A Grand Challenge

A control system should be delivered with

Scalable Robustness Analysis Using Integral @ A specification of closed loop requirements
Quadratic Constraints @ A network of interconnected process models
(including controller hardware)
O A controller code
© A certificate proving that code and processes together
meet the requirements. Validation of certificates must

scale linearly with the number of interconnected
components.
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Is this possible?
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For quadratic requirements, linear process model and linear For quadratic requirements, linear process model and linear
control algorithm, verification is straightforward... control algorithm, verification is straightforward...

o but is it scalable?



A servo with friction
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Simulations show stability.
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Simulations show stability.
The circle criterion can prove stability.

But what if the feedback controller induces time delays?

A servo with friction
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Simulations show stability.

The circle criterion can prove stability.

Stability by simulation
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Every cross represents a stable simulation.
But what about in between?



Verification of Complex Systems IE

The (possibly nonlinear) operator A on L' [0, c0) is said to
satisfy the IQC defined by 11 if
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for all v € Ly[0, 00).
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IQC Stability Theorem

[ TA
G(s)

Let G(s) be stable and proper and let A be causal.

For all 7 € [0,1], suppose the loop is well posed and 7A
satisfies the IQC defined by II(iw). If

[ G(;"") ]*H(ia)) { G(;w) ] <0 forme [0,00]

then the feedback system is input/output stable.

Underlying Math Problem

Given a number of symmetric matrices, find a convex
combination that is positive definite!
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S-procedure

The inequality

O'()(h) < 0
follows from the inequalities
o1(h) >0,...,0,(h) >0

if there exist 74,...,7, > 0 such that

Go(h)-i-ZTka(h) <0 Vh
k
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>> abst_init_iqc;

>>
>>
>>
>>
>>

G =tf([10 0 0],[1 2 2

e = signal
w = signal
y = -Gx(e+w)

w==iqc_monotonic (y)

>> iqc_gain_tbx(e,y)

>> iqc_gui(’fricSYSTEM’)

extracting information from fricSYSTEM ...

Solving with 62 decision variables ...
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IQCs prove stability below the lower line.
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d=signal; % disturbance signal
e=signal; % error signal
wl=signal; % friction force
w2=signal; % delay perturbation
u=signal; % control force

v=tf (1, [1 0])*(u-wl) % velocity

x=tf(1,[1 0])*v; % position

e==d-x-w2;

u==10*tf([2 2 1]1,[0.01 1 0.01])*e;
wl==iqc_monotonic(v,0,[1 5],10)
w2==iqc_cdelay(x,.01)
iqc_gain_tbx(d,e)

H

A Matrix Decomposition Theoren%

o

A banded matrix is positive semi-definite if and only if it can be
written as a sum of positive semi-definite matrices with the

structure on the right.




Proof idea

The decomposition follows immediately from the band structure
of the Cholesky factors:

X X
=| L
X

X X X X

[Martin and Wilkinson, 1965]

1+ GGy 0
w= —G2C x
0 —GnyCy 14+ GpCy
M(s)

Hence |x| < y|w| if and only if (1 + G;C;)~! stable for all & and

* 0 3k
* 0k *
M(iw)*M(io) —y 2 = *
* 0k
* 3k

is positive semi-definite for all w.

Example: Vehicle formation

The first vehicle is controlled to maintain a constant speed:

x1 = G1C1x1 +wy

Every other vehicle controls the distance to preceeding vehicle:

xszka(xk_l—xk)—i—wk k=1,....N

Is it true that |x| < y|w| for all w?

(Other requirements can be handled similarly.)

Example: Vehicle formation

The vehicle formation satisfies |x| < y|w| for all w if and only if
there exist K1,..., Ky with Ky =0, K; = |1 + G’]C1|2 such that

>0

|Gka|2 +Kp_1— 7/_2 C]:GZ(I + Gka)
(14 GrCr)*GrCr |1+ GrCy* — K —y 2

fork=2,...,N.

@ Complexity: Separate test for each vehicle 2,..., N.

@ Confidentiality: Distributed seach for Ko,..., Kn_1.

o Transparency: Use H, optimization to improve Cj,.

o If G, Gy, transfer functions, then K, frequency dependent.
@ Simplify K} by model reduction.
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Find 71,...,7, > 0 such that oo(h) + >, tz0r(h) has a
negative semi-definite decomposition:
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Distributed certificates!

S-procedure for IQC Analysis

Find 74,...,7, > 0 such that oo(h) + >, 7,01 (h) becomes
negative semi-definite:
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Chordal Decompositions

Cholesky factors inherit the sparsity structure of the symmetric
matrix if and only if the sparsity pattern corresponds to a
“chordal” graph.
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[Blair & Peyton, An introduction to chordal graphs and clique trees, 1992]



Example: Non-chordal graph

Network congestion control

Maximize ), U;(x) over x; > 0 subjectto >, Rjx; < ¢

AIternativer: minplzo maxy, >0 Zi [Ul (xl) — Zl P (Rlixi — Cl)]
A model for Internet dynamics can look like this:

5i(t) = ki(t) (1 _ Sy Rup(t = m))

Ul(xi(2))
Bipi(t) + pi(t) = Z xi(t — i)

Scalable stabilty conditions by Low, Paganini, Doyle,
Papachristodolou, Vinnicombe, Lestas, Pates, ...

Is there a connection to scalable IQC analysis?

If T is a tree, then T* is chordal for every k> 1.
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Yes!
[Pates/Vinnicomb 2012]:

Separate the ellipse
{LL(W)Z 12 € (C”} from —1 P

¥z :
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Sources for conservatism:  fixed decomposition
fixed separating hyperplane
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“The credible autocoder produces not only a target

[Feron (2010)]

@ Conclusions

code that implements control-system specifications but also

ir proofs.”

ts properties and thei

thi

documents the target code w

informative since it forces y, to be bounded by
one in absolute value. This information can be encoded in
various ways. For example, this information can be incorpo-
rated verbatim, therefore leading to the triple {x, € &} 8:
ye = max(min(y-yd,1),-1); {x. € &, y? =1}. However,
the postcondition {x € &, y? =1} is complicated to propa-
gate forward. Instead, consider the weaker annotation

et oeler, 1) o

Ope 1-m

where p is an arbitrary parameter between zero and one. In
the rest of this section, u is assigned the value 0.9991 found
above during the controller stability analysis. The weaken-
ing process is a standard by-product of the proof that & is
an invariant ellipsoid for controller specification (5) and
(6), inequality (12), and the S-procedure. This point is dis-
cussed below.

Asking what annotation (13) becomes after passing

X
Ye.

segment, a ssertion in the postcondition of line 9
is 1> = [C. D,JQ, '[C. D,]", while keeping the remaining
assertions identical. The bound on «? is a straightforward
consequence of the fact that max,p-c'z=Vc'T e,
for the positive-definite matrix T. The resulting triple
is therefore

ﬁu m m@Tn :nnn;n;rcoén..

ﬁ_ gy, =16, DIQC, E%

which propagates the set containing x, and y,, while pro-

forms the ellipsoid £, into the
P=(ABJQ;[A-BI) " (14)
Thus line 10 leads to the triple

ﬁ& € &g, 12 = [C.DJQ'(C.D. W

10: xXc=Ac*XCc + Boxyc;
{x. € &, w> = [C.D,]Q;'[C. D.T'}

Line 11 merely writes the output of the controller to the
appropriate memory location for further processing.
Since u is not used afterwards, it can, but does not have
to, be dropped from the postcondition, thus leading to the
triple {x. € &, «* = [C.D.JQ,'[C.DJ'} 11: send(u,1);
{x. € &}. Lines 12 and 13 do not bring new information

rom Gontrol Systems
to Control Software

TABLE 5 Annotated Matlab program, forward constraint
propagation. Although the annotation process rei
global understanding of the program semantics, verifying

possible and much faster.

{true}

1: Ac=[0.4990, -0.0500; 0.0100, 1.0000];
{true}

2: Cc=[564.48, 0];

{true}

3: Be=[1;0];Dc=-1280
{true}

4: xc=zeros(2,1);
{x. € &}

5: receivel(y,2);

{x. € &}

6: receive(yd,3);

{x. € &}

7: while 1

{x. € &}

8: yc=max(min(yc,1),-1);
€& =1}

siv {[] o}

9: u=Cc*xc +Dexyc;

{[] 0. = 1c.0a0s 1c. 0
10: xc =Ac*Xc + Bcxyc;

{x. € &, v*=[C,DJQ;'[C. D™}
11: send(u,1);

xees

12: receivel(y,2);
x5

13: receive(yd,3);
xes)

skip

(xeer

14: end

{false}

on the state space of the program and therefore lead to the
straightforward triples {x, € £} 12: receivel(y,2);

ples is now complete and summarized in Table 5. It is nec-
essary, however, to check that the post-condition of line 13
implies the precondition of line 14, that is, {x € &5} implies
{x € &}. Equivalently, we need to show
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rovable closed-loop stability constitutes an essential attribute of control

ly when human safety is involved, as in medical and

ERIC FERON

systems.
theorems to support system stability and performance under various
assumptions
criteria apply
ed. For example, the Routh-Hurwitz stability criterion addresses the
class of linear, time-invariant systems, and a proof of stal

d by such there exist many

for the linear system

s given in terms of the system's characteristic polynomial and related quantities.

Digital Objct
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IQC analysis scales using positive definite decompositions !

* % % * % %
* k k k% * % % * % % * k%
*k*k * * k% **x %
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*kkkkk| = + **x % + * k% + * % %
* % % * %k %
* % % * %k %

Scalability comes from monotonicity.



