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In this short note, we prove the following duality correspondence.
Theorem 1 The following are equivalent for f : R™ — RU {oo}.
(i) f is proper closed and o-strongly convex
(i) Of : R™ — 28" is mazimally monotone and o-strongly monotone
(i1i) Vf*: R™ — R"™ is o-cocoercive
(iv) Vf* is %—Lz’pschitz continuous and mazimally monotone
(v) [*:R™ = R is closed convex and satisfies descent lemma (is L-smooth)

The implication (iv) = (i4¢) is called the Baillon-Haddad theorem.
We will make use of the following results.

Proposition 1 (Rockafellar) The function f:R™ — RU{oo} is proper closed and convex
if and only if Of : R™ — 28" is mazimally monotone.

Proposition 2 (Minty) The subdifferential f : R — 28" is mazimally monotone if and
only if ran(al + 9f) = R™ for any a > 0.

Proposition 3 Suppose that f is proper closed and convex. Then (Of)~ = of*.

Proof. (i) & (ii): (i) is equivalent to that g(z) = f(x) — %||z||3 is proper closed and
convex and Proposition 1 implies its equivalence to that dg = o(f — |- ||3) = 8f — ol is
maximally monotone (where the last equality can trivially be shown to hold). This, in turn,
is equivalent to that df is maximally monotone and o-strongly monontone.

(i4) < (i4d): (i1) is equivalent to that dg = df — ol is maximally monotone. The
monotonicity part is equivalent to
I
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for all (z, s,) € gphdf and (y, s,) € gphdf or equivalently (Proposition 3) for all z € 0f*(s,)
and y € 0f*(sy). Since Cauchy-Schwarz implies that 0f* is singlevalued on its domain
(D =randf), it is equivlent to that

(50 = 59) T (V" (52) = V[ (s)) 2 0llVF*(50) = VF*(59)13 (1)

where Vf*: D — R"™ where D = randf.

The maximally part is (by Proposition 2) equivalent to that ran(al 4+ dg) = R™ for any
a > 0. Now set o« = o to get ran(ol + 90f —ol) =ran(df) = D = R™.

Hence maximal monotonicity of g = f — | - ||3 is equivalent to that Vf* : R — R"
satisfies (1), i.e., is o-cocoercive.

(#3i) = (iv): Cauchy-Schwarz and nonnegativity of norms give that cocoercivity (1)
implies monotonicity and %—Lipschitz continuity of V f*. Further, since f* is proper closed
convex (by contruction of conjugate functions) V f* is maximally monotone (Proposition 1).

(tv) = (v): Let h(7) = f*(x + 7(y — x)), then by chain rule Vi(r) = Vf*(z + 7(y —
) (y — 7) and

() — £*(2) = h(1) — h(0) = /  Vh(r)dr - / V=) - a)dr



Further
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Adding equalities on previous slide and taking absolute value:

[f*(y) = f(2) = Vf*(2)" (y — )|
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Rearranging gives
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Now, since f* is closed convex, the second condition is redundant and f* satisfies
@) = @) = V@ (y—a) < Glly -«
) = @)+ VI (@) (y - o)

(v) = (iii): Define ¢(y) = f*(y) — Vf*(x)Ty, which is also L-smooth (w.r.t. y) and
convex with gradient: Vo(y) = Vf*(y) — Vf*(z). A minimizing point is x since ¢ convex
and V¢(z) = 0. Therefore, and since ¢ is smooth and the descent lemma holds, and we can
conclude:

p(x) < oy —oVo(y)) < dy) + Vo) (y — oVe(y) —y) + 5 lly — oVo(y) — yl3
= o(y) — 3IIVo)l3

Inserting the defintion of ¢ gives:
Fi@) = V@) e < fy) = V(@) Ty = SIVF(y) — V(@)
and after rearrangement
F @)+ V@) (y— o)+ §IVF ) = V@5 < £ @)
This inequality holds for arbitrary =,y € R™. We add two copies with z,y swapped to get

(V@) =V W) (y—=2) 2 allVF(y) = V()3

which is the definition of cocoercivity in (). O



