

Outline

Integral Quadratic Constraint

- Positive Definite Decomposition
- Scalable IQC analysis
- Positive and Monotone Systems
- Concluding remarks

$$\xrightarrow{v}$$
 Δ

The (possibly nonlinear) operator Δ on $\mathbf{L}_2^m[0,\infty)$ is said to satisfy the IQC defined by Π if

$$\int_{-\infty}^{\infty} \left[\begin{array}{c} \widehat{v}(i\omega) \\ \widehat{(\Delta v)}(i\omega) \end{array} \right]^* \Pi(i\omega) \left[\begin{array}{c} \widehat{v}(i\omega) \\ \widehat{(\Delta v)}(i\omega) \end{array} \right] d\omega \ge 0$$

for all $v \in \mathbf{L}_2[0,\infty)$.

A describes the mutation dynamics without drugs, while D^1, \ldots, D^m are diagonal matrices modeling drug effects.

Determine $u_1, \ldots, u_m \ge 0$ with $u_1 + \cdots + u_m \le 1$ such that x decays as fast as possible!

[Jonsson, Rantzer, Murray, ACC 2014]

or equivalently

 $\frac{A_k\xi}{\xi_k} - \sum_i u_i D_k^i + \gamma < 0$

Maximizing γ is convex optimization in $(\log \xi_i, u_i, \gamma)$!

Using Measurements of Virus Concentrations

 $\dot{x}(t) = \left(A - \sum_{i} u_i(t)D^i\right)x(t)$

Can we get faster decay using time-varying u(t) based on

Evolutionary dynamics:

measurements of x(t) ?

Convex Monotone Systems

The system

$$f(x(t), u(t)), x(0) = a$$

is a monotone system if its linearization is a positive system. It is a convex monotone system if every row of f is also convex.

Theorem. [Rantzer/ Bernhardsson (2014)]

 $\dot{x}(t$

For a convex monotone system $\dot{x} = f(x, u)$, each component of the trajectory $\phi_t(a, u)$ is a convex function of (a, u).

Using Measurements of Virus Concentrations

The evolutionary dynamics can be written as a convex monotone system:

$$rac{d}{dt}\log x_k(t) = rac{A_k x(t)}{x_k(t)} - \sum_i u_i(t) D_k^i$$

Hence the decay of $\log x_k$ is a convex function of the input and optimal trajectories can be found even for large systems.

Example

$A = \begin{bmatrix} -\delta & \mu & \mu & 0\\ \mu & -\delta & 0 & \mu\\ \mu & 0 & -\delta & \mu\\ 0 & \mu & \mu & -\delta \end{bmatrix}$

clearance rate $\delta = 0.24 \text{ day}^{-1}$, mutation rate $\mu = 10^{-4} \text{ day}^{-1}$ and replication rates for viral variants and therapies as follows

Variant	Therapy 1	Therapy 2	Therapy 3
Wild type (x_1)	$D_1^1 = 0.05$	$D_1^2 = 0.10$	$D_1^3 = 0.30$
Genotype 1 (x_2)	$D_2^{\bar{1}} = 0.25$	$D_2^{ar{2}} = 0.05$	$D_2^{\bar{3}} = 0.30$
Genotype 2 (x_3)	$D_3^{\tilde{1}} = 0.10$	$D_3^{\overline{2}} = 0.30$	$D_3^{\overline{3}} = 0.30$
HR type (x_4)	$D_4^{1} = 0.30$	$D_4^2 = 0.30$	$D_4^3 = 0.15$

Summary

IQC analysis scales using positive definite decompositions !

* ** * **

Scalability comes from monotonicity.

Example