Strong Convexity and Smoothness Duality

Pontus Giselsson

In this short note, we prove the following duality correspondence.

Theorem 1 The following are equivalent for $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$.

- (i) f is proper closed and σ -strongly convex
- (ii) $\partial f : \mathbb{R}^n \to 2^{\mathbb{R}^n}$ is maximally monotone and σ -strongly monotone
- (iii) $\nabla f^* : \mathbb{R}^n \to \mathbb{R}^n$ is σ -cocoercive
- (iv) ∇f^* is $\frac{1}{\sigma}$ -Lipschitz continuous and maximally monotone
- (v) $f^*: \mathbb{R}^n \to \mathbb{R}$ is closed convex and satisfies descent lemma (is $\frac{1}{\sigma}$ -smooth)
- The implication $(iv) \Rightarrow (iii)$ is called the Baillon-Haddad theorem. We will make use of the following results.

Proposition 1 (Rockafellar) The function $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is proper closed and convex if and only if $\partial f : \mathbb{R}^n \to 2^{\mathbb{R}^n}$ is maximally monotone.

Proposition 2 (Minty) The subdifferential $\partial f : \mathbb{R}^n \to 2^{\mathbb{R}^n}$ is maximally monotone if and only if $\operatorname{ran}(\alpha I + \partial f) = \mathbb{R}^n$ for any $\alpha > 0$.

Proposition 3 Suppose that f is proper closed and convex. Then $(\partial f)^{-1} = \partial f^*$.

Proof. (i) \Leftrightarrow (ii): (i) is equivalent to that $g(x) = f(x) - \frac{\sigma}{2} ||x||_2^2$ is proper closed and convex and Proposition 1 implies its equivalence to that $\partial g = \partial (f - \frac{\sigma}{2} || \cdot ||_2^2) = \partial f - \sigma I$ is maximally monotone (where the last equality can trivially be shown to hold). This, in turn, is equivalent to that ∂f is maximally monotone and σ -strongly monotone.

 $(ii) \Leftrightarrow (iii)$: (ii) is equivalent to that $\partial g = \partial f - \sigma I$ is maximally monotone. The monotonicity part is equivalent to

$$(s_x - s_y)^T (x - y) \ge \sigma ||x - y||_2^2$$

for all $(x, s_x) \in \text{gph}\partial f$ and $(y, s_y) \in \text{gph}\partial f$ or equivalently (Proposition 3) for all $x \in \partial f^*(s_x)$ and $y \in \partial f^*(s_y)$. Since Cauchy-Schwarz implies that ∂f^* is singlevalued on its domain $(D = \operatorname{ran} \partial f)$, it is equivlent to that

$$(s_x - s_y)^T (\nabla f^*(s_x) - \nabla f^*(s_y)) \ge \sigma \|\nabla f^*(s_x) - \nabla f^*(s_y)\|_2^2$$
(1)

where $\nabla f^* : D \to \mathbb{R}^n$ where $D = \operatorname{ran} \partial f$.

The maximally part is (by Proposition 2) equivalent to that $\operatorname{ran}(\alpha I + \partial g) = \mathbb{R}^n$ for any $\alpha > 0$. Now set $\alpha = \sigma$ to get $\operatorname{ran}(\sigma I + \partial f - \sigma I) = \operatorname{ran}(\partial f) = D = \mathbb{R}^n$.

Hence maximal monotonicity of $g = f - \frac{\sigma}{2} \| \cdot \|_2^2$ is equivalent to that $\nabla f^* : \mathbb{R}^n \to \mathbb{R}^n$ satisfies (1), i.e., is σ -cocoercive.

 $(iii) \Rightarrow (iv)$: Cauchy-Schwarz and nonnegativity of norms give that cocoercivity (1) implies monotonicity and $\frac{1}{\sigma}$ -Lipschitz continuity of ∇f^* . Further, since f^* is proper closed convex (by contruction of conjugate functions) ∇f^* is maximally monotone (Proposition 1).

 $(iv) \Rightarrow (v)$: Let $h(\tau) = f^*(x + \tau(y - x))$, then by chain rule $\nabla h(\tau) = \nabla f^*(x + \tau(y - x))^T(y - x)$ and

$$f^*(y) - f^*(x) = h(1) - h(0) = \int_{\tau=0}^1 \nabla h(\tau) \, d\tau = \int_{\tau=0}^1 \nabla f^*(x + \tau(y - x))^T (y - x) \, d\tau.$$

Further

$$\nabla f^*(x)^T (y - x) = \int_{\tau=0}^1 \nabla f^*(x)^T (y - x) \, d\tau$$

Adding equalities on previous slide and taking absolute value:

$$\begin{split} |f^*(y) - f^*(x) - \nabla f^*(x)^T (y - x)| \\ &= |\int_{\tau=0}^1 (\nabla f^*(x + \tau(y - x)) - \nabla f^*(x))^T (y - x) \, d\tau| \\ &\leq \int_{\tau=0}^1 |(\nabla f^*(x + \tau(y - x)) - \nabla f^*(x))^T (y - x)| \, d\tau \\ &\leq \int_{\tau=0}^1 \|\nabla f^*(x + \tau(y - x)) - \nabla f^*(x)\| \|y - x\| \, d\tau \\ &\leq \int_{\tau=0}^1 \beta \|\tau(y - x)\| \|y - x\| \, d\tau = \beta \|y - x\|^2 \int_{\tau=0}^1 \tau \, d\tau \\ &= \frac{\beta}{2} \|y - x\|^2 \end{split}$$

Rearranging gives

$$f^{*}(y) - f^{*}(x) - \nabla f^{*}(x)^{T}(y - x) \leq \frac{\beta}{2} \|y - x\|^{2}$$

$$f^{*}(y) - f^{*}(x) - \nabla f^{*}(x)^{T}(y - x) \geq -\frac{\beta}{2} \|y - x\|^{2}$$

Now, since f^* is closed convex, the second condition is redundant and f^* satisfies

$$f^{*}(y) - f^{*}(x) - \nabla f^{*}(x)^{T}(y - x) \leq \frac{\beta}{2} ||y - x||^{2}$$

$$f^{*}(y) \geq f^{*}(x) + \nabla f^{*}(x)^{T}(y - x)$$

 $(v) \Rightarrow (iii)$: Define $\phi(y) = f^*(y) - \nabla f^*(x)^T y$, which is also $\frac{1}{\sigma}$ -smooth (w.r.t. y) and convex with gradient: $\nabla \phi(y) = \nabla f^*(y) - \nabla f^*(x)$. A minimizing point is x since ϕ convex and $\nabla \phi(x) = 0$. Therefore, and since ϕ is smooth and the descent lemma holds, and we can conclude:

$$\begin{split} \phi(x) &\leq \phi(y - \sigma \nabla \phi(y)) \leq \phi(y) + \nabla \phi(y)^T (y - \sigma \nabla \phi(y) - y) + \frac{1}{2\sigma} \|y - \sigma \nabla \phi(y) - y\|_2^2 \\ &= \phi(y) - \frac{\sigma}{2} \|\nabla \phi(y)\|_2^2 \end{split}$$

Inserting the definition of ϕ gives:

$$f^*(x) - \nabla f^*(x)^T x \le f^*(y) - \nabla f^*(x)^T y - \frac{\sigma}{2} \|\nabla f^*(y) - \nabla f^*(x)\|_2^2$$

and after rearrangement

$$f^*(x) + \nabla f^*(x)^T(y - x) + \frac{\sigma}{2} \|\nabla f^*(y) - \nabla f^*(x)\|_2^2 \le f^*(y).$$

This inequality holds for arbitrary $x, y \in \mathbb{R}^n$. We add two copies with x, y swapped to get

$$(\nabla f^*(x)^T - \nabla f^*(y))^T (y - x) \ge \sigma \|\nabla f^*(y) - \nabla f^*(x)\|_2^2,$$

which is the definition of cocoercivity in (iii).