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Learning goals

Know convex function definition

Understand extended-valued functions and domain

Know about epigraphs and connection between convex hull and
convex envelope

Able to decide if function is convex from

® First and second order conditions
® Convexity preserving operations

Understand strict convexity, strong convexity, and smoothness



Convex Functions



Extended-valued functions and domain

We consider extended-valued functions f : R® — RU {oc} =: R

Example: Indicator function of interval [a, ]

0 fa<ax<b
la.b] (z) = oo else

b
The (effective) domain of f : R™ — R U {oo} is the set
dom f={z e R": f(x) < o0}

(Will always assume domf # (), this is called proper)



Convex functions

® Graph below line connecting any two pairs (z, f(z)) and (y, f(y))

nonconvex function convex function
® Function f : R™ — R is convex if for all z,y € R™ and 6 € [0, 1]:
fOx+ (1 —-0)y) <0f(x)+(1—-6)f(y)

(in extended valued arithmetics)
® A function f is concave if —f is convex



Graphs and epigraphs

® The epigraph of a function f is the set of points above graph

epif

® Mathematical definition:

epif = {(z,r) | f(z) <7}

® The epigraph is a set in R™ x R



Epigraphs and convexity

o Let f : R" > RU{o0}

® Then f is convex if and only epif is a convex set in R” x R

epif 1 epif

® fis called closed (lower semi-continuous) if epif is closed set



Convex envelope

® Convex envelope of f is largest convex minorizer

f(@) env f(z)

® Definition: The convex envelope env f satisfies: env f convex,

envf < f and envf > g for all convex g < f



Convex envelope and convex hull

® Epigraph of convex envelope of f is convex hull of epif

N

® ecpif in light gray, epienvf includes dark gray




Affine functions

o Affine functions f : R — R cut R™ x R in two halves

fy)=sTy+r

(8771)

® s defines slope of function

® Upper halfspace is epigraph with normal vector (s, —1):

epif ={(y,t) :t=s"y+r} ={(y,t): —r > (s,—1)7(y,1)}
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Affine functions — Reformulation

® Pick any fixed z € R"; affine f(y) = sTy + r can be written as

fly) = f(z) +s"(y — x)

(since r = f(x) — sTx)
fy) = f(2) +s"(y —2)
(5771)

® We see affine function of this form important for convexity

11



First-order condition for convexity

¢ A differentiable function f : R™ — R is convex if and only if

fy) = f@) + V@) (y - o)

for all z,y € R”

® Function f has for all x € R™ an affine minorizer that:
® has slope s defined by V f
® coincides with function f at =
® is supporting hyperplane to epigraph of f
® defines normal (Vf(x),—1) to epigraph of f



Second-order condition for convexity

® A twice differentiable function is convex if and only if
V2 f(z) =0

for all z € R™ (i.e., the Hessian is positive semi-definite)
® “The function has non-negative curvature”
® Nonconvex example: f(z) =27 [§ % ]z with V2f(z) £ 0
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Conclude convexity

For simple functions like

® indicator function

LS(I){O ifxes

oo else

convex function if and only if S convex set
® norms: ||z||
® (shortest) distance to convex set: distg(z) = infycs(|ly — ||)
e affine functions: f(x) = sTx 47
® quadratics: f(z) = %.’L’TQ.’B with @) positive semi-definite matrix
® matrix fractional function: f(x,Y) =27y 1z

convexity concluded from definition or 1st or 2nd order conditions
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Example — Convexity of norms

Show that f(z) := ||z|| is convex

® Norms satisfy the triangle inequality
[lu+ vl < fJull + [|v]]
® let z =0x + (1 — O)y for arbitrary =,y and 0 € [0, 1]:

f(z) = [0z + (1 = O)y]|
< 0]l + [[(1 = O)y
= Oll] + (1 = 0)lyll
=0f(x)+ (1 -0)f(y)

which is definition of convexity
® Proof uses triangle inequality and 6 € [0, 1]
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For

Operations that preserve convexity

more complicated functions, use convexity preserving operations:

Positive sum

Composition with matrix

Image of function under affine mapping
Supremum of convex functions

A composition rule
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Positive sum

® Assume that f; are convex for j = {1,...,m}
® Assume that there exists x such that f;(x) < oo for all j

® Then positive sum

m

F=> 1l
j=1

with £; > 0 is convex
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Composition with matrix

® |et f be convex and L be a matrix, then

(f o L)(x) := f(L())

is convex
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Image of function under linear mapping

® The image function Lf : R™ — RU {oco} is defined as
(Lf)(z) = nf{f(y) : Ly =z}

where L : R™ — R™ is a matrix and f : R™ = RU {oo}

® Convex if f convex and bounded below for all x on inverse image
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Supremum of convex functions

® Point-wise supremum of convex functions from family {f;};c:
f(@) =sup{fj(z) : j€J}
J

® Supremum is over functions in family for fixed x
® Example:

f3
[

1

® Convex since intersection of convex epigraphs
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Composition rule

® Consider the function f : R"” — R U {co} defined as

f(x) = h(g())

where i : R — RU {00} is convex and g : R” — R
® Suppose that one of the following holds:

® h is nondecreasing and g is convex
® } is nonincreasing and g is concave
® g is affine

Then f is convex
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Vector composition rule

® Consider the function f: R"” — R U {oo} defined as

f(x) = h(g1(x), g2(x), ..., gr(z))

where h: RF — RU {oc} is convex and g; : R® — R
® Suppose that for each i € {1,...,k} one of the following holds:

® h is nondecreasing in the ¢th argument and g; is convex
® h is nonincreasing in the ith argument and g; is concave
® g, is affine

Then f is convex
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Convexity: Example 1

Show that: f(z) := el L=l is convex where L is matrix b vector:
® Let

0 fua <0
g1(u1) = |Jur |2, gz(uz)Z{ . 2

s 2 (U :eu?’
wb ifu >0 g3(u3)

then f(z) = g3(g2(91(Lz —b)))
® gi1(Lz —b) convex: convex g; and Lz — b affine

® go(g1(Lxz — b)) convex: cvx nondecreasing g2 and cvx g1 (Lz — b)

® f(x) convex: convex nondecreasing g3 and convex g2(g1 (Lz — b))
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Convexity: Example 2

Show that the conjugate f*(s) := sup (s’ x — f(z)) is convex:
zER™

® Define (uncountable) index set J and z; such that Ujcjz; = R"

Define r; := f(z;) and affine (in s): a;(s) :=sTz; —r;
Therefore f*(s) = sup,(a;(s):j € J)

® Convex since supremum over family of convex (affine) functions

® Note convexity of f* not dependent on convexity of f
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Strict convexity

A function is strictly convex if

fOx+(1=0)y) <0f(z)+(1-0)f(y)

forall z # y and 6 € (0,1)

Convexity definition with strict inequality
No flat (affine) regions

Example: f(z) =1/ forz >0

f(x)
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Strong convexity

Let 0 >0
A function f is a—strong/}{ convex if f — & - |3 is convex
Alternative equivalent definition of o-strong convexity:

fOz + (1= 0)y) <0f(x) + (1 —0)f(y) — 01— 0)l|lz —ylf?
holds for every z,y € R™ and 6 € [0, 1]

® Strongly convex functions are strictly convex and convex

Example: f 2-strongly convex since f — || - ||3 convex:

(@) = 3
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Uniqueness of minimizers

® Strictly (strongly) convex functions have unique minimizers
® Strictly convex functions may not have a minimizing point

® Strongly convex functions always have a unique minimizing point
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First-order condition for strict convexity

® Let f : R"™ — R be differentiable
® f is strictly convex if and only if

fy) > f(@) + V(@) (y - 2)
for all z,y € R™ where x #£ y

(Vi(z),—1)

® Function f has for all z € R™ an affine minorizer that:
® has slope s defined by V f
® coincides with function f only at =
® is supporting hyperplane to epigraph of f
® defines normal (Vf(z),—1) to epigraph of f
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First-order condition for strong convexity

® let f : R"™ — R be differentiable
® fis g-strongly convex with ¢ > 0 if and only if
fly) = f@) + V@) (y —2) + llz — yll3
for all z,y € R”
fW)
f@) + V@) (y—2)+ Sllz —yll3

(Vi(z),-1)

® Function f has for all z € R™ a quadratic minorizer that:
® curvature defined by o
® coincides with function f at =
® defines normal (V f(x),—1) to epigraph of f
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Second-order condition for strict/strong convexity

Let f: R™ — R be twice differentiable

® fis strictly convex if
V2f(x) =0

for all z € R™ (i.e., the Hessian is positive definite)

® fis o-strongly convex if and only if
V2f(x) = ol

for all z € R™
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Examples of strictly/strongly convex functions

Strictly convex

. f( ) = —log(x) + t>0(z)

fz) = 1/5E+L>o( )
fz) =
fl@)=e™"
Strongly convex
fz) = A||JL‘H2
J f(x) 12T Qz where Q positive definite
° f(x)= fl( ) + fa(x) where f; strongly convex and f2 convex
* f(z) = 227Qz + 1c(x) where Q positive definite and C' convex



Proof of two examples

xZ.

Strict convexity of f(z) =€~
o Vf(x)=—e% V3f(z)=e*>0forallzeR

) =
Strong convexity of f(z) = % TQx with @ positive definite

® Vf(x)=Qx, V2f(z) = Q = Amin(Q)I where \pin(Q) >0
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Smoothness

A function is called 3-smooth if its gradient is 8-Lipschitz:

IVf(z) = Vi)l < Bllz =yl

for all z,y € R™ (it is not necessarily convex)
Alternative equivalent definition of S-smoothness

F(z + (1= 8)y) > 6f(2) + (1= 0)f(y) — 561~ )]z — y||”
F(z + (1= 0)y) < 6f(2) + (1= 0)f(y) + 56(1— )]z — y||”

hold for every =,y € R™ and 0 € [0, 1]
Smoothness does not imply convexity
Example:
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First-order condition for smoothness

® fis B-smooth with 8 > 0 if and only if
F) < f(@) + V@) (y—a)+ 5w —yll3
fy) = f@)+ V@) (y—2) = Sl —yll3
for all z,y € R™

f(@) + V@) T (y— ) + Sz —yll3
/ fy)

U f@) + V@) (- ) — £z — g2

® Quadratic upper/lower bounds with curvatures defined by
® Quadratic bounds coincide with function f at x
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First-order condition for smooth convex

® fis S-smooth with 5 > 0 and convex if and only if
) < F@) + V@) (- 2) + Llle — yl3
fly) > f2) + V() (y — )
for all x,y € R™
| @)+ V@) =) + Sl — yli3

® Quadratic upper bounds and affine lower bound
® Bounds coincide with function f at z
® Quadratic upper bound is called descent lemma

35



Second-order condition for smoothness

Let f: R™ — R be twice differentiable

® fis B-smooth if and only if
—BI X V2 f(x) = BI

for all z € R™

® fis B-smooth and convex if and only if
0= V2f(z) < BI

for all z € R™
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Convex Optimization Problems
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Composite optimization form

We will consider optimization problem on composite form
minimize f(Lz) 4+ g(x)
€T

where f and g convex function and L a matrix
Convex problem due to convexity preserving operations
Can model constrained problems via indicator function

This model format is suitable for many algorithms
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