
Optimization for Learning - FRTN50
Assignment 3

Written by: Martin Morin, Mattias Fält

Latest update: October 18, 2019

Introduction
The topic of this hand-in is practical implementations. It will cover some of the
basic ideas for solving huge problems and the concept of automatic differenti-
ation/back-propagation. The SVM from the previous hand-in will be revisited
together with new neural network based problems.

When problem sizes grow the cost of evaluating gradients grows with it,
making gradient descent more and more expensive. Current research is therefore
directed towards making approximate gradient evaluations in order to make
each iterations cheaper. This is the idea behind coordinate gradient, stochastic
gradient, and their many variants. In this hand-in you will implement variants
of both.

Back-propagation can in part be contributed to the resurgence of neural net-
works and deep learning in recent years. However, the basic concept is not new
since back-propagation is nothing more than an automated way of calculating
gradients for neural networks. Calculating gradients by hand and implement-
ing specific gradients for every new neural network structure is time consuming
and error prone. Automatic differentiation (AD) solves this problem and effi-
cient AD implementations are an integral part of machine learning libraries like
TensorFlow, PyTorch and Flux.jl. To get a feel for what these libraries do, you
will implement a basic back-propagation algorithm for dense neural networks.

Acceleration
We will start with (Nesterov) acceleration. Acceleration is not necessarily re-
lated to large-scale problems or neural networks but is a useful trick that is
worth knowing since it can speed up convergence.

The idea is simple. Ordinary proximal gradient computes the next iterate
based only on the current iterate, completely forgetting the trajectory. However,
the trajectory can contain useful information about the function. Accelerated
methods (also called momentum methods) stores some information regarding
the previous iterates and extrapolate based on this information. There are a
couple different ways of doing this but here we choose the following

xk+ 1
2 = xk + βk(xk − xk−1)

xk+1 = proxγg(x
k+ 1

2 − γ∇f(xk+ 1
2))

1

with x−1 = x0. The sequence βk is here a design choice and several different
choices have been presented in literature.1 A simple choice is

βk =
k − 2

k + 1
(1)

while another common choice is

βk =
tk − 1

tk+1
, t0 = 1, tk+1 =

1 +
√
1 + 4(tk)2

2
. (2)

These two choices mainly differ in the first tens of iterations. If f is µ-strongly
convex the following choice can be made

βk =
1−√

µγ

1 +
√
µγ

. (3)

Task 1 For the SVM problem from the previous hand in, implement the ac-
celerated proximal gradient method above. Use the hyper-parameters that gave
the best performance in the previous hand-in.

Compare ordinary proximal gradient with (3) and one of (1) and (2). Use
the same initial point x0 and step size γ = 1

L for all methods, where L is the
smoothness-constant of f . For µ in (3) you could either calculate the strong-
convexity parameter directly or tune it until you get convergence.

Plot ‖xk − x?‖ where x? is the solution. Find x? by simply solving the
problem to extra high precision before generating your plot. Is the convergence
rate improved over the non-accelerated method? Comment on the behavior seen
in the plot.

Coordinate Gradient Descent
If the proximable-term, g, in the proximal gradient method is separable g(x) =∑n

i=1 gi((x)i) it is possible to perform coordinate-wise updates,

Sample i uniformly from {1, ..., n}
(xk+1)i = proxγigi((x

k)i − γi(∇f(xk))i)

(xk+1)j = (xk)j , ∀j 6= i

where xk ∈ Rn. Index i could be selected in a number of different ways but
here we will simply sample it uniformly and independently in each iteration.

In general, coordinate gradient requires more iterations to converge com-
pared to standard proximal gradient. However, if one coordinate of ∇f can be
computed a factor m cheaper compared to the full gradient, and the number of
iterations required are less than a factor m more, there is still a potential for a
real world speed up.

One such case where coordinate computation is cheap is when f is a quadratic,
f(x) = 1

2x
TQx+ qTx. One coordinate can be evaluated up to n times cheaper

than a full gradient. This can be seen from the expression of the gradient,

∇f(x) = Qx+ q = (Q1x+ (q)1, ..., Qnx+ (q)n)

1There are in some sense optimal choices but it is still useful to see this as a parameter to
tune for your specific problem.

2

where Qi is the i:th row of Q. More general assumptions for cheap coordinate
evaluations exist but for the purposes of this hand-in the quadratic is sufficient.

It is possible to use coordinate-wise step-sizes, γi, for coordinate gradient.
This allows the step-size to be adapted to the curvature/smoothness in each
direction instead of defining a step-size based on the global smoothness constant.
This can greatly reduce the number of iterations needed. For more information
about coordinate gradient we recommend studying exercises 5.14, 5.16, and
5.17.

Task 2 For the SVM problem from the previous hand in, implement the coor-
dinate proximal gradient method. Use the hyper-parameters that gave the best
performance in the previous hand-in.

Compare the coordinate method to the ordinary and accelerated proximal
gradient methods from Task 1. Use the same initial point x0 for all methods and
use the same algorithm-parameters for the ordinary and accelerated proximal
gradient as in Task 1. For coordinate gradient, compare both the coordinate-
wise step-size of γi = 1

Qii
and the uniform choice γi =

1
L from ordinary gradient

descent. Qii is here the i:th diagonal element of the Q matrix of the function f .
Plot ‖xk − x?‖ but for coordinate gradient scale the x-axis (iteration axis)

with 1
n to normalize the computational cost. Each iteration of coordinate gradi-

ent should be 1
n :th as expensive proximal gradient, so n iterations of coordinate

gradient should correspond to the actual computational effort compared to one
iteration of ordinary/accelerated proximal gradient.

Which method required the least amount of computational effort? Which
method required the least amount of iterations? Which was fastest in real time?
Can you comment on the similarities/differences between real time performance
and number of iterations needed? How fair is it to compare real time perfor-
mance? Can it be easily affected?

A few implementation notes.

• ProximalOperators.jl expects array inputs and returns array for most
functions. Even if the input/output is just a scalar it needs to be wrapped
in a one element vector.

• Be mindful of the code inside your update loop. Any operation involving
the full iterate, xk, is likely to add a considerate amount of computational
time to each iteration. This includes any type of logging, printing and
convergence checking. It is therefore advisable to only do this every 1000-
10000 iteration.

• The macro @time can be used to time a function call in Julia. For example
@time x = rand() will print the amount of time it took to generate a
random number and store it in x.

Neural Networks
This part of the hand-in is designed to give an understanding of how the training
of neural networks works. To do this, you should implement a neural network
and the training more or less from scratch.

3

When working with datasets that are very large, it is not practical to com-
pute the full gradient over all the data. It is therefore common to do training
over batches. This means that a gradient is computed over a random subset of
the data, and a stochastic gradient step is taken. To make the implementation
in this exercise easier, we will work with batches of size 1, i.e. we compute
the gradient with respect to one input data point and one output label, and
update the parameters in the network accordingly. This makes the variance of
the stochastic gradients larger, but greatly simplifies implementation.

You will be implementing back-propagation and the ADAM algorithm. The
ADAM algorithm is a version of stochastic gradient, where each parameter gets
individual step-lengths and extra care is taken to handle the variance of the
stochastic gradients.

The file backprop.jl will include an outline for most of the network and
training, but you will fill in some of the functions. Places where you are expected
to add code are marked with #+++.

Make sure to test that each part that you write works as expected. It is
much easier to detect errors this way than trying to debug the final result.

Remember to read the introduction to Julia document if you are unsure
about some of the concepts. In particular, it is important to understand the
section on References and in-place operations.

Model
We will implement a simple neural network consisting only of Dense layers of
the form

li(x) = σi(Wix+ bi)

where Wi ∈ Rmi×ni , bi ∈ Rmi and σi is some activation function that is applied
element-wise. The code is written so that it would be possible to implement
more types of layers, but for simplicity, these are not included in the hand-in.

For some input x ∈ Rn1 , the network n is defined as applying each layer to
the output of the previous layer

n(x) = lk(lk−1(...l2(l1(x))...))

where k is the number of layers.
To measure how well the model approximates some output y, we define a

cost function L(n(x), y) that penalize the error between the model output n(x)
and the true output y in some way. The training problem can the be formalized
as minimizing the total cost for all known data

min
(Wi,bi)∀i

∑
(x,y)∈D

L(n(x), y)

where D is the set of all known data. As stated before, when D is large,
computing the gradient w.r.t. Wi and bi of the full sum

∑
(x,y)∈D L(n(x), y)

is expensive. Instead a stochastic approach is used, one pair (x, y) is drawn
at random from D and backpropagation/gradient calculation is performed on
L(n(x), y).

4

Activation Functions
Start by defining a few activation functions. The definition of the sigmoid and
its derivative is already implemented.

1 sigmoid(x::Float64) = exp(x)/(1 + exp(x))

2

3 derivative(f::typeof(sigmoid), x::Float64) = sigmoid(x)*(1-sigmoid(x))

Note that the functions are defined for Float64, so to apply them to a vector
you need to use broadcasting

1 sigmoid(1.0) #0.7310...

2 sigmoid.([0.0, 1.0]) # [0.5, 0.7310]

The function derivative is defined so that the first argument is the function we
want to calculate the derivative of

1 # get derivative of sigmoid function at the point 0.0

2 derivative(sigmoid, 0.0) # 0.25

3 derivative(relu, 2.0) # 1.0

Implement the functions

relu(x) =

{
0 if x < 0

x if x ≥ 0
, leakyrelu(x) =

{
0.2x if x < 0

x if x ≥ 0

and functions to calculate the derivatives. Make sure to test that they work as
expected.

Dense Layer
The type Dense and a constructor has already been defined for you. The type
includes the matrix W , the vector b, the activation function σ as well as fields
for storing some intermediate values and the output of the layer. The latter two
will be needed later when we do back-propagation.

The constructor takes arguments for: the size of the output, size of input,
activation function, as well as some arguments that can be used to tune the
mean and variance of the initial random weights.

A function to evaluate a Dense layer (l::Dense)(z) has been defined, but
you will fill in the code. The definition is written so that it should be possible
to run

1 z = [1.0, 2.0]

2 l1 = Dense(3, 2, relu)

3 # Evaluate layer

4 l1(z) # vector of length 3

Make sure that your implementation stores the intermediary value Wz + b
in the field l.x and the final output in l.out.

5

Network
A network is defined as nothing more than a list of layers.

1 l1 = Dense(3, 2, relu) # 3 outputs, 2 inputs

2 l2 = Dense(1, 3, relu) # 1 output, 3 inputs

3 n = Network([l1, l2]) # 1 output, 2 inputs

Fill in the function (n::Network)(z) so that it computes the result of apply-
ing each layer to the previous output.

1 z = [1.0, 2.0]

2 out = n(z) # Should return a vector of length 1 for the example above

Make sure to verify that each Dense layer saved their intermediary values x

and out and that they are correct.

Back-Propagation of a Layer
You are now ready to start implementing the back-propagation.

To optimize over the variables Wi and bi we need to be able to compute
the derivative of the cost with respect them. Wi and bi will change at every
iteration in the training, but to simplify notation, we will not explicitly write
iteration indices and we do not explicitly write that L(ŷ, y) and ŷ := n(x) are
functions of these variables.

The derivatives of the cost L with respect to the elements in Wi and bi are
given by the Jacobians ∂L

∂Wi
and the gradients ∇biL. The Jacobian is defined for

each element j, k as (∂L
∂Wi

)j,k := ∂L
∂(Wi)j,k

, and the gradient is a column vector
defined as (∇biL)j :=

∂J
∂(bi)j

. 2

If we are able to compute these derivatives, it is possible to optimize over
them, for example with gradient steps:

Wi − γ
∂L

∂Wi

bi − γ∇biL

The calculation of these derivatives, known as back-propagation, can be
summarized as follows:

Define δk+1 := ∂L
∂ŷ and

zi+1 := σi(Wizi + bi)

z̄i := Wizi + bi

δi := WT
i (δi+1 � σ

′

i(z̄i)),

2The Jacobian and the gradient are the same thing in the sense that they both are collec-
tions of all first partial derivatives. Different conventions exist for both and the choice between
them is based on notational convenience.

6

for i = 1, ..., k, where � is element-wise multiplication.
Using the chain rule we get the following property

∂L

∂zi
= δTi ,

and

∂L

∂Wi
= δTi+1

∂zi+1

∂Wi
=

(
δi+1 � σ

′

i(z̄i)
)
zTi

∂L

∂bi
=

(
δi+1 � σ

′

i(z̄i)
)T

i.e.

∇biL =
(
δi+1 � σ

′

i(z̄i)
)

∂L

∂Wi
= (∇biL)z

T
i

δi = (WT
i δi+1)� σ

′

i(z̄i) = WT
i (∇biL)

We now see that it is possible to calculate the gradient and Jacobian as well as
the new δi if we have access to δi+1 from the next layer, the derivative of the
activation function σi, the intermediary value z̄i, as well as Wi and bi.

Now implement the function backprop!(l::Dense, δnext, zin) so that it
computes and stores the values ∇b, ∂W and δ (corresponding to ∇biL, ∂L

∂Wi
,

δi) in the layer, and returns δ.
It is again important that you test that your implementation is correct.

We can do this by making small adjustments to the variables and see if the
derivatives seem to be correct. For example, you can test that δ is computed
correctly using:

1 l = Dense(1, 3, sigmoid) # 1 output, 3 inputs

2 z1 = [1.0, 2.0, 3.0]

3 out1 = copy(l(z1)) # Vector with 1 number, make a copy so next call won't

overwrite the old result↪→

4

5 # Derivative of output with respect to itself

6 δnext = [1.0]

7 # Calculate gradients

8 δ = backprop!(l, δnext, z1)

9

10 # Try with a slightly different input in second input

11 z2 = [1.0, 2.0 + 0.0001, 3.0]

12 out2 = copy(l(z2))

13

14 (out2-out1)./0.0001 # Should be roughly the same as δ[2]

And for the stored gradients:

1 l = Dense(2, 3, sigmoid) # 2 output, 3 inputs

2 z1 = [1.0, 2.0, 3.0]

7

3 out1 = copy(l(z1))

4

5 # Derivative of second output with respect to itself

6 δnext = [0.0, 1.0]

7 backprop!(l, δnext, z1)

8

9 δW = copy(l.∂W) # The first row should be zero, it doesn't affect second output

10

11 # Make a small change to l.W

12 l.W[2,3] += 0.0001

13 # Run with the same input

14 out2 = copy(l(z1))

15

16 # Second element here

17 (out2-out1)./0.0001

18 # should be roughly the same as

19 δW[2,3]

Back-Propagation of the Network
We now want to do the back-propagation through the whole network using the
function we already defined for a layer. Fill in the missing lines in backprop!(n::Network,

input, ∂J∂y). Note that the input to each layer is saved as the output in the
previous layer.

Make sure to test the code again. The easiest way is to define a Network

with one output and setting ∂J∂y=[1.0]. Each layer can be accessed using
n.layers[i]. Make a small adjustment to one of the W or b and see that the
output changes according to ∂W or ∇b when called with the same input.

Loss Function
You have now implemented code to evaluate a network and calculate gradients
of the output with respect to its parameters. A function for retrieving all the
parameters and gradients is already implemented for you. To be able to train
the network we need a loss function that evaluates how well the network is doing
in approximating some wanted output y. A simple least squares penalty has
been implemented for you

1 sumsquares(yhat,y) = norm(yhat-y)^2

2 derivative(::typeof(sumsquares), yhat, y) = yhat - y

which also includes the code for calculating the derivative of the loss with respect
to the output of the network ŷ: ∂L(ŷ, y)/∂ŷ

Training - Stochastic Gradient
All the pieces for training a network is now in place. A simple stochastic gradient
step could now be implemented as

8

1 function gradientstep!(n, lossfunc, x, y)

2 out = n(x)

3 # Calculate (∂L/∂out)ᵀ

4 ∇L = derivative(lossfunc, out, y)

5 # Backward pass over network

6 backprop!(n, x, ∇L)

7 # Get list of all parameters and gradients

8 parameters, gradients = getparams(n)

9 # For each parameter, take gradient step

10 for i = 1:length(parameters)

11 p = parameters[i]

12 g = gradients[i]

13 # Update this parameter with a small step in negative gradient

direction↪→

14 p .= p .- 0.001.*g

15 # The parameter p is either a W, or b so we broadcast to update all the

elements↪→

16 end

17 end

where x is some input vector and y is the desired output vector. Try this
function with some random network to see if it improves it in the right direction

1 # Define a network with 1 input and 1 output

2 n = Network([Dense(3, 1, sigmoid), Dense(1, 3, sigmoid)])

3 x = randn(1)

4 y = [1.0] # We want the output to be 1

5

6 n(x) # This is probably not close to 1

7

8 gradientstep!(n, sumsquares, x, y)

9

10 n(x) # Now it is hopefully be slightly closer to 1

However, standard stochastic gradient descent can be quite slow, so instead
you will use the ADAM method.

ADAM
The ADAM algorithm is a common choice in deep-learning. It is similar to the
stochastic gradient method, but instead of taking a step in the direction of the
stochastic gradient, it takes a step in the direction of a weighted average of the
previous gradients. It also weights each step based on the weighted variance of
previous gradients.

For each parameter p and time step t in the network, the ADAM algorithm

9

does the following update

mt = β1mt−1 + (1− β1)∇pt−1

m̂t =
mt

1− (β1)
t

vt = β2vt−1 + (1− β2) (∇pt−1)
2

v̂t =
vt

1− (β2)
t

pt = pt−1 − γ
m̂t√
v̂t + ε

where γ > 0, β1 ∈ [0, 1), β2 ∈ [0, 1), ε > 0 are parameters and ∇pt−1 is
the computed gradient of parameter p at time t − 1 (i.e. when the parameters
were pt−1). The variables m and v are estimations of mean and variance of the
gradients for each parameter, and m̂, v̂ are bias corrected versions of those.

A structure called ADAMTrainer has been created for you that stores all of
these values for each parameter. It also keeps track of all the parameters and
gradients in the network. Note that p = params[i] in the code is a reference to
one of the matrices/vectors W or b, and not a single element in these matrices.
The ADAM algorithm above therefore needs to be applied element-wise to p.

For example, the field ms is a vector, so that ms[i] can contain the ma-
trix/vector mt that corresponds to params[i]. Similarly, mhs[i] should contain
the m̂t corresponding to params[i].

The constructor for the ADAMTrainer is already written. It creates all the
necessary vectors and matrices to keep track of the variables. You should now
complete the implementation of update!(At::ADAMTrainer) so that it updates
the parameters according to the equations above.

Training - ADAM
The last part of the implementation is the function that will do the training.
Finish the implementation of the function train!(n, alg, xs, ys, lossfunc)

that accepts a network n, an algorithm (ADAMTrainer), a list of input data points
xs, a list of corresponding true outputs ys and a loss-function lossfunc. For
each input/output it should run the network, calculate the gradients and call
the algorithm to update the parameters.

Remember that you are now doing non-convex optimization, and you may
therefore get stuck in a local minimum. If the network performance seems to
be too bad, try to redefine the network (which randomizes the initial weights),
and re-run the training.

Task 3 We now want to train the network to approximate some function f .
To make sure that everything works as expected, run the ### Task 3 code in
backprop.jl to make sure that the pre-defined network can approximate the
function f(x) = min(‖x‖22 , 3). Training over all the data 100 times should
result in an average loss of less than 0.001. Plot the result and make sure it
looks reasonable. Compare average loss on training data and the test data, how
do they compare? If you continue training, how do these values change?

With 2000 data-points and a decently optimized network, one pass over the
data-set takes roughly 0.2s on a 3.6GHz processor and allocates less than 20MiB

10

of data, as reported by @time. If your code is many times slower, you might
consider optimizing the code, for example using in-place operations.

Task 4 Add noise to the training data using the following line

1 ys = [fsol(xi).+ 0.1.*randn(1) for xi in xs]

and retrain the network.
Remember to redefine the layers, network and ADAMTrainer so that you

start from scratch. What error do you get on the training vs test data now?
Explain the differences and what they mean.

Task 5 Decrease the number of points in the training data from 2000 to 30,
and redo Task 4. Since we have less data you have to increase the number of
times you train over the data significantly. How do the results change compared
to Task 4?

Task 6 Change back to 2000 data-points in the training set. We now want to
approximate f(x) = min(0.5 sin(‖x‖22), 0.5) with x ∈ R2. Modify the network so
that the first layer has 2 inputs and update the data generation accordingly. We
again want to train the network with 2000 data-points uniformly in [−4, 4] ×
[−4, 4], without noise. What is the lowest error you are able to get without
changing the network structure? Report the number of iterations you used.
What happens if you resume the training with a lower learning rate γ = 10−5

instead of 10−4? Why?

Task 7 Reset the learning rate to 10−4. Make a quick try to redo the training
with relu instead of leakyrelu as activation functions. What happens? Give
some plausible explanation.

Submission
See the latest version of the course program for instruction on how to submit
the assignment. Your submission should contain the following.

• Your code with your implementation from Task 1 and 2.

• The backprop.jl file with full implementation of the network and training.

• A single pdf containing the following:

– A couple of paragraphs describing/commenting on your findings for
each of the Tasks 1-7.

Use plots, figures and tables to motivate your answers when possible.

11

