
JitterTime 1.2—Reference Manual

Anton Cervin

Department of Automatic Control

Technical Report TFRT-7658, version 3

ISSN 0280–5316

Department of Automatic Control

Lund University

Box 118

SE-221 00 LUND

Sweden

© 2020 by Anton Cervin. All rights reserved.

Printed in Sweden.

Lund 2020

Abstract

This technical report describes JITTERTIME, a Matlab toolbox for calculating the time-varying state

covariance of a mixed continuous/discrete linear system driven by white noise. It also integrates a

quadratic cost function for the system. The passing of time and the updating of the discrete-time

systems are explicitly managed by the user in a simulation run. Since the timing is completely

handled by the user, any complex timing scenario can be analyzed, including scheduling algorithms,

timing jitter and drift, and asynchronous execution in distributed systems. Some examples of how

the toolbox can be used to evaluate the control performance of time-varying systems are given.

3

Contents

1. Introduction . 7

2. Using the Toolbox . 7

3. Theory . 8

4. Examples . 9

Command Reference . 14

jtAddContSys . 15

jtAddDiscSys . 16

jtAddResetDynamics . 17

jtBeginPeriodicAnalysis, jtEndPeriodicAnalysis 18

jtCalcDynamics . 19

jtExecSys . 20

jtInit . 21

jtPassTime, jtPassTimeUntil . 22

jtResetSys . 23

jtStateDisturbance . 24

5

1. Introduction

1. Introduction

JITTERTIME is a spin-off from the Matlab toolbox JITTERBUG [LinCer02] and can be used for

calculating the performance of a controller under non-ideal timing conditions. Examples of such

conditions include delay and jitter due to CPU and network scheduling, lost samples or lost controls

due to packet loss or execution overruns, and aperiodic behavior due to clock drift, asynchronous

nodes, and random sampling. Both JITTERBUG and JITTERTIME evaluate a quadratic cost function

for a mixed continuous-time/discrete-time linear system driven by white noise and/or deterministic

impulse disturbances. The main difference is the timing model. In JITTERBUG, the timing of the

discrete systems are governed by random delays with specified probability density functions. This

allows the total system to be treated as a jump-linear system, and covariance can be calculated by

solving a set of linear equations. In JITTERTIME, however, the timing is arbitrary and completely

driven by the user. This allows for more complex timing scenarios to be analyzed, including schedul-

ing algorithms with long-term timing dependencies and asynchronous execution in distributed con-

trol systems. For deterministic timing scenarios over a finite horizon (or a repeating hyperperiod),

the performance is evaluated exactly. For stochastic timing scenarios, however, lengthy Monte Carlo

simulations can be needed to obtain results with high confidence. This is a major drawback of the

tool compared to JITTERBUG.

2. Using the Toolbox

Getting Started

JITTERTIME consists of a small number of functions and requires Matlab with the Control Sys-

tem Toolbox (any reasonably recent version). Simply add the directory containing the JITTERTIME

functions to the Matlab path.

Creating JitterTime Models

A JITTERTIME model is created by adding and connecting any number of continuous-time and

discrete-time linear systems. Throughout, MIMO systems are allowed, and a system may receive its

inputs from several other systems. All noise sources in the model are assumed independent.

Continuous-time systems must be strictly proper and can be specified as state-space or transfer-

function (or zpk) objects. Optionally, continuous-time white noise with a given intensity can be

added to the system. A continuous-time quadratic cost function can also be specified. For state-space

systems, a non-zero initial state may also be given.

Discrete-time systems must be proper and can be specified as state-space or transfer-function

(or zpk) objects. Optionally, discrete-time white noise with a given variance can be added to the

system. For state-space systems, a non-zero initial state/output vector may also be given. When

the system is executed, its inputs are read (sampled), noise is added, and its states and outputs are

updated. Between executions, all states and output signals are held. A continuous-time quadratic

cost function (acting on the piece-wise constant signals) can also be specified. Multiple versions

of the dynamics for same system can be specified to allow for gain scheduling or other parametric

behavior of the system during simulation.

An example of a simple JITTERTIME model is given in Figure 1. It models a sampled-data con-

trol loop with a continuous-time plant, P(s), an ideal sampler, S(z)= 1, and a combined discrete-time

controller and zero-order hold actuator, CA(z). When the sampler executes, it reads the measurement

signal y with some added discrete noise vd . When the controller executes, it updates the control sig-

nal u, which is fed back to the plant. Assuming that the systems P, CA and S and the noise and cost

parameters have already been specified, the lines of code needed to construct the model are:

N = jtInit; % Initialize JitterTime

N = jtAddContSys(N,1,P,3,R1,Q); % Add sys 1 (P), input from sys 3

N = jtAddDiscSys(N,2,S,1,R2); % Add sys 2 (S), input from sys 1

N = jtAddDiscSys(N,3,CA,2); % Add sys 3 (CA), input from sys 2

N = jtCalcDynamics(N); % Calculate the internal dynamics

7

3. Theory

The variable N is a data structure that contains all the added systems. Every system is identified

by a unique number. jtCalcDynamics checks that all system connections are correct and creates a

large state-space model of the total system. Each continuous-time system requires n states, and each

discrete-time system requires n+ r states, where n is the system order and p is the number of system

outputs. Internally, the order of the model states corresponds to the order that the systems have been

added.

Simulating a JitterTime Model

The model is simulated by a number of calls to jtPassTime, jtExecSys, jtResetSys and

jtStateDynamics, in any order. jtPassTime (or jtPassTimeUntil) is used to simulate the pass-

ing of time and integrates the covariance of all continuous-time systems. It also integrates the cost of

all systems. jtExecSys executes a given discrete-time system, which is assumed to take zero time.

An optional argument can be used to control what version of the system dynamics should be applied.

In the following example, the simple control loop model described above is simulated for 1000 pe-

riods of length h. The sampler executes at the start of each period, while the controller/actuator

executes after a random delay, uniformly distributed in [0,h].

for t = 1:1000

N = jtExecSys(N,2); % Execute sys 2 (S)

tau = rand*h; % Generate random delay

N = jtPassTime(N,tau); % Pass time until actuation

N = jtExecSys(N,3); % Execute sys 3 (CA)

N = jtPassTime(N,h-tau); % Pass time until end of period

end

During a simulation, the model variables N.P, N.m, N.J, and N.Tsim are updated after each call

to jtPassTime and jtExecSys. N.P contains the covariance matrix of all the states in the model,

while N.m contains the state mean values. N.J holds the accumulated cost, and N.Tsim keeps track

of the simulation time. All of these variables are initialized to zero in jtCalcDynamics. N.J and

N.Tsim may be reset by the user at any time during a simulation. This can be useful for, for example,

skipping the transient behavior at the start of a simulation.

Obtaining the Results

Depending on the purpose, the model variables N.P, N.m, N.J, and N.Tsim can be logged by the

user during a simulation and analyzed afterwards. If the purpose is to calculate the average cost per

time unit, this can simply be done as follows:

Javg = N.J / N.Tsim;

3. Theory

JITTERTIME is based on well-known theory for linear stochastic systems, see, e.g., [AstWit97].

The toolbox aids the user in setting up a mixed continuous/discrete linear system model, driven

by random noise and/or deterministic disturbances, and calculating the evolution of its total state

S(z)CA(z)

P(s)
yu

vc

vd

Figure 1 A simple JITTERTIME model.

8

4. Examples

covariance. The calculations themselves are trivial. At time zero, the model state covariance P and

mean value m are assumed to be zero. Between events (executions of discrete-time systems), the

covariance and mean value evolve according to

Ṗ(t) = AP(t)+P(t)AT +Rc,

ṁ(t) = Am(t),

where A describes the total continuous dynamics and Rc is the intensity of the total continuous

noise. Any discrete system states are kept constant by corresponding zeros in the A matrix. When a

discrete-time system k is executed at time tk, the covariance and mean value are immediately updated

according to

P(t+k) = AdkP(tk)A
T
dk +Rd,

m(t+k) = Adkm(tk),

where Adk describes the discrete state transition for system k and its connection to other systems,

while Rd is the variance of the discrete noise. The increase in cost between two events is given by

∆J =

∫ tk+1

tk

(

tr QcP(t)+mT(t)Qcm(t)
)

dt,

where Qc is the cost matrix for the total model.

At each call to jtPassTime, the continuous dynamics, noise, and cost are internally sampled

using the helper function calcc2d from JITTERBUG (see [LinCer02] for details). Any linear system

dynamics may be simulated, and the tool does not check for stability. If the model is indeed unstable,

the state covariance P and the mean value m will grow unbounded.

4. Examples

Example 1—Simple Control Loop with Controller Activation

Consider the simple control loop in Figure 1, where the process is assumed to be an integrator

driven by unit-intensity white noise,

ẏ(t) = u(t)+ vc(t), y(0) = 0.

The control objective is to minimize the following cost function:

J(t) =
∫ t

0
y2(τ)dτ.

The stationary minimum-variance controller (see [AstWit97]) is given by the proportional feedback

u(tk) =−
1

h

3+
√

3

2+
√

3
y(tk),

where h is the sampling interval.

Assuming h = 1 and that the controller is activated at t = 3, the process variance, P(t) = Ey2(t),
and the accumulated cost, J(t), are calculated using JITTERTIME. The variance and cost are logged

every 0.1 time units to show the inter-sample behavior, and results are plotted in Figure 2. It is seen

that the variance grows linearly when the process runs in open loop, as expected. When the controller

is activated at t = 3, the variance decreases and soon reaches a stable periodic behavior. It can be

shown that the average variance approaches

P̄ =
3+

√
3

6
≈ 0.79,

and the simulation agrees with this. The complete code for the example is given below:

9

4. Examples

0 1 2 3 4 5 6

Time

0

1

2

3

P
ro

c
e

s
s
 v

a
ri
a

n
c
e

0 1 2 3 4 5 6

Time

0

2

4

6

8

A
c
c
u

m
u

la
te

d
 c

o
s
t

Figure 2 Example 1: The controller is activated at t = 3 and then executes once per time unit.

%%% Example 1: Simple Control Loop with Controller Activation %%%

% Define process, controller and sampler

P = ss(0,1,1,0); % Integrator process

Qc = diag([1 0]); % State and control cost

R1c = 1; % State noise

h = 1; % Sampling period

CA = -1/h*(3+sqrt(3))/(2+sqrt(3)); % Minimum-variance controller

S = 1; % Sampler

% Define the JitterTime model

N = jtInit;

N = jtAddContSys(N,1,P,3,R1c,Qc); % Add sys 1 (P)

N = jtAddDiscSys(N,2,S,1); % Add sys 2 (S)

N = jtAddDiscSys(N,3,CA,2); % Add sys 3 (CA)

N = jtCalcDynamics(N);

% Simulate the system and log the results

Nsteps = 6; % Large time steps (control periods)

dt = h/10; % Small time steps (for plotting)

l = 0;

tvec = [];pvec = []; Jvec = [];

for k = 1:Nsteps

for j = 1:10

l = l+1;

tvec(l) = N.Tsim; pvec(l) = N.P(1,1); Jvec(l) = N.J;

N = jtPassTime(N,dt);

end

l = l+1;

tvec(l) = N.Tsim; pvec(l) = N.P(1,1); Jvec(l) = N.J;

if k >= 3 % Activate controller after 3 samples

N = jtExecSys(N,2);

N = jtExecSys(N,3);

end

end

% Plot the results

subplot(211)

plot(tvec,pvec)

10

4. Examples

S2(z)

S1(z)

Obs(z)L(z)

P(s)

y1

y2

u

x̂

Figure 3 Example 2: JITTERTIME model with two samplers that execute asynchronously.

xlabel(’Time’)

ylabel(’Process variance’)

subplot(212)

plot(tvec,Jvec)

xlabel(’Time’)

ylabel(’Accumulated cost’)

Example 2—Asynchronous Kalman Filtering with Two Sensors

In this example, it is assumed that a process to be controlled is equipped with two different

sensors. The first sensor takes measurements at regular intervals. The second sensor is much slower,

but delivers its measurements asynchronously, as soon as they are ready. The model is illustrated in

Figure 3. (For sake of clarity, the noise inputs are not shown.) The process P(s) is assumed to be an

inverted pendulum, described in state-space form as

ẋ(t) =

[

0 1

1 0

]

x(t)+

[

0

1

]

u(t)+

[

0

1

]

vc(t),

y(t) =

[

1 0

0 1

]

x(t)

Here, y1 = x1 corresponds to the pendulum angle, y2 = x2 corresponds to the angular velocity, and vc

is input noise with intensity R1c = 1. The periodic sensor, S1(z) = 1, has additive noise with variance

R21 = 0.1, while the aperiodic sensor, S2(z) = 1, has measurement noise with variance R22 = 0.01.

The design objective is to minimize the quadratic cost function

J(t) =

∫ t

0

(

x2
1(τ)+ 0.1x2

2(τ)+ 0.1u2(τ)
)

dτ.

The controller consists of a Kalman filter Obs(z) and a static feedback gain L(z). The observer

operates in two modes (versions). In the periodic mode, a standard Kalman filter with direct term

based on the measurement y1 is implemented as

x̂(tk) = (I −K1C1)
(

Φ1x̂(tk−1)+Γ1u(tk−1)
)

+K1y1(tk),

where Φ1, Γ1, and K1 are calculated assuming the constant sampling interval h = 0.15. When an

aperiodic sample of y2 arrives at time t j, an extra measurement update step is executed as

x̂(t+j) = (I−K2C2)x̂(t j)+K2y2(t j),

where K2 is designed assuming the average sampling interval h̄2 = 0.5. Both observers and the

feedback gain L can be computed using lqgdesign from JITTERBUG.

In Figure 4, the performance of the control system is simulated, either using only y1 or using both

y1 and y2. It is seen that the inclusion of the aperiodic measurements y2 decreases the state variance

when each new sample arrives. A longer simulation run reveals that the average cost decreases by

18% by also including sensor 2. The complete code for the example is given below:

11

4. Examples

0 2 4 6 8 10 12

Time

0

0.5

1

S
ta

te
 v

a
ri
a

n
c
e

0 2 4 6 8 10 12

Time

0

5

10

15

A
c
c
u

m
u

la
te

d
 c

o
s
t

Figure 4 Example 2: Output feedback based on one periodic sensor (full) or combined periodic and

aperiodic sensors (dashed).

%%% Example 2: Asynchronous Kalman Filtering with Two Sensors %%%

% Define the process (inverted pendulum) and design objective

A = [0 1; 1 0];

B = [0; 1];

P = ss(A,B,eye(2),0); % Process dynamics

S1 = [1 0]; % Sensor 1 (position)

S2 = [0 1]; % Sensor 2 (velocity)

Qc = diag([1 0.1 0.1]); % Cost function

R1c = B*B’; % Process input noise

R21 = 0.1; % Measurement noise on sensor 1

R22 = 0.01; % Measurement noise on sensor 2

% Design state feedback and the two Kalman filters

h1 = 0.15;

[~,L,~,~,K1,sysd1] = lqgdesign(P(1),Qc,R1c,R21,h1);

h2bar = 0.5;

[~,~,~,~,K2,sysd2] = lqgdesign(P(2),Qc,R1c,R22,h2bar);

% Formulate Kalman filter based on y1

[Phi1e,Gam1e,C1e] = ssdata(sysd1);

IK1C1 = eye(size(Phi1e)) - K1*C1e;

Obs1 = ss(IK1C1*Phi1e,[IK1C1*Gam1e K1 0*K2],IK1C1*Phi1e,[IK1C1*Gam1e K1 0*K2],-1);

% Formulate Kalman filter based on y2

[Phi2e,Gam2e,C2e] = ssdata(sysd2);

IK2C2 = eye(size(Phi2e)) - K2*C2e;

Obs2 = ss(IK2C2,[0*Gam2e 0*K1 K2],IK2C2,[0*Gam2e 0*K1 K2],-1);

% Define the JitterTime model

N = jtInit;

N = jtAddContSys(N,1,P,5,R1c,Qc); % Add sys 1 (Process)

N = jtAddDiscSys(N,2,S1,1,diag([R21 0])); % Add sys 2 (Sensor 1)

N = jtAddDiscSys(N,3,S2,1,diag([0 R22])); % Add sys 3 (Sensor 2)

N = jtAddDiscSys(N,4,{Obs1,Obs2},[5 2 3]); % Add sys 4 (Observers)

N = jtAddDiscSys(N,5,-L,4); % Add sys 5 (Feedback)

N = jtCalcDynamics(N);

12

4. Examples

% Simulate the system

l = 0;

tvec = []; p1vec = []; p2vec = []; Jvec = [];

for k = 1:12/h1 % Simulate for 12 time units

for j = 1:10 % Small time steps (for plotting)

l = l+1;

N = jtPassTime(N,h1/10);

tvec(l) = N.Tsim; p1vec(l) = N.P(1,1); p2vec(l) = N.P(2,2); Jvec(l) = N.J;

if rand < 0.05

N = jtExecSys(N,3); % Run the aperiodic sampler

N = jtExecSys(N,4,2); % Execute the aperiodic observer update

end

end

N = jtExecSys(N,2); % Run the periodic sampler

N = jtExecSys(N,4,1); % Execute the regular observer

N = jtExecSys(N,5); % Execute the state feedback

end

% Plot the result

subplot(211); plot(tvec,p1vec,tvec,p2vec)

xlabel(’Time’); ylabel(’State variance’)

subplot(212); plot(tvec,Jvec)

xlabel(’Time’); ylabel(’Accumulated cost’)

Example 3—Control Task Period Selection under Fixed-Priority Scheduling

Again consider the simple control loop in Figure 1. The process to be controlled is again an

inverted pendulum, see Example 2. Assuming process input noise with intensity R1c = 1 and mea-

surement noise with variance R2 = 0.01, the goal is to minimize the quadratic cost function

J(t) =

∫ t

0

(

y2(τ)+ 0.01u2(τ)
)

dτ.

A discrete-time LQG controller for the process can be designed using, e.g., the command lqgdesign

from JITTERBUG.

For the implementation, the control task should execute in parallel with two other hard real-

time tasks in a shared CPU. Fixed-priority preemptive scheduling is used, and it is assumed that the

controller, Task 3, has the lowest priority. The task set is summarized in the table below:

Task Priority Period (T) Deadline (D) Exec. time (E)

1 High 0.080 0.080 0.027

2 Middle 0.140 0.140 0.044

3 Low T3 — 0.025

The control task period, T3 is left as a design parameter. According to fixed-priority scheduling

theory, assuming Di = Ti, the three tasks are guaranteed to meet their deadlines if U = ∑
Ei
Ti
≤ 0.78.

The shortest controller period that satisfies this condition is T3 = 0.195. However, since a control

task is not a hard real-time task, shorter periods than this could be considered. Depending on how

the control task is implemented, a shorter period could mean that the idle CPU time is better utilized.

To investigate how the controller cost depends on the control task period, the fixed-priority

scheduling algorithm is simulated using TRUETIME [Hen+02] and the timing results of Task 3 (the

controller) are fed into JITTERTIME. Since TRUETIME is also Matlab-based, it is in fact possible

to run the JITTERTIME analysis from within TRUETIME as a co-simulation. An example run with

T3 = 0.195 is shown in Figure 5. The schedule is completely deterministic but still creates a large

jitter for Task 3 due to the preemption from the two higher-priority tasks.

To find the best controller period, T3 is varied between 0.050 and 0.200 in steps of 0.001. In

each case, the schedule and control loop are simulated for Tsim = 1000 time units, and the average

controller cost is calculated. The results are reported in Figure 6. The smallest cost is achieved for

T = 0.075, with a total utilization of U = 0.985. This is about 28% lower than the cost for T = 0.195

13

4. Examples

0 1 2 3 4 5 6 7 8 9 10

1

2

3

T
a

s
k
 s

c
h

e
d

u
le

0 1 2 3 4 5 6 7 8 9 10
0

20

40

S
ta

te
 v

a
ri
a

n
c
e

0 1 2 3 4 5 6 7 8 9 10

Time

0

1

2

C
o

s
t

Figure 5 Example 3: TRUETIME schedule simulation (top) and JITTERTIME analysis (middle and

bottom). The simulation shows that Task 3 (the controller) suffers from large jitter due to preemption.

0.05 0.1 0.15 0.2

Task period

0.15

0.2

0.25

0.3

0.35

C
o

n
tr

o
lle

r
c
o

s
t

U = 1 U = 0.78

Figure 6 Example 3: The smallest controller cost is achieved for T3 = 0.075, with a total utilization

close to 1. This is about 28% smaller than the cost for T3 = 0.195 (corresponding to U = 0.78).

(corresponding to U = 1). The curve looks a bit “noisy”, but this is due to the nonlinearity of the

scheduling algorithm: A small change in the period T3 can create a completely different schedule,

which in turn yields a different delay pattern (and hence cost) for the controller.

The code for the example consists of several different files for setting up the TRUETIME simu-

lation and is not listed here.

Command Reference

JITTERTIME consists of the seven commands listed below, plus the calcc2d helper function from

JITTERBUG.

14

4. Examples

jtAddContSys

Purpose

Add a continuous-time linear system to a JITTERTIME model.

Syntax

N = jtAddContSys(N,sysid,sys,inputid)

N = jtAddContSys(N,sysid,sys,inputid,Rc,Qc)

Description

The continuous-time system can be given in state-space, transfer-function, or zero-pole-gain

form. In state-space form, the system is described by

ẋ(t) = Ax(t)+Bu(t)+ vc(t)

y(t) =Cx(t)

where vc is a continuous-time white-noise process with zero mean and covariance function

E vc(t)v
T
c (s) = Rc δ (t − s)

The cost of the system is specified as

J =

∫ Tsim

0

[

x(t)

u(t)

]T

Qc

[

x(t)

u(t)

]

dt

where Qc is a positive semi-definite matrix.

Arguments

N The JITTERTIME model to add this continuous-time system to.

sysid A unique positive ID number for this system (pick any). Used when referred to from

other systems.

sys A strictly proper, delay-free continuous-time LTI system in state-space or transfer

function (or zpk) form. Internally, the system will be converted to state-space form.

inputid A vector of input system IDs. The outputs of the corresponding systems will be used as

inputs to this system. The number of inputs in this system must equal the total number of

outputs in the input systems. An empty vector (or zero) indicates that the system inputs

are unconnected.

Optional Arguments

Rc State (ss) or input (tf, zpk) noise intensity matrix (default = 0).

Qc Cost function weighting matrix (default = 0).

Return Values

N The JITTERTIME model which must be passed to all other functions.

See Also

jtAddResetDynamics

15

4. Examples

jtAddDiscSys

Purpose

Add a discrete-time linear system to a JITTERTIME model.

Syntax

N = jtAddDiscSys(N,sysid,sys,inputid)

N = jtAddDiscSys(N,sysid,sys,inputid,Rd,Qc)

Description

The discrete-time system can be given in state-space, transfer-function, or zero-pole-gain form.

In state-space form, the system is described by

x(t+k) = Ax(tk)+Bu(tk)+ v1(tk)

y(t+k) =Cx(tk)+Du(tk)+ v2(tk)

where v =

[

v1

v2

]

is a discrete-time white-noise process with zero mean and covariance

Rd = Ev(tk)v
T (tk)

Noise is added each time the system is executed. The cost of the system is specified in continuous

time as

J =

∫ Tsim

0

[

x(t)

y(t)

]T

Qc

[

x(t)

y(t)

]

dt

where Qc is a positive semi-definite matrix. Note that both x(t) and y(t) are constant between system

executions.

Arguments

N The JITTERTIME model to add this system to.

sysid A unique positive ID number for this system (pick any). Used when referred to from

other systems.

sys A discrete-time LTI system in state-space or transfer function (or zpk) form, or a

double/matrix (interpreted as a static gain transfer function). Internally, the system is

converted to state-space form, where the held outputs are treated as additional states.

inputid A vector of input system IDs. The outputs of the corresponding systems will be used as

inputs to this system. The number of inputs in this system must equal the total number of

outputs in the input systems. An empty vector (or zero) indicates that the system inputs

are unconnected.

Optional Arguments

R State (ss) or input (tf, zpk) noise intensity matrix (default = 0).

Qc Cost function weighting matrix (default = 0).

Return Values

N The JITTERTIME model which must be passed to all other functions.

Remark

For multiple-version systems, sys, inputid and R can be given as cell arrays (which must all

have the same length, or length 1). Only state-space systems are allowed for multiple-version sys-

tems.

16

4. Examples

jtAddResetDynamics

Purpose

Add reset dynamics to a previously defined continuous-time state-space system.

Syntax

N = jtAddResetDynamics(N,sysid,A)

N = jtAddResetDynamics(N,sysid,A,B,inputid)

Description

Reset dynamics is only supported for state-space systems. When jtResetSys is called at time

tk during simulation, the system state is momentarily updated as

x(t+k) = Ax(tk)+Bu(tk)

Arguments

N The JITTERTIME model to add this system to.

sysid The ID number of a previously defined continuous-time state-space system.

A The state update matrix of the reset dynamics.

Optional Arguments

B The input matrix for the reset dynamics (default = 0).

inputid A vector of system IDs. The outputs of the corresponding systems will be used as inputs

for the reset update. The number of columns in B must equal the total number of outputs

in the input systems.

Return Values

N The JITTERTIME model which must be passed to all other functions.

Remark

For multiple-version dynamics, A, B and inputid can be given as cell arrays (which must all

have the same length, or length 1).

See Also

jtAddContSys, jtResetSys

17

4. Examples

jtBeginPeriodicAnalysis, jtEndPeriodicAnalysis

Purpose

Perform a periodic steady-state analysis of the mean and covariance of a JITTERTIME system.

Syntax

N = jtBeginPeriodicAnalysis(N)

...

N = jtEndPeriodicAnalysis(N)

Description

This pair of functions can be used to calculate the steady-state periodic behavior of an infinitely

repeated timing scenario. Between jtBeginPeriodicAnalysis and jtEndPeriodicAnalysis,

any number of calls to the simulation commands jtPassTime, jtExecSys, jtResetSys and

jtStateDisturbance can be performed. The total effect of these commands on the mean and

covariance of the system is stored in the internal variables N.Atot, N.dtot and N.Rtot. Finding

a steady-state periodic solution means finding mp and Pp such that

mp = Atotmp + dtot

Pp = AtotPpAT
tot +Rtot

The calculation is only possible to perform if the total periodic dynamics Atot is asymptotically

stable, i.e., if it has all eigenvalues within the unit circle. If successful, the result is stored in the

variables N.mperiodic and N.Pperiodic.

18

4. Examples

jtCalcDynamics

Purpose

Calculate the total dynamics of a JITTERTIME system before simulation can start.

Syntax

N = jtCalcDynamics(N)

Description

This function should be called once all systems have been added to the model, before the sim-

ulation is started. It checks the interconnection of all subsystems and merges all the systems into a

large state space. Afterwards, the total continuous dynamics, noise, and cost are described by the

large matrices N.Ac, N.Rc, and N.Qc. For each discrete system N.sys{k}, a large discrete transition

matrix N.Ad and a large discrete noise matrix N.Rd are calculated. Finally, the initial state covariance

N.P and state mean value N.m are set to zero.

Return Values

N The JITTERTIME model which must be passed to all other functions.

19

4. Examples

jtExecSys

Purpose

Simulate the execution of a discrete-time system.

Syntax

N = jtExecSys(N,sysid)

N = jtExecSys(N,sysid,ver)

Description

Execute the discrete-time system with ID sysid, simulating the sampling of its inputs, calcula-

tion of a new state, and updating of its outputs. For multiple-version discrete systems, the version

number ver can be specified (default is 1). Internally, the following is executed, updating the mean

value and the covariance of the total system:

N.m = N.sys{sysid}.Ad{ver} * N.m;

N.P = N.sys{sysid}.Ad{ver} * N.P * N.sys{sysid}.Ad{ver}’ + N.sys{sysid}.Rd{ver};

The state update matrices Ad and discrete noise matrices Rd have already been calculated in

jtCalcDynamics.

Return Values

N The JITTERTIME model which must be passed to all other functions.

20

4. Examples

jtInit

Purpose

Initialize a new JITTERTIME model.

Syntax

N = jtInit()

Description

Initialize a new JITTERTIME model, creating a struct N for holding all system and simulation

data. Internally, the following variables are set to zero:

N.P = 0;

N.m = 0;

N.J = 0;

N.Tsim = 0;

Return Values

N The JITTERTIME model, which must be passed to all other functions.

21

4. Examples

jtPassTime, jtPassTimeUntil

Purpose

Simulate the passing of time, integrating the dynamics of all continuous-time systems.

Syntax

N = jtPassTime(N,T)

N = jtPassTimeUntil(N,time)

Description

All continuous-time systems are simulated, evolving their state covariance and mean value, and

accumulating cost. Internally, the continuous system matrices, noise and cost are sampled using T as

the timestep. The following is calculated in jtPassTime:

[A,R,Q,Qconst] = calcc2d(N.Ac,N.Rc,N.Qc,T); % Sample the model

N.J = N.J + trace(Q * N.P) + Qconst; % Acc. cost due to covariance

N.J = N.J + N.m’ * Q * N.m; % Acc. cost due to mean value

N.P = A * N.P * A’ + R; % Evolve state covariance

N.m = A * N.m; % Evolve state mean value

N.Tsim = N.Tsim + T; % Increase clock

In jtPassTimeUntil, T is first calculated as

T = time - N.Tsim;

Return Values

N The JITTERTIME model, which must be passed to all other functions.

22

4. Examples

jtResetSys

Purpose

Execute the reset dynamics of a continuous-time system.

Syntax

N = jtResetSys(N,sysid)

N = jtResetSys(N,sysid,ver)

Description

When called, the continuous system state of system sysid is momentarily updated as

x(t+k) = Ax(tk)+Bu(tk)

For multiple-version discrete systems, the reset dynamics number ver can be specified (default is

1). Internally, the reset works like a discrete-time system update, except that no noise is added. The

following code is executed to update the total system mean value and covariance:

N.m = N.sys{sysid}.Ad{ver} * N.m;

N.P = N.sys{sysid}.Ad{ver} * N.P * N.sys{sysid}.Ad{ver}’;

The state update matrices Ad have already been calculated in jtCalcDynamics.

Arguments

N The JITTERTIME model.

sysid The ID number of continuous-time system with reset dynamics.

Optional Arguments

B The input matrix for the reset dynamics (default = 0).

inputid A vector of system IDs. The outputs of the corresponding systems will be used as inputs

for the reset update. The number of columns in B must equal the total number of outputs

in the input systems.

Return Values

N The JITTERTIME model, which must be passed to all other functions.

See Also

jtAddContSys, jtAddResetDynamics

23

4. Examples

jtStateDisturbance

Purpose

Add a disturbance with given mean and variance to the state of a system during the simulation.

Syntax

N = jtStateDisturbance(N,sysid,m,P)

Description

The command can be called at any time after jtCalcDynamics to simulate an impulse distur-

bance acting on the state (for continuous-time state-space systems) or on the state and output (for

discrete-time state-space systems).

Arguments

N The JITTERTIME model.

sysid A system ID.

m The mean value of the disturbance vector. Must be of size n× 1 for continuous systems

and of size (n+ p)× 1 for discrete systems, where n is the number of states and p is the

number of outputs.

Optional Arguments

P The discrete variance of the disturbance vector (default = 0). Must be of size n× n for

continuous systems and of size (n+ p)× (n+ p) for discrete systems, where n is the

number of states and p is the number of outputs.

Return Values

N The JITTERTIME model which must be passed to all other functions.

Remark

Since the system is linear, the stochastic and deterministic disturbances can be analyzed inde-

pendently from each other.

24

