Coordinate and stochastic variations
early termination, rates, acceleration
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Learning goals

Understand scaling in coordinate gradient method

Know adaptive scaling variations of SGD (Adagrad, Adam)
Know Polyak-Ruppert averaging

Know about implicit regularization in GD and SGD

Know that early termination can be regularization

Know about different rates and what algorithms achieve
Know about the accelerated proximal gradient method



Coordinate Descent
Scaling



Scaled coordinate descent

In coordinate descent, used the following model of the smooth f:
for(y) = f(@") + V(@) (y — 2") + 5|y — 23

We can instead use scaled model with fixed norm || - ||
for(y) = Fa") + V") (y = 2") + g lly — 2" (1

We still assume g(z) = Y7, g;(z;) is separable
Convergence analysis goes through identically in this setting



The algorithm — Single coordinate case

® Recall the coordinate-selection set
Cjz :{yER":yl = foralll;ﬁ]}

i.e., y; = a; for all coordinates [ # j, only y; is free
® The coordinate update with new model is, select j at random and:

e = argmin(f(«*) + Vf(2")" (y — ") + 5 lly — 2" 7 + 9(y) + togk (1)

= argmin (f(z") + V/(=")" (y — 2") + 2 |ly — 2" % + 9(»))

vj u=af

= argmin (Vf(@")] (y; = 5) + 55 Hyi (s = 25)° + 95(0))
Yj Y11=

= argmin (g;(y;) + 522 |y; — (25 — a5 Vi), )12)
vj yi=zf

prox v, (zf — %Vf(xk)j) for coordinate j
— Hj; 9j 3

zy for all coordinates [ # j
where H;; is j:th diagonal element of H

® Only difference to nominal method: divide step v, by Hj;

® Same iteration cost as nominal method (unlike gradient method)



Example — A quadratic

Assume f(z) = 22T Hxz with H positive definite (can add h”z)
Let in addition v, = 1, then (as we have seen)

forly) = F(@®) + V(@) (y — %)+ Ly — 2"} = Fy)

Coordinate descent with this model and quadratic f therefore is

2" = argmin(f(y) + g(y) + tos (y)) = argmin(f(y) + g(y))

v yj i =ap

that is, optimize problem itself w.r.t. randomly chosen variable!
Implement as

(zf — =V f(a*);) for coordinate j

TOX Yk
prox_ye Hj;

okt — ) H,; 9 W)
x for all coordinates [ # j

Very efficient algorithm in this setting, e.g., dual SVM
Can be used in subroutine in Newton proximal gradient method



Coordinate descent — Example

® Coordinate descent on -smooth quadratic problem

1w [0l —01] =
minimize 3 | 01 1 .

® Step-size ¥ = 5 and norm | - [|5 in model
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Better model — Coordinate minimization

® Coordinate descent on B-smooth quadratic problem

1w [0l —01] =
minimize 3 | 01 1 .

® Step-size v =1 and norm || - ||z in model
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Better model — Coordinate minimization

® Coordinate descent on B-smooth quadratic problem

1w [0l —01] =
minimize 3 | 01 1 .

® Step-size v =1 and norm || - ||z in model



Numerical example

® | east squares example from previous lecture
® Compares: gradient, coordinate, and scaled coordinate descent
® 1 axis normalized for fair comparison, y-axis is function value

GD

cD
CD Diagonal

jo10 |-
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Stochastic Gradient Descent

Scaling and Implicit Regularization

10



Adaptive diagonal scaling

Diagonal scaling gives one step-size (learning rate) per variable
Can be seen as SGD with diagonal metric Hy,

A few methods exists that adaptively select individual step sizes

® Adagrad
® RMSProp
Adam
Adamax
Adadelta

Among these, Adagrad was first but Adam most popular

Sometimes improve convergence compared to SGD
Currently believed to generalize worse than SGD
Will motivate Adagrad and show how Adam differs

11



Adagrad

® Adaptive methods solve problems
minimize f(x)

® Adagrad: Select step-size v > 0 and iterate:

1. g" is subgradient or stochastic (sub)gradient of f at zy

2. Choose metric Hy

® setsp =31 4(g")?
® set hy =€l + /s
® set Hy =+~ ! diag(hs)

3. Tpy1 = Tk — H,:lgk =zK — vgk./ (€1 + /Sk)
where € > 0 is for numerical stability

® Adaptive and individual step size for each coordinate:

~
€e++/Sk

12



Motivation for Adagrad

® Objective is adaptive diagonal scaling for improved convergence
® Adagrad: different analyses in different settings (all convex):

® convergence rate in stochastic gradient descent
® regret bound in online learning setting (in paper)
® convergence rate in deterministic subgradient setting

® Convergence rate in subgradient setting with diagonal Hy > 0 is:

k
min (f(ar) = [*) < 55 (Z g3, + R? tr(Hk)>

T 1=1

where
® ¢! € Of(z;) are subgradients (not nonsmooth functions!)
® R is radius of ball containing iterates
® f* is optimal value

13



Motivation for Adagrad

® Let gj'* = (gj,...,g¥) be vector of historical j:th coordinates g/
® |dea: Choose Hj = diag(hy) to minimize bound in hindsight:

® Fix tr(Hi) = |hx|l1 = ck to control second term in bound
® QOptimize first term with H; = H for all [ and set Hy = H:

k
Hj, = argmin (Z g7+ + L{Ck.,}(tr(H)))

k=1
_ 1:k 1:k
= e ot T2 diag(llgr " ll2:-- - 19" ]12)
® Select cx = v 1| (lgF* ]2, - - -5 [|g*]2) |2 for some v > 0 to have
Hy, =~ " diag(|lgi* 2, -, [lgn"l2)

® |ntuition:

® Reduce step size for coordinates with many steep (large) gradients
® Increase step size for coordinates with many flat (small) gradients

14



Adagrad — Convergence

It can be shown that YF_, 64113, -+ < 2ytr(Hy)
1

If lglloe < G, it can be shown that tr(Hy) < nGVk

The bound becomes

k

:mink(f(xk) - <5 (Z Ig' 13, -+ + R* tr(Hy,)
=1

37 (2y + R?) tr(Hy,)

222y + R?)

IN A

and f(x) — f* — if R bounded
In practice,

Hy, =~ (el + diag([lgr* |2 - - [l9,™]12))

with some € > 0 is used for numerical stability

)
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Variations — RMSprop and Adam

Adagrad Hj, often grows too fast = step sizes decay too fast
One approach: Let ¢, grow slower than in Adagrad

Another approach: Don't sum gradient square, estimate variance:
O = bylp—1 + (1 — bU)(gk)Q

where 99 = 0, b, € (0,1), and g* are stochastic gradients
Hj, is chosen (approximately) as standard deviation:
® RMSprop: biased estimate H;, = diag(y/0x + €)

® Adam: unbiased estimate Hj = diag( 1f’zk +e€)

which is much smaller Hj, than in Adagrad = longer steps
Intuition:

® Reduce step size for high variance coordinates
® |ncrease step size for low variance coordinates

Adam also filters stochastic gradients for smoother updates



Filtered stochastic gradients
® Let mo =0 and b, € (0,1), and update
Mg = bmg—1 + (1 — b)) g

® Adam uses unbiased estimate:

T—bF
® Does not improve convergence properties, but slower changes
® Problem from before, fixed-stepsize, without filtered gradient

Levelsets of summands

17



Filtered stochastic gradients
Let mo = 0 and b,,, € (0,1), and update
Mg = bmg—1 + (1 — b)) g

Adam uses unbiased estimate:

T—bF
Does not improve convergence properties, but slower changes
Problem from before, fixed-stepsize, with filtered gradient

Levelsets of summands
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Adam — Summary

Initialize mo = 09 = 0, by, by € (0,1), and select v > 0

1.

arwN

6.

gr = Vf(zx) (stochastic gradient)
Mi = bmMi—1 + (1 — bm) gk

U = bylk—1 + (1 - bv)g]%

mg = mk/(l — bfn)

V = f}k/(l — bﬁ)

Tp1 = T — yMi./(y/Vk + €1)

Suggested choices b, = 0.9 and b, = 0.999

Similar to Adagrad, but /vy < /S = longer steps
May not work in deterministic setting (unlike Adagrad):

® If method converges V f(zx) — 0
® Then vy — 0 and steps become very large
® Needs noise and stochastic gradients to work well

18



Adam - Example

® This is variation of problem from stochastic gradient lecture
® Had to engineer problem a bit to have Adam faster than SGD

sssssss

I
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Polyak-Ruppert averaging

Fixed-step SGD converges to noise ball (quite fast)
Diminishing-step SGD converges (in some sense) to solution
Polyak-Ruppert averaging:

® Run SGD with (small enough) fixed step size

® Qutput average of iterations instead of last iteration
Example: SGD with constant stepsize

Levelsets of summands

20



Polyak-Ruppert averaging

Fixed-step SGD converges to noise ball (quite fast)
Diminishing-step SGD converges (in some sense) to solution
Polyak-Ruppert averaging:

® Run SGD with (small enough) fixed step size

® Qutput average of iterations instead of last iteration
Example: Average of SGD with constant stepsize

Levelsets of summands

20



Generalization and implicit regularization

What is implicit regularization?
® Assume infinitely many solutions on large manifolds exist

® overparameterized neural networks
® |east squares with fewer examples than features

® Algorithm selects solution with small(est) desired norm
Good implicit regularization gives model with better generalization
SGD is believed to have good implicit regularization

Adaptive scaling methods believed to have worse

21



Implicit regularization — Least squares

Consider convex least squares problem of the form

minimize 1|| Az — b||3
x

where A € R™*" b€ R™, and m <n
Solution set X = {x : Ax = b} = {z : T+ v} where:
® 7 € X is such that AZ = b (which exists since m < n)
® v any vector such that Av =0, i.e. in nullspace of A, N'(A)

why? cost satisfies for all z: || Az — b||3 > 0 and
3IIA@ +v) = b]l3 = | Az + Av = b||3 = [|b - b]|5 = 0

If v e N(A) sois tv (A(tv) = tAv = 0) for all t € R

Since m < n, N'(A) is (at least) n — m-dimensional subspace

22



Implicit regularization — Gradient method

® The gradient method satisfies for v € (0, %) for all solutions z*

|zrsr — 2" = lox —vH ™IV (2r) — 2* |
= llow = @* 17 — 29V F (@) (wr — 2*) + 92|V f(2n) Iz
<z = 2l — (F =)V F () 1

<l — 2™

where we use V f(z*) = 0 and 5-cocoercivity' of Vf w.rt. |- |u
® Comments:

Adagrad motivated by making residual ||V f(zx)||3,—1 small fast
Gradient method will converge to TT% (x0) (next slide)

If zo = 0, will converge to minimum || - |z element in X

Give implicit Tikhonov-type regularization if H = I

Can give not desired point if H very skewed

1 Convexity is needed for V f to be cocoercive. That distance to solution nonincreasing holds only in convex setting.

23



Gradient method converges to TT4 ()

For all v € N(A) (and Z defined before) it holds that

leke1 — Za < [low — Zl|m (1)
and [lzgrr — T+ 0lln < flog —Z+0|n (2)

Condition (2) is (after squarring and expanding) equivalent to
lenser = 2l < llow — 207+ 2(H (25 — 2341)) T

To not violate (1), (H(x — x41))Tv =0 (—v and v are in N'(4))

Therefore (Hxy)ken lives in affine subspace (A € R™ is arbitrary)
Hzo 4+ (N(A)*T = Hao + AT
and converges to point in X = {z : Ax = b}, but
{z: Az =byN{x: H(x —x¢) — ATA =0} = TI4,__, (o)

since intersection is optimatity condition for unique projection point

24



Graphical interpretation

® lterates move closer (in || - || ) to all points in X = {z : Az = b}
® X extends infinitely, therefore

® sequence must be perpendicular to X (in scalar product (Hz)"y)
® algorithm converges to projection point IT% ()

{z: Az = b} {z: Az = b}

*x

‘\\

Gradient method with || - ||2 Gradient method with scaled || - || g



Implicit regularization

Often good regularization when || - ||z is small
For underdetermined convex least squares:

® GD with || - ||z metric converges to minimum || - || z-norm solution
® Same conclusion in expectation for SGD

Implicit regularization for least squares:
® Gradient method with || - ||2 has implicit desired regularization
® Adagrad-type methods have different (not desired?) implicit
regularization
Emperical evidence that same thing holds in nonconvex settings
So, why not explicitly regularize?
® Convex settings: of course!
® Nonconvex: may change loss landscape in not desired ways

26



Early termination
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 1 Residual norm: 87 !jug||2 = 6.6e*

B Mgl
B gl

iteration k ' ' iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 2 Residual norm: 87 ug|l2 = 4.7e™?

B Mgl
BT g |

~ iteration k ' ' iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 3 Residual norm: 87 !jug|]2 = 3.5¢~*

B Mgl
BT g |

~ iteration k ' iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 4 Residual norm: 87 jug|l2 = 2.8¢™1

B Mgl
BT g |

iteration k iteration k
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Early termination
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Early termination

e SVM polynomial features of degree 6, A = 0.00001
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e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 7 Residual norm: 87 jug|l2 = 1.5e™1

B Mgl
BT g |

iteration k iteration k

28



Early termination
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 9 Residual norm: 87 jug|l2 = 1.2¢71
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 30 Residual norm: 87 |ug||2 = 4.1e72
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 40 Residual norm: 87 |ug||2 = 3.2¢72
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iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 50 Residual norm: 87 |ug||2 = 2.4e72

B Mgl
BT g |

~ iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 60 Residual norm: 87! |ug|l2 = 1.8¢72

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 70 Residual norm: 87! |ug||2 = 1.4e2

B Mgl
BT g |

iteration k iteration k

28



Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 80 Residual norm: 87 |ugll2 = 1.2¢72

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 90 Residual norm: 87 |ug|l2 = le™

B Mgl
BT g |

iteration k iteration k

2
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

e lteration number: 100 Residual norm: 871 ||lug|l2 = 7.8e~3

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 110 Residual norm: 871||lug|l2 = 6.5¢~3

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 120 Residual norm: 871 ||lugll2 = 5.9¢73

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

e lteration number: 130 Residual norm: 871||lugll2 = 5.5¢ 3

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 140 Residual norm: 871||lugll2 = 5.1e73

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 150 Residual norm: 871 ||lug|l2 = 4.8¢73

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 160 Residual norm: 871 ||lug|l2 = 4.5¢~3

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

e lteration number: 170 Residual norm: 871||lugll2 = 3.9¢73

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

e lteration number: 180 Residual norm: 871||lugll2 = 3.8¢73

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

e lteration number: 190 Residual norm: 87 1||lug||2 = 3.6e~3

B Mgl
BT g |

iteration k o iteration k

28



Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 300 Residual norm: 871 ||lugll2 = 2.3¢73

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 400 Residual norm: 871||lugll2 = 1.6e~3

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 500 Residual norm: 871 ||lugll2 = 1.2¢73

B Mgl
BT g |

iteration k ' iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

e lteration number: 600 Residual norm: 871 ||lugll2 = 8.9¢*

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

e lteration number: 700 Residual norm: 871 ||lug|l2 = 6.7e*

B Mgl
BT g |

~ iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 800 Residual norm: 871 ||lug|l2 = 4.7e~*

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 900 Residual norm: 871 ||lugll2 = 4.1e7*

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

e lteration number: 1000 Residual norm: 871 ||lugll2 = 3.7e %

B Mgl
BT g |

iteration k - iteration k

28



Early termination

e SVM polynomial features of degree 6, A = 0.00001

e lteration number: 2000 Residual norm: 871 ||lugll2 = 1.5e~*

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 3000 Residual norm: 871 ||lugll2 = 1.2¢7*

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 4000 Residual norm: 871 ||lugll2 = 1.1e7*

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

e lteration number: 5000 Residual norm: 87 |ug|l2 = 9e~

B Mgl
BT g |

iteration k- iteration k

5
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

e lteration number: 6000 Residual norm: 87 |ug||2 = 8e~

B Mgl
B gl

iteration k iteration k

5
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® [teration number: 7000 Residual norm: 87 |ug||2 = 7.2¢75

B Mgl
B gl

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 8000 Residual norm: 87 |ug||2 = 6.6

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 9000 Residual norm: 87 |ug||2 = 5.6

B Mgl
BT g |

iteration k iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 10000  Residual norm: 871 ||luy|2 = 5.3¢7°

B Mgl
BT g |

iteration k. iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 20000  Residual norm: 871 ||luy|2 = 3.1e7°

B Mgl
B gl

~ iteration k ut iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 30000  Residual norm: 871 ||luy|2 = 1.8¢7°

B Mgl
B gl

iteration k ot iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 40000  Residual norm: 871 ||luy|2 = 1.3¢7°

B Mgl
B gl

iteration k ot iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® lteration number: 50000  Residual norm: 3~ !|ug|l2 = 9.3¢76

B g
B gl

iteration k ot iteration k



Early termination

e SVM polynomial features of degree 6, A = 0.00001

® lteration number: 60000  Residual norm: S~ Y|ug|l2 = 7.9¢76

B g
B gl

iteration k ot iteration k



Early termination

e SVM polynomial features of degree 6, A = 0.00001

® lteration number: 70000  Residual norm: 3~ Y|ug|lz = 7.1e76

B g
B gl

iteration k ot iteration k



Early termination

e SVM polynomial features of degree 6, A = 0.00001

® lteration number: 80000  Residual norm: 3~ !|ug|l2 = 6.5¢76

B Mgl
B gl

~—

iteration k ot iteration k




Early termination

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 90000  Residual norm: 37 1|juy|l2 = 6e~°

B Mgl
B gl

iteration k ot iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

e |teration number: 100000 Residual norm: B~ 1||juy |2 = 5.5¢ 6
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iteration k ot iteration k




Early termination

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 200000 Residual norm: 871 ||uy |2 = 2.7¢ 6
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~ iteration k iteration k




Early termination

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 300000 Residual norm: 871 ||uy |2 = 1.9¢~6

B Mgl
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iteration k

iteration k




Early termination

e SVM polynomial features of degree 6, A = 0.00001
® |teration number: 400000 Residual norm: 871 ||luy |2 = 1.5e~6
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

e |teration number: 500000 Residual norm: 871 ||juy |2 = 1.2¢~6
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® lteration number: 600000 Residual norm: St ||luy|l2 = 1=
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Early termination

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 700000 Residual norm: 37 1||juy |2 = 8.4e~7
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Early termination

e SVM polynomial features of degree 6, A = 0.00001
® |teration number: 800000 Residual norm: 37 1||juy |2 = 4.6e~7
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B Mgl
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iteration k i iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001
® |teration number: 900000 Residual norm: B~ 1||juy|l2 = 3.9¢7

———

B Mgl
BT g |

iteration k i iteration k
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Early termination

e SVM polynomial features of degree 6, A = 0.00001
® |teration number: 1000000 Residual norm: B~ 1||juy |2 = 3.4e~7

B Mgl
BT g |

iteration k

iteration k
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Rates and Acceleration

29



Convergence rates

We have only talked about convergence, not convergence rates
Rates indicate how fast (in iterations) algorithm reaches solution
Typically divided into:

® Sublinear rates

® Linear rates (also called geometric rates)
® Quadratic rates

Sublinear rates slowest, quadratic rates fastest

30



Sublinear rates

Can be of the form

f('rk) +g(xk) —p* < %
[ zps1 — 2|3 < ﬁ

. ) b
t:I?IHkE[HVf(xt)HQ] < )

where 1 decides how fast it decreases, e.g.,

* ¢(k) = log(k)

® Nonconvex SGD, ~; square summable not summable

* (k) =Vk

® Convex SGD, convex subgradient method (not covered)
* (k) =k

® Proximal gradient method, coordinate proximal gradient descent
* y(k) = k?

® Accelerated proximal gradient method (convex, discussed later)

with improved convergence further down the list
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Sublinear rates — Comparison

Different rates on lin-log scale
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Linear rates

Can be of the form

f@r) = < pr(f(2r) — f5)

less — 2 < prllak —2*la

with p, € [0,1), i.e., a contraction, also called geometric rate
Is called superlinear if p, — 0
Examples:

® (Accelerated) proximal gradient with strongly convex cost
® Coordinate descent with strongly convex cost
® BFGS has local superlinear with strongly convex cost

However, SGD with strongly convex cost gives sublinear rate
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Different rates on lin-log scale

Linear rates — Comparison
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Quadratic rates

® Can be of the form

i) = 5 < pi(f (k) — f*)?
2kt — 2|2 < prllze — 213

with pg € [0,1), very fast convergence when close to solution

® Example with p = 0.9 compared with linear rate

[l o o )

OO
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OO0 NOD
18] OOOOOMNIOO
.= OOONSIIO
| COOON—FHO
0| SOo-0CoON0

® Example: Locally for Newton's method with strongly convex cost
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Quadratic rates — Comparison

Different rates on lin-log scale

— p=0.99
— p=0.96

p=0.93
— p=0.90
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Accelerated proximal gradient method

® Consider convex composite problem
minimize f(x) + g(x)
xr

where

® f:R"™ — R is 8-smooth and convex
® g:R" -5 RU{oo} is closed and convex

® Proximal gradient descent

Try1 = prox, (v, — YV f(wr))

achieves O(1/k) convergence rate
® Accelerated proximal gradient method

Yk = Tk + Br(Tr — vx-1)
Tpp1 = prox,(yr — YV (yr))

(with specific 8x) achieves faster O(1/k?) convergence rate
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Accelerated proximal gradient method

® Stepsizes are restricted v € (0, %]
® The (i parameters can be chosen either as
_ k=1
Pk = 12

tho1—1
or B = % where

1144t

t, = 3

these choices are very similar
® Algorithm behavior in nonconvex setting not well understood



Not descent method

® Descent method means function value is decreasing every iteration
® \We have proven that proximal gradient is a descent method

® However, accelerated proximal gradient method is not!

39



Accelerated gradient method — Example

® Accelerated vs nominal proximal gradient method
® Problem from SVM lecture, polynomial deg 6 and A = 0.0215
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Accelerated gradient method — Example

® Accelerated vs nominal proximal gradient method
® Problem from SVM lecture, polynomial deg 6 and A = 0.0215

—— Accelerated

—— Nominal
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