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Learning goals

• Able to derive conjugate formulas

• Able to prove convexity of conjugate

• Know that biconjugate is convex envelope

• Know when ∂f = (∂f∗)−1 holds

• Know Fenchel-Young’s inequality and when equality holds

• Know that strong convexity and smoothness are dual properties

• Formulate Fenchel dual problem in general and for examples

• Derive dual problem with primal-dual optimality conditions

• Able to recover primal solution

• Be aware of inf-sup interpretation in derivation of dual problem
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Conjugate Functions
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Conjugate functions

• The conjugate function of f : Rn → R ∪ {∞} is defined as

f∗(s) := sup
x

(
sTx− f(x)

)
• Implicit definition via optimization problem
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Conjugate interpretation

• Conjugate f∗(s) defines affine minorizer to f with slope s:

f(x)

sT x− f∗(s)

(s,−1)

x∗

−f∗(s)

where f∗(s) decides the constant offset to have support at x∗

• “Affine minorizor generator: Pick slope s, get offset for support”
• Why? Consider f∗(s) = sup

x

(
sTx− f(x)

)
with maximizer x∗:

f∗(s) = sTx∗ − f(x∗) ⇔ f∗(s) ≥ sTx− f(x) for all x

⇔ f(x) ≥ sTx− f∗(s) for all x

• Support at x∗ since f(x∗) = sTx∗ − f∗(s)
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Consequence

• Conjugate of f and envf are the same, i.e., f∗ = (envf)∗

f(x)

(s,−1)

sT x− f∗(s)

envf(x)

(s,−1)

sT x− f∗(s)

• Functions have same supporting affine functions

• Epigraphs have same supporting hyperplanes
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Conjugate function – Example

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−2,−1)

−2

s

f∗(s)
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Conjugate function – Example

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−2,−1)

−2 →∞

s

f∗(s)
∞
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Conjugate function – Example

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−1,−1)

−1

s

f∗(s)
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Conjugate function – Example

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−1,−1)

−1 = 0

s

f∗(s)
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Conjugate function – Example

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−0.5,−1)

−0.5

s

f∗(s)
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Conjugate function – Example

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(−0.5,−1)

−0.5 = 0

s

f∗(s)
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Conjugate function – Example

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(0,−1)

0

s

f∗(s)
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Conjugate function – Example

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(0,−1)

0 = 0

s

f∗(s)
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Conjugate function – Example

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(0.5,−1)

0.5

s

f∗(s)
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Conjugate function – Example

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(0.5,−1)

0.5 = 0

s

f∗(s)
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Conjugate function – Example

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(1,−1)

1

s

f∗(s)

7



Conjugate function – Example

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(1,−1)

1 = 0

s

f∗(s)
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Conjugate function – Example

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(2,−1)

2

s

f∗(s)
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Conjugate function – Example

• Compute conjugate of f(x) = |x|
• For given slope s: −f∗(s) is point that crosses |x|-axis

x

|x|

Slope, s = f∗(s)

(2,−1)

2 →∞

s

f∗(s)

Conjugate is f∗(s) = ι[−1,1](s)
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Conjugate function properties

• Let ax(s) := sTx− f(x) be affine function parameterized by x:

f∗(s) = sup
x
ax(s)

is supremum of family of affine functions

• Epigraph of f∗ is intersection of epigraphs of (below three) ax

ax1 (s)

ax2 (s)

ax3 (s)

epif∗

• f∗ convex: epigraph intersection of convex halfspaces epi ax
• f∗ closed: epigraph intersection of closed halfspaces epi ax
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Draw the conjugate

• Draw conjugate of f (f(x) =∞ outside points)

(−1, 0)
(0, 0.2)

(1, 0)
x

f(x)

−s+ 0 s+ 0

0s− 0.2
s

f∗(s)

• Draw all affine ax(s) and select for each s the max to get f∗(s)

f∗(s) = sup
x
(sx− f(x)) = max(−s− 0, 0s− 0.2, s− 0, xs−∞)

= max(−s,−0.2, s) = |s|
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Draw the conjugate

• Draw conjugate of f (f(x) =∞ outside points)

(−1, 0)
(0, 0.2)

(1, 0)
x

f(x)

−s+ 0 s+ 0

0s− 0.2
s

f∗(s)

• Draw all affine ax(s) and select for each s the max to get f∗(s)

f∗(s) = sup
x
(sx− f(x)) = max(−s− 0, 0s− 0.2, s− 0, xs−∞)

= max(−s,−0.2, s) = |s|
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Biconjugate

• Biconjuate f∗∗ := (f∗)∗ is conjugate of conjugate
• For every x, it is largest value of all affine minorizers

f(x)

xx0

f(x0)

f∗∗(x0)

• Why?: Biconjugate

f∗∗(x) = sup
s
(xT s− f∗(s)),

• is pointwise supremum of affine functions as(x) := xT s− f∗(s)
• {as(x)}s∈Rn are all supporting affine minorizers to f with slope s
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Biconjugate and convex envelope

• Biconjugate is closed convex envelope

x

f∗∗(x)

• f∗∗ ≤ f and f∗∗ = f if and only if f (closed and) convex
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Biconjugate – Example

• Draw the biconjugate of f (f(x) =∞ outside points)

x

f(x)

(−1, 0)
(0, 0.2)

(1, 0)

x

f∗∗(x)

• Biconjugate is convex envelope of f

• We found before f∗(s) = |s|, and now (f∗)∗(x) = ι[−1,1](x)

• Therefore also ι∗[−1,1](s) = |s|
(since f∗ = (envf)∗ = (f∗∗)∗ =: f∗∗∗)
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Biconjugate – Example

• Draw the biconjugate of f (f(x) =∞ outside points)

x

f(x)

(−1, 0)
(0, 0.2)

(1, 0)
x

f∗∗(x)

• Biconjugate is convex envelope of f

• We found before f∗(s) = |s|, and now (f∗)∗(x) = ι[−1,1](x)

• Therefore also ι∗[−1,1](s) = |s|
(since f∗ = (envf)∗ = (f∗∗)∗ =: f∗∗∗)
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Fenchel Young’s equality

• Going back to conjugate interpretation:

f(x)

sT x− f∗(s)

(s,−1)

x∗

• Fenchel’s inequality: f(x) ≥ sTx− f∗(s) for all x, s

• Fenchel-Young’s equality and equivalence:

f(x∗) = sTx∗ − f∗(s) holds if and only if s ∈ ∂f(x∗)
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A subdifferential formula

Assume f closed convex, then ∂f(x) = Argmaxs(s
Tx− f∗(s))

• Since f∗∗ = f , we have f(x) = sups(x
T s− f∗(s)) and

s∗ ∈ Argmax
s

(xT s− f∗(s)) ⇐⇒ f(x) = xT s∗ − f∗(s∗)

⇐⇒ s∗ ∈ ∂f(x)

• The last equivalence is Fenchel-Young
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Subdifferential of conjugate

s ∈ ∂f(x) implies that x ∈ ∂f∗(s)

• Since f∗∗ ≤ f and s ∈ ∂f(x), Fenchel-Young’s equality gives:

0 = f∗(s) + f(x)− sTx ≥ f∗(s) + f∗∗(x)− sTx ≥ 0

where last step is Fenchel’s inequality

• Hence f∗(s) + f∗∗(x)− sTx = 0 and FY ⇒ x ∈ ∂f∗(s)
• Apply result above to f∗ to get corollary:

x ∈ ∂f∗(s) implies that s ∈ ∂f∗∗(x)
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Subdifferential of conjugate – Inversion formula

Suppose f closed convex, then s ∈ ∂f(x)⇐⇒ x ∈ ∂f∗(s)

• Using what we have on previous slide and f∗∗ = f :

s ∈ ∂f(x)⇒ x ∈ ∂f∗(s)⇒ s ∈ ∂f∗∗(x)⇒ s ∈ ∂f(x)

• Another way to write the result is that for closed convex f :

∂f∗ = (∂f)−1

(Definition of inverse of set-valued A: x ∈ A−1u⇐⇒ u ∈ Ax)

16



Relation between subdifferentials – Example

• What is ∂f∗ for below ∂f?

s

x

s ∈ ∂f(x)

s

x

x ∈ ∂f∗(s)
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Relation between subdifferentials – Example

• What is ∂f∗ for below ∂f?

s

x

s ∈ ∂f(x)

s

x

x ∈ ∂f∗(s)

Since ∂f∗ = (∂f)−1, we flip the figure
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Another example

s

x

s ∈ ∂f(x)

s

x

x ∈ ∂f∗(s)

• region with slope σ in ∂f(x) ⇔ region with slope 1
σ in ∂f∗(s)

• Implication: ∂f σ-strong monotone ⇔ ∂f∗(s) σ-cocoercive?
(Recall: σ-cocoercivity ⇔ 1

σ -Lipschitz and monotone)

18



Cocoercivity and strong monotonicity

∂f : Rn → 2R
n

maximal monotone and σ-strongly monotone
⇐⇒

∂f∗ = ∇f∗ : R→ R single-valued and σ-cocoercive

• σ-strong monotonicity: for all u ∈ ∂f(x) and v ∈ ∂f(y)

(u− v)T (x− y) ≥ σ‖x− y‖22 (1)

or equivalently for all x ∈ ∂f∗(u) and y ∈ ∂f∗(v)
• ∂f∗ is single-valued:

• Assume x ∈ ∂f∗(u) and y ∈ ∂f∗(u), then lhs of (1) 0 and x = y

• ∇f∗ is σ-cocoercive: plug x = ∇f∗(u) and y = ∇f∗(v) into (1)

• That ∂f∗ has full domain follows from Minty’s theorem
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Duality correspondance

Let f : Rn → R ∪ {∞}. Then the following are equivalent:

(i) f is closed and σ-strongly convex

(ii) ∂f is maximally monotone and σ-strongly monotone

(iii) ∇f∗ is σ-cocoercive

(iv) ∇f∗ is maximally monotone and 1
σ -Lipschitz continuous

(v) f∗ is closed convex and satisfies descent lemma (is 1
σ -smooth)

where ∇f∗ : Rn → Rn and f∗ : Rn → R
Comments:

• (i) ⇔ (ii) and (iii) ⇔ (iv) ⇔ (v): Previous lecture
• (ii) ⇔ (iii): This lecture
• Since f = f∗∗ the result holds with f and f∗ interchanged
• Full proof available on course webpage
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Proximal operator

• Recall: proxγg(z) = argminx(g(x) +
1
2γ ‖x− z‖

2
2)

Assume g closed convex, then proxγg(z) is 1-cocoercive

• The function r = γg + 1
2‖ · ‖

2
2 is 1-strongly convex and

proxγg(z) = argmin(g(x) + 1
2γ ‖x− z‖

2
2)

= argmax(−γg(x)− 1
2‖x− z‖

2
2)

= argmax(zTx− ( 12‖x‖
2
2 + γg(x)))

= argmax(zTx− r(x))
= ∇r∗(z)

where we have used the subgradient formula for r∗

• Therefore proxγg = ∇r∗ is 1-cocoercive
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Moreau decomposition

Assume f closed convex, then proxf (z) + proxf∗(z) = z

• When f scaled by γ > 0, it becomes

z = proxγf (z) + prox(γf)∗(z) = proxγf (z) + γproxγ−1f∗(γ−1z)

(since prox(γf)∗ = γproxγ−1f∗ ◦ γ−1Id)

• Don’t need to know f∗ to compute proxγf∗ !
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Optimality Conditions and Duality
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Composite optimization problem

• Consider primal composite optimization problem

minimize f(Lx) + g(x) (2)

where f, g closed convex

• We will derive primal-dual optimality conditions and dual problem
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Primal optimality condition

Let f : Rm → R, g : Rn → R, L ∈ Rm×n with f, g closed convex
and assume CQ, then:

minimize f(Lx) + g(x) (1)

is solved by x ∈ Rn if and only if x satisfies

0 ∈ LT∂f(Lx) + ∂g(x) (2)

• CQ implies subdifferential calculus with equality:

0 ∈ LT∂f(Lx) + ∂g(x) = ∂((f ◦ L)(x) + g(x))

which by Fermat’s rule is equivalent to x solution to (1)
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Primal-dual optimality condition 1

• Introduce dual variable µ ∈ ∂f(Lx), then optimality condition

0 ∈ LT ∂f(Lx)︸ ︷︷ ︸
µ

+∂g(x)

is equivalent to

µ ∈ ∂f(Lx)
−LTµ ∈ ∂g(x)

• This is a necessary and sufficient primal-dual optimality condition

• (Primal-dual since involves primal x and dual µ variables)
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Primal-dual optimality condition 2

• Primal-dual optimality condition

µ ∈ ∂f(Lx)
−LTµ ∈ ∂g(x)

• Using subdifferential inverse:

µ ∈ ∂f(Lx) ⇐⇒ Lx ∈ ∂f∗(µ)

gives equivalent primal dual optimality condition

Lx ∈ ∂f∗(µ)
−LTµ ∈ ∂g(x)

27



Dual optimality condition

• Using subdifferential inverse on other condition

−LTµ ∈ ∂g(x) ⇐⇒ x ∈ ∂g∗(−LTµ)

gives equivalent primal dual optimality condition

Lx ∈ ∂f∗(µ)
x ∈ ∂g∗(−LTµ)

• This is equivalent to that:

0 ∈ ∂f∗(µ)− L∂g∗(−LTµ)︸ ︷︷ ︸
x

= ∂f∗(µ) + ∂(g∗ ◦ −LT )(µ)

which is a dual optimality condition since it involves only µ
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Dual problem

• The dual optimality condition (for solving primal problem)

0 ∈ ∂f∗(µ) + ∂(g∗ ◦ −LT )(µ) (1)

is sufficient optimality condition for dual problem:

min
µ
f∗(µ) + g∗(−LTµ) (2)

• If contraint qualification holds on dual problem (2):

relint dom(g∗ ◦ −LT ) ∩ relint domf∗ 6= ∅,

which we call CQ-D, we have equivalence also in last step

Equivalence not needed in last step since (2) is solved via (1), which has solution.
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Optimality conditions – Summary

• Assume f, g closed convex and that CQ holds
• Problem minx f(Lx) + g(x) is solved by x iff

0 ∈ LT∂f(Lx) + ∂g(x)

• Primal dual necessary and sufficient optimality conditions:{
µ ∈ ∂f(Lx)
−LTµ ∈ ∂g(x)

{
Lx ∈ ∂f∗(µ)
−L∗µ ∈ ∂g(x){

µ ∈ ∂f(Lx)
x ∈ ∂g∗(−LTµ)

{
Lx ∈ ∂f∗(µ)
x ∈ ∂g∗(−LTµ)

• Dual optimality condition

0 ∈ ∂f∗(µ) + ∂(g∗ ◦ −LT )(µ) (1)

solves dual problem minµ f
∗(µ) + g∗(−LTµ)

• If CQ-D holds, all dual problem solutions satisfy (1)
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Solving the primal

• We of course want to solve primal problem

minimize
x

f(Lx) + g(x)

• Can be solved via primal, primal-dual, or dual optimality condition

• In this course consider only solving via primal or dual condition:

0 ∈ ∂f∗(µ) + ∂(g∗ ◦ −LT )(µ)

• Why solve dual? Sometimes easier to solve than primal

• Caveat: Only useful if primal solution can be obtained from dual
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Solving the primal from the dual

• Assume f, g closed convex and CQ

• Assume optimal dual µ known: 0 ∈ ∂f∗(µ) + ∂(g∗ ◦ −LT )(µ)
• Optimal primal x must satisfy any and all primal-dual conditions:{

µ ∈ ∂f(Lx)
−LTµ ∈ ∂g(x)

{
Lx ∈ ∂f∗(µ)
−L∗µ ∈ ∂g(x){

µ ∈ ∂f(Lx)
x ∈ ∂g∗(−LTµ)

{
Lx ∈ ∂f∗(µ)
x ∈ ∂g∗(−LTµ)

• If one of these uniquely characterizes x, then must be solution:
• ∂g∗ is differentiable at −LTµ for dual solution µ
• ∂f∗ is differentiable at dual solution µ and L invertible
• · · ·
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A dual problem interpretation

• Let L = I, consider dual problem minµ f
∗(µ) + g∗(−µ)

• Given CQ-D, µ is solution to dual if and only if{
µ ∈ ∂f(x)
−µ ∈ ∂g(x)

where x is a primal solution (x∗ in figure below)
• “Dual problem searches subgradients of f and g that sum to 0”

x∗

f g

(0.5,−1)

(−0.5,−1)

x∗

f + g

• To solve primal, must find corresponding point x∗
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Fenchel duality - A minmax formulation

• Write the problem min
x
f(Lx) + g(x) on equivalent form

minimize f(y) + g(x)
subject to Lx = y

• Equivalent formulation with indicator functions:

minimize f(y) + g(x) + ι{0}(Lx− y)

where the indicator function is defined as

ι{0}(Lx− y) =

{
0 if Lx− y = 0

∞ else
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Reformulation

• We can show (an exercise) that:

ι{0}(x, y) = sup
µ
µT (Lx− y)

(this µ is the same as the µ in previous dual formulation)

• Therefore problem is equivalent to

inf
x,y

(
f(y) + g(x) + sup

µ
µT (Lx− y)

)
or equivalently

inf
x,y

sup
µ

(
f(y) + g(x) + µT (Lx− y)

)
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Fenchel weak duality

• We always have:

inf
x
(f(Lx) + g(x))

= inf
x,y

sup
µ
(f(y) + g(x) + µT (Lx− y))

≥ sup
µ

inf
x,y

(
f(y) + g(x) + µT (Lx− y)

)
= sup

µ
−
(
sup
x,y

(
−f(y)− g(x) + µT (−Lx+ y)

) )
= sup

µ

(
−
(
sup
y

(
yTµ− f(y)

)
+ sup

x

(
xT (−LTµ)− g(x)

) ))
= sup

µ

(
−f∗(µ)− g∗(−LTµ)

)
,

which is (concave negative) dual problem from before

• This is called weak duality
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Fenchel strong duality

Let f : Rm → R, g : Rn → R, L ∈ Rm×n with f, g closed convex
and assume CQ, then:

inf
x
(f(Lx) + g(x)) = max

µ

(
−f∗(µ)− g∗(−LTµ)

)
• A dual solution exists and optimal values coincide

• Proof steps:
• Show that solution set to dual is compact under assumption
• Use Sion’s minimax theorem to have equality on previous slide

• Slight generalization useful to show subdifferential calculus rules
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Lagrange duality

• Lagrange duality can be derived from Fenchel duality and vice
versa

• KKT conditions in Lagrange duality can be derived from
optimality conditions in this lecture
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Conjugate examples
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Conjugate – Example 1

Let g(x) = 1
2x

THx+ hTx with H positive definite (invertible)

• Gradient satisfies ∇g(x) = Hx+ h

• Fermat’s rule for g∗(s) = supx(s
Tx− g(x)):

0 = s−∇g(x) ⇔ 0 = Hx+ h− s ⇔ x = H−1(s− h)

• So

g∗(s) = sTH−1(s− h)− 1
2 (s− h)H

−1HH−1(s− h) + hTH−1(s− h)
= 1

2 (s− h)H
−1(s− h)
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Conjugate – Example 2

• Consider

g(x) =


−x− 1 if x ≤ −1
0 if x ∈ [−1, 1]
x− 1 if x ≥ 1

g(x)

x

• Subdifferential satisfies

∂g(x) =



−1 if x < −1
[−1, 0] if x = −1
0 if x ∈ (−1, 1)
[0, 1] if x = 1

1 if x > 1

∂g(x)

x
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Conjugate – Example 2 cont’d

• We use g∗(s) = sx− g(x) if s ∈ ∂g(x):
• x < −1: s = −1, hence g∗(−1) = −1x− (−x− 1) = 1
• x = −1: s ∈ [−1, 0] hence g∗(s) = −s− 0 = −s
• x ∈ (−1, 1): s = 0 hence g∗(0) = 0x− 0 = 0
• x = 1: s ∈ [0, 1] hence g∗(s) = s− 0 = s
• x > 1: s = 1 hence g∗(1) = x− (x− 1) = 1

• That is

g∗(s) =

{
−s if s ∈ [−1, 0]
s if s ∈ [0, 1]

• For s < −1 and s > 1, g∗(s) =∞:
• s < −1: let x = t→ −∞ and g∗(s) ≥ ((s+ 1)t+ 1)→∞
• s > 1: let x = t→∞ and g∗(s) ≥ ((s− 1)t+ 1)→∞
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