y
d
,1),-1); 5x

c
[
E

P ,  y
c 2

#
1 6. H

ow
ever, 

the postcondition 5x
[
E

P ,  y
c 2

#
1 6 is com

plicated to propa-
gate forw

ard. Instead, consider the w
eaker annotation

 
ec x

c

y
c d
[
E

Q
m f

,   Q
m

5c
m

P
0

2
3

1

0
1

3
2

1
2

m d , 
(13)

w
here m

 is an arbitrary param
eter betw

een zero and one. In 
the rest of this section, m

 is assigned the value 0.9991 found 
above during the controller stability analysis. T

he w
eaken-

ing process is a standard by-product of the proof that E
P  is 

an invariant ellipsoid for controller specification (5) and 
(6), inequality (12), and the S

-procedure. T
his point is dis-

cussed below
.

A
sking w

hat an
notation (13) becom

es after passing 
through line 9 is equ

ivalent to asking w
hat the im

age of 
an ellipsoid

 through a linear m
apping is. Since this 

im
age is also an ellipsoid, in this case a one-d

im
ensional 

segm
ent, a valid

 assertion in the postcond
ition of line 9 

is u
2

# 3C
c  D

c 4Q
m 2

13C
c  D

c 4 T, w
hile keeping the rem

aining 
assertions identical. T

he bou
nd on u

2 is a straightforw
ard 

con
sequ

ence of the fact th
at m

ax
z

TTz
#

1 c Tz
5"

c TT
2

1c, 
for the p

ositive-d
efin

ite m
atrix T. T

he resu
lting triple 

is therefore

 ec x
c

y
c d
[
E

Q
m f
9
:
 
u

5
C
c

 *
 x
c

1
D
c

 *
 y
c
;

 
ec x

c

y
c d
[
E

Q
m ,  u

2
# 3C

c  D
c 4Q

m 2
13C

c  D
c 4 Tf ,

w
hich propagates the set containing x

c  and y
c , w

hile pro-
viding a bound on the output variable u. N

ext, line 10 trans-
form

s the ellipsoid E
Q

m  into the ellipsoid E
P |, w

here 

 
P |

5
(3A

c  B
c 4Q

m 2
13A

c  B
c 4 T)

2
1. 

(14)

T
hus line 10 leads to the triple

 
ec x

c

y
c d
[
E

Q
m ,  u

2
# 3C

c  D
c 4Q

m 2
13C

c  D
c 4 Tf

 
1
0
:
 
x
c
  =
  A
c
 *
 x
c
 
+
 
B
c
 *
 y
c
;

 
5x

c
[
E

P |, u
2

# 3C
c  D

c 4Q
m 2

13C
c  D

c 4 T6.
Line 11 m

erely w
rites the output of the controller to the 

appropriate 
m

em
ory 

location 
for 

fu
rther 

processing. 
Since u is not used afterw

ard
s, it can, but does not have 

to, be dropped from
 the postcondition, thus leading to the 

triple 5x
c
[
E

P |,  u
2

# 3C
c  D

c 4Q
m 2

13C
c  D

c 4 T6 1
1:
 
s
e
n
d
(
u
,1
); 

5x
c
[
E

P |6. Lines 12 and 13 do not bring new
 inform

ation 

on the state space of the program
 and therefore lead to the 

straightforw
ard triples 5x

c
[
E

P |6 
1
2
:
 

r
e
c
e
i
v
e
(
y,2

); 
5x

c
[
E

P |6 and 5x
c
[
E

P |6 1
3
:
 
r
e
c
e
i
v
e
(
y
d
,3
); 5x

c
[
E

P |6.
T

he annotation of the program
 by m

eans of H
oare tri-

ples is now
 com

plete and sum
m

arized in Table 5. It is nec-
essary, how

ever, to check that the post-condition of line 13 
im

plies the precondition of line 14, that is, 5x
[
E

P &6 im
plies 

5x
[
E

P 6. Equivalently, w
e need to show

TABLE 5 Annotated M
atlab program

, forw
ard constraint 

propagation. Although the annotation process requires 
global understanding of the program

 sem
antics, verifying 

the correctness of the annotations can be done using 
only local exam

ination of the code. M
anual annotation 

verification 
is 

tedious, 
but 

autom
ated 

verification 
is 

possible and m
uch faster.

5true 61
:
 
A
c
  =
  [
0
.
4
9
9
0
,
 
-
0
.
0
5
0
0
;
 
0
.
0
1
0
0
,
 
1
.
0
0
0
0
]
;

5true 62
:
 
C
c
  =
  [
5
6
4
.
4
8
,
 
0
]
;

5true 63
:
 
B
c
  =
  [
1
;
0
]
;
D
c
  =
  -
1
2
8
0

5true 64
:
 
x
c
  =
  z
e
r
o
s
(
2
,
1
)
;

5x
c
[
E

P 65
:
 
r
e
c
e
i
v
e
(
y
,
2
)
;

5x
c
[
E

P 66
:
 
r
e
c
e
i
v
e
(
y
d
,
3
)
;

5x
c
[
E

P 67
:
 
w
h
i
l
e
 
1

5x
c
[
E

P 68
:
 
y
c
  =
  m
a
x
(
m
i
n
(
y
c
,
1
)
,
-
1
)
;

5x
c
[
E

P ,  y
c 2

#
1 6

s
k
i
p
 ec x

c

y
c d
[
E

Q
m f

9
:
 
u
  =
  C
c
*
x
c
  +
  D
c
*
y
c
;

ec x
c

y
c d
[
E

Q
m ,  u

2
# 3C

c  D
c 4Q

m 2
13C

c  D
c 4 Tf

1
0
:
 
x
c
  =
  A
c
*
x
c
  +
  B
c
*
y
c
;

5x
c
[
E

P |,  u
2

# 3C
c  D

c 4Q
m 2

13C
c  D

c 4 T6
1
1
:
 
s
e
n
d
(
u
,
1
)
;

5x
c
[
E

P |61
2
:
 
r
e
c
e
i
v
e
(
y
,
2
)
;

5x
c
[
E

P |61
3
:
 
r
e
c
e
i
v
e
(
y
d
,
3
)
;

5x
c
[
E

P |6s
k
i
p

5x
c
[
E

P 61
4
:
 
e
n
d

5false 6
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IQC analysis scales using positive definite decompositions !
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Scalability comes from monotonicity.
:


