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In this short note, we prove the following duality correspondence.

Theorem 1 The following are equivalent for f : Rn → R ∪ {∞}.

(i) f is proper closed and σ-strongly convex

(ii) ∂f : Rn → 2R
n

is maximally monotone and σ-strongly monotone

(iii) ∇f∗ : Rn → Rn is σ-cocoercive

(iv) ∇f∗ is 1
σ -Lipschitz continuous and maximally monotone

(v) f∗ : Rn → R is closed convex and satisfies descent lemma (is 1
σ -smooth)

The implication (iv)⇒ (iii) is called the Baillon-Haddad theorem.
We will make use of the following results.

Proposition 1 (Rockafellar) The function f : Rn → R∪{∞} is proper closed and convex
if and only if ∂f : Rn → 2R

n

is maximally monotone.

Proposition 2 (Minty) The subdifferential ∂f : Rn → 2R
n

is maximally monotone if and
only if ran(αI + ∂f) = Rn for any α > 0.

Proposition 3 Suppose that f is proper closed and convex. Then (∂f)−1 = ∂f∗.

Proof. (i) ⇔ (ii): (i) is equivalent to that g(x) = f(x) − σ
2 ‖x‖

2
2 is proper closed and

convex and Proposition 1 implies its equivalence to that ∂g = ∂(f − σ
2 ‖ · ‖

2
2) = ∂f − σI is

maximally monotone (where the last equality can trivially be shown to hold). This, in turn,
is equivalent to that ∂f is maximally monotone and σ-strongly monontone.

(ii) ⇔ (iii): (ii) is equivalent to that ∂g = ∂f − σI is maximally monotone. The
monotonicity part is equivalent to

(sx − sy)T (x− y) ≥ σ‖x− y‖22

for all (x, sx) ∈ gph∂f and (y, sy) ∈ gph∂f or equivalently (Proposition 3) for all x ∈ ∂f∗(sx)
and y ∈ ∂f∗(sy). Since Cauchy-Schwarz implies that ∂f∗ is singlevalued on its domain
(D = ran ∂f), it is equivlent to that

(sx − sy)T (∇f∗(sx)−∇f∗(sy)) ≥ σ‖∇f∗(sx)−∇f∗(sy)‖22 (1)

where ∇f∗ : D → Rn where D = ran∂f .
The maximally part is (by Proposition 2) equivalent to that ran(αI + ∂g) = Rn for any

α > 0. Now set α = σ to get ran(σI + ∂f − σI) = ran(∂f) = D = Rn.
Hence maximal monotonicity of g = f − σ

2 ‖ · ‖
2
2 is equivalent to that ∇f∗ : Rn → Rn

satisfies (1), i.e., is σ-cocoercive.
(iii) ⇒ (iv): Cauchy-Schwarz and nonnegativity of norms give that cocoercivity (1)

implies monotonicity and 1
σ -Lipschitz continuity of ∇f∗. Further, since f∗ is proper closed

convex (by contruction of conjugate functions) ∇f∗ is maximally monotone (Proposition 1).
(iv) ⇒ (v): Let h(τ) = f∗(x + τ(y − x)), then by chain rule ∇h(τ) = ∇f∗(x + τ(y −

x))T (y − x) and

f∗(y)− f∗(x) = h(1)− h(0) =

∫ 1

τ=0

∇h(τ) dτ =

∫ 1

τ=0

∇f∗(x+ τ(y − x))T (y − x) dτ.
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Further

∇f∗(x)T (y − x) =

∫ 1

τ=0

∇f∗(x)T (y − x) dτ

Adding equalities on previous slide and taking absolute value:

|f∗(y)− f∗(x)−∇f∗(x)T (y − x)|

= |
∫ 1

τ=0

(∇f∗(x+ τ(y − x))−∇f∗(x))T (y − x) dτ |

≤
∫ 1

τ=0

|(∇f∗(x+ τ(y − x))−∇f∗(x))T (y − x)| dτ

≤
∫ 1

τ=0

‖∇f∗(x+ τ(y − x))−∇f∗(x)‖‖y − x‖ dτ

≤
∫ 1

τ=0

β‖τ(y − x)‖‖y − x‖ dτ = β‖y − x‖2
∫ 1

τ=0

τ dτ

= β
2 ‖y − x‖

2

Rearranging gives

f∗(y)− f∗(x)−∇f∗(x)T (y − x) ≤ β
2 ‖y − x‖

2

f∗(y)− f∗(x)−∇f∗(x)T (y − x) ≥ −β2 ‖y − x‖
2.

Now, since f∗ is closed convex, the second condition is redundant and f∗ satisfies

f∗(y)− f∗(x)−∇f∗(x)T (y − x) ≤ β
2 ‖y − x‖

2

f∗(y) ≥ f∗(x) +∇f∗(x)T (y − x)

(v) ⇒ (iii): Define φ(y) = f∗(y) − ∇f∗(x)T y, which is also 1
σ -smooth (w.r.t. y) and

convex with gradient: ∇φ(y) = ∇f∗(y) −∇f∗(x). A minimizing point is x since φ convex
and ∇φ(x) = 0. Therefore, and since φ is smooth and the descent lemma holds, and we can
conclude:

φ(x) ≤ φ(y − σ∇φ(y)) ≤ φ(y) +∇φ(y)T (y − σ∇φ(y)− y) + 1
2σ‖y − σ∇φ(y)− y‖22

= φ(y)− σ
2 ‖∇φ(y)‖22

Inserting the defintion of φ gives:

f∗(x)−∇f∗(x)Tx ≤ f∗(y)−∇f∗(x)T y − σ
2 ‖∇f

∗(y)−∇f∗(x)‖22

and after rearrangement

f∗(x) +∇f∗(x)T (y − x) + σ
2 ‖∇f

∗(y)−∇f∗(x)‖22 ≤ f∗(y).

This inequality holds for arbitrary x, y ∈ Rn. We add two copies with x, y swapped to get

(∇f∗(x)T −∇f∗(y))T (y − x) ≥ σ‖∇f∗(y)−∇f∗(x)‖22,

which is the definition of cocoercivity in (iii). �
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