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Learning goals

Able to derive conjugate formulas

Able to prove convexity of conjugate

Know that biconjugate is convex envelope

Know when 9f = (9f*)~! holds

Know Fenchel-Young's inequality and when equality holds
Know that strong convexity and smoothness are dual properties
Formulate Fenchel dual problem in general and for examples
Derive dual problem with primal-dual optimality conditions
Able to recover primal solution

Be aware of inf-sup interpretation in derivation of dual problem



Conjugate Functions



Conjugate functions

® The conjugate function of f : R™ — R U {oo} is defined as
f*(s) = sup (s"z — f(x))

® |mplicit definition via optimization problem



Conjugate interpretation

® Conjugate f*(s) defines affine minorizer to f with slope s:
f(@)

7f*y/ (51 _1)
where f*(s) decides the constant offset to have support at z*

® “Affine minorizor generator: Pick slope s, get offset for support”
® Why? Consider f*(s) = sup (s”z — f(z)) with maximizer z*:

f*(s) = stz — f(2*) & f*(s) > sTx — f(z) for all
= f(x) > sTa — f*(s) for all

)
® Support at z* since f(z*) = sTx* — f*(s)



Consequence

® Conjugate of f and envf are the same, i.e., f* = (envf)*

f(z) env f(x)
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® Functions have same supporting affine functions

® Epigraphs have same supporting hyperplanes



Conjugate function — Example

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|z f(s)

(=2,-1)

Slope, s =—2 f*(s)



Conjugate function — Example

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|z f(s)

00 =X- -~

(=2,-1)

Slope, s =—2 f*(s) = o



Conjugate function — Example

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|z f(s)

(=1, -1)

Slope, s =—1 f*(s)



Conjugate function — Example

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|z f(s)

(=1, -1)



Conjugate function — Example

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|z f(s)

(—0.5, —1)

Slope, s =—0.5  f*(s)



Conjugate function — Example

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|z f(s)

(—0.5, —1)

Slope, s =—0.5 f*(s) =0



Conjugate function — Example

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|z f(s)

(0, -1)
Slope, s =0 f*(s)



Conjugate function — Example

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|z f(s)

(0, -1)
Slope, s =0 f*(s) =0



Conjugate function — Example

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|z f(s)

(0.5, —1)

Slope, s =0.5 f*(s)



Conjugate function — Example

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|z f(s)

(0.5, —1)

Slope, s =0.5 f*(s) =0



Conjugate function — Example

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|z f(s)

(1, -1)

Slope, s =1 f*(s)



Conjugate function — Example

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|z f(s)

(1, -1)

Slope, s =1 f*(s) =0



Conjugate function — Example

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|z f(s)

(2, -1)
T

Slope, s =2 f*(s)



Conjugate function — Example

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|z f(s)

(2, -1)
T

Slope, s =2 f*(s) = o

o Conjugate is f*(s) = 1/_1,1)(5)



Conjugate function properties

® Let a,(s) := sTx — f(x) be affine function parameterized by z:

[i(s) = sup az(s)

is supremum of family of affine functions
® Epigraph of f* is intersection of epigraphs of (below three) a,

epif*
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® f* convex: epigraph intersection of convex halfspaces epia,
® f* closed: epigraph intersection of closed halfspaces epia,



Draw the conjugate

® Draw conjugate of f (f(xz) = oo outside points)
f(=)

(0,0.2)
(-1,0) (1,0)




Draw the conjugate

® Draw conjugate of f (f(xz) = oo outside points)
f(x) fr(s)
—s540 s+0

(0,02) .
(-1,0) (1,0) — T 0s — 0.2

® Draw all affine a,(s) and select for each s the max to get f*(s)

f*(s) =sup(sz — f(z)) = max(—s — 0,0s — 0.2,s — 0,28 — 0)

x

= max(—s,—0.2,s) = |



Biconjugate

® Biconjuate f** := (f*)* is conjugate of conjugate
® For every z, it is largest value of all affine minorizers

f(@)
X f(zo)
/o f**(x0)
\ //’
AN 4
~ N s -7
~ N ;-
=<\ __Le--—==%"""
R S /,/:///;/
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® Why?: Biconjugate
F (@) = sup(al's — f*(s)),
T

® is pointwise supremum of affine functions as(z) :=x" s — f*(s)
® {as(z)}secrn are all supporting affine minorizers to f with slope s



Biconjugate and convex envelope

® Biconjugate is closed convex envelope

Hx
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o f** < fand f** = fif and only if f (closed and) convex
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Biconjugate — Example

® Draw the biconjugate of f (f(x) = oo outside points)
f(x)

(0,0.2)
(-1L0) | (10
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Biconjugate — Example

Draw the biconjugate of f (f(z) = oo outside points)
f(x) [ ()
0.0.2) i\ L
-1L0) | (10 |

Biconjugate is convex envelope of f
We found before f*(s) = [s[, and now (f*)*(x) = ¢|_1,1)()
Therefore also [, (s) = |s]

(since f* = (envf)" = (f*)" =: f")
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Fenchel Young's equality

® Going back to conjugate interpretation:

f(=)

sTa — f*(s)

s

(57 _1)

® Fenchel's inequality: f(z) > sTa — f*(s) for all z, s

® Fenchel-Young's equality and equivalence:

| f(2*) = s"a* — f*(s) holds if and only if s € Of (a7)
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A subdifferential formula

Assume f closed convex, then 0f(z) = Argmax,(s?x — f*(s)) ‘

® Since f** = f, we have f(z) = sup,(z7s — f*(s)) and
s* € Argmax(zTs — f*(s)) <= f(z) =2Ts" — f*(s*)
= s eif(x)

® The last equivalence is Fenchel-Young
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Subdifferential of conjugate

’5 € 0f (z) implies that = € 9f*(s) ‘

® Since f** < f and s € 9f(x), Fenchel-Young's equality gives:
0=f"(s)+ f(z) —sTa > f*(s) + f*(z) —sT2 >0

where last step is Fenchel’s inequality
® Hence f*(s) + f**(x) — sTx =0 and FY = z € 0f*(s)
® Apply result above to f* to get corollary:

’Jj € 9f*(s) implies that s € 0f**(x) ‘

15



Subdifferential of conjugate — Inversion formula

Suppose f closed convex, then s € 0f(z) < z € Jf*(s) ‘

® Using what we have on previous slide and f** = f:
s€df(x)=2€df(s)=s€df(z)=se€df(x)
® Another way to write the result is that for closed convex f:
af =(f)~"

(Definition of inverse of set-valued A: x € A™'u < u € Ax)

16



Relation between subdifferentials — Example

® What is 0f* for below 0f7?

s € 0f(x)



Relation between subdifferentials — Example

® What is 0f* for below 0f7?

s € 0f(x)

z € 9f*(s)

e Since f* = (0f)~ !, we flip the figure

17



Another example

s € 0f(x)

x € f*(s)

® region with slope o in 9f(x) < region with slope < in 0f*(s)

® Implication: df o-strong monotone < Jf*(s) o-cocoercive?
1

(Recall: o-cocoercivity < —-Lipschitz and monotone)

18



Cocoercivity and strong monotonicity

df : R™ — 2%" maximal monotone and o-strongly monotone
<
af* =V f*:R — R single-valued and o-cocoercive

o-strong monotonicity: for all uw € 9f(x) and v € df(y)
(u—v)"(x—y) >0olz—yl3 (1)

or equivalently for all x € 9f*(u) and y € 9f*(v)
af* is single-valued:

® Assume z € 9f"(u) and y € f*(u), then lhs of (1) 0O and z =y
V f* is o-cocoercive: plug x = Vf*(u) and y = Vf*(v) into (1)
That 0f* has full domain follows from Minty's theorem

19



Duality correspondance

Let f:R™ — RU {oo}. Then the following are equivalent:

(i) f is closed and o-strongly convex
(i) Of is maximally monotone and o-strongly monotone
(iii) Vf* is o-cocoercive
(iv) Vf* is maximally monotone and L1-Lipschitz continuous
g
L_smooth)

(v) f* is closed convex and satisfies descent lemma (is -
where Vf*: R” = R” and f* : R" = R
Comments:
e (i) < (ii) and (iii) < (iv) < (v): Previous lecture
e (i) < (iii): This lecture
® Since f = f** the result holds with f and f* interchanged
® Full proof available on course webpage
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Proximal operator

® Recall: prox,,(2) = argmin, (g(z) + %Hx —2|13)

Assume g closed convex, then prox.  (z) is 1-cocoercive

® The function r = ~vg + 3| - [|3 is 1-strongly convex and

pros.,,(2) = argmin(g(x) + 5= [l — =[3)
(—79(x) = Sz - 213)

= argmax(="z — (§2]3 +9(2)))
(T ()

= argmax

= argmax(z
= Vi (2)

where we have used the subgradient formula for r*
® Therefore prox,, = Vr* is 1-cocoercive
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Moreau decomposition

Assume [ closed convex, then prox;(z) + prox;.(z) = 2

® When f scaled by v > 0, it becomes
z = Prox. ¢(2) + prox(, sy« (2) = prox, s () + yprox, -1 . (v '2)

(since prox, sy« = Yprox. -1 . oy~ '1d)
® Don't need to know f* to compute prox. s.!
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Optimality Conditions and Duality

23



Composite optimization problem

® Consider primal composite optimization problem
minimize f(Lz) + g(x) (2)

where f, g closed convex

® We will derive primal-dual optimality conditions and dual problem

24



Primal optimality condition

Let f:R™ - R, g: R® = R, L € R™*" with f, g closed convex
and assume CQ, then:

minimize f(Lz) + g(z) (1)
is solved by « € R™ if and only if x satisfies

0c LTof(Lx) + dg(x) (2)

® CQ implies subdifferential calculus with equality:
0 € LT9f(La) + dg(x) = ((f o L)(x) + g())

which by Fermat's rule is equivalent to x solution to (1)

25



Primal-dual optimality condition 1

¢ Introduce dual variable p € 9f(Lx), then optimality condition

0c LT of(Lx) +0g(x)
——
”w

is equivalent to
n € of(Lx)
—L"p € dg(x)

® This is a necessary and sufficient primal-dual optimality condition
® (Primal-dual since involves primal x and dual 4 variables)

26



Primal-dual optimality condition 2

® Primal-dual optimality condition

n € of(Lx)
—L" € dg(x)

® Using subdifferential inverse:
u € 0f(Lx) = Lz € 0f*(n)
gives equivalent primal dual optimality condition

Lz € 0f"(p)
—L"p € dg(x)

27



Dual optimality condition

® Using subdifferential inverse on other condition
~L"p € 9g(x) = z € dg*(—L" )
gives equivalent primal dual optimality condition

Lz € 0f"(p)
x € dg* (=L p)

® This is equivalent to that:

0€0f*(n) —LAg* (=L ) = 0f* () + 0(g" o —L")(n)
————

x

which is a dual optimality condition since it involves only p

28



Dual problem

® The dual optimality condition (for solving primal problem)
0€df () +(g" o —L")(n) (1)
is sufficient optimality condition for dual problem:
min f*() +97(=L" p) )
e If contraint qualification holds on dual problem (2):
relint dom(g* o —LT) N relint domf* # 0,

which we call CQ-D, we have equivalence also in last step

Equivalence not needed in last step since (2) is solved via (1), which has solution.

29



Optimality conditions — Summary

Assume f, g closed convex and that CQ holds
Problem min, f(Lz) + g(z) is solved by z iff

0¢€ LTof(Lx) + 0g(x)

Primal dual necessary and sufficient optimality conditions:

w € Of (L) Lz € 0f*(n)
—L"p € dg(x) —L*p € dg(x)
p € df (Lx) Lz € 0f*(n)

x € dg* (L") x € dg*(—L" 1)

Dual optimality condition

0€df*(u)+08(g* o —L") ()

solves dual problem min,, f*(u) + ¢g* (=L 1)
If CQ-D holds, all dual problem solutions satisfy (1)

30



Solving the primal

We of course want to solve primal problem
minimize f(Lz) 4+ g(x)
x

Can be solved via primal, primal-dual, or dual optimality condition

In this course consider only solving via primal or dual condition:

0€df*(u) +0(g* o —LT) (1)

Why solve dual? Sometimes easier to solve than primal

Caveat: Only useful if primal solution can be obtained from dual
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Solving the primal from the dual

Assume f, g closed convex and CQ
Assume optimal dual o known: 0 € df*(u) + 9(g* o —LT)(p)
Optimal primal x must satisfy any and all primal-dual conditions:

w € Of (L) Lz € 0f*(n)
—L"p € dg(x) —L*p € dg(x)
p € df (Lz) Lz € 0f*(n)

x € dg* (L") x € g™ (=L )

If one of these uniquely characterizes x, then must be solution:

® g™ is differentiable at —L” i1 for dual solution

® Jf* is differentiable at dual solution p and L invertible
e ...

32



A dual problem interpretation

® let L = I, consider dual problem min,, f*(px) 4+ ¢*(—p)
® Given CQ-D, p is solution to dual if and only if

p € df(x)
—p € 9g(x)
where z is a primal solution (z* in figure below)

® “Dual problem searches subgradients of f and g that sum to 0"

f+g

® To solve primal, must find corresponding point x*

33



Fenchel duality - A minmax formulation

® Write the problem min f(Lx) 4+ g(z) on equivalent form
x

minimize  f(y) + g(z)
subject to Lz =y

® Equivalent formulation with indicator functions:
minimize  f(y) + g(z) + tqoy (Lx — y)
where the indicator function is defined as

0 ifLr—y=0

oo else

L{o}(Lgﬂ —y) = {

34



Reformulation

® We can show (an exercise) that:
toy(,y) = supp” (Lz — y)
”w

(this u is the same as the u in previous dual formulation)
® Therefore problem is equivalent to

inf (f(y) + g(x) +sup " (La — y))

z,y I
or equivalently
inf sup (f(y) + g(z) + u" (L - y))

Y

35



Fenchel weak duality

® We always have:

inf(f(Le) + g(z))

= inf stip(f(y) +9(z) +p" (Lx —y))

> supinf (f) +g(x) + p" (Lz — y))

= sup —(sup (= f(y) — g(x) + p" (~Lz +y)) )

= sup (- (sgp (W= fly) + sup (2" (=L p) — g(2))))
= sup (—f* () — 9" (=L ),

which is (concave negative) dual problem from before
® This is called weak duality
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Fenchel strong duality

Let f:R™ - R, g:R" = R, L € R™*" with f, g closed convex
and assume CQ, then:

if(f(Lx) + g(x)) = max (=f"(p) = g"(=L" )

® A dual solution exists and optimal values coincide

® Proof steps:
® Show that solution set to dual is compact under assumption
® Use Sion's minimax theorem to have equality on previous slide

® Slight generalization useful to show subdifferential calculus rules
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Lagrange duality

® Lagrange duality can be derived from Fenchel duality and vice
versa

® KKT conditions in Lagrange duality can be derived from
optimality conditions in this lecture

38



Conjugate examples
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Conjugate — Example 1

Let g(z) = 22T Hx + hTx with H positive definite (invertible)

® Gradient satisfies Vg(x) = Hx + h
® Fermat's rule for g*(s) = sup, (s7x — g(z)):

=s5—-Vg(x) & O0=Hr+h-s < x=H '(s—h)
* So

g (s)=s"H '(s—h)—3(s—h)H 'HH (s —h) + h"H ' (s — h)

=Li(s—h)H '(s—h)
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Conjugate — Example 2

e Consider

—r—1 ifa<-1

g(x) =40 if z € [—1,1]
z—1 ifz>1

® Subdifferential satisfies

1 ifa<-1 99(x)
(~1,0] ifz=—1 I
dg(z) =<0 if z € (—1,1) x
[0,1] ifz=1
1 ifz>1
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Conjugate — Example 2 cont’'d

o W

[¢)

use g*(s) = sz — g(x) if s € dg(x):

x<—1: s=-1hence g"(-1) = -1z — (—z—1) =1
xz=—1: s € [-1,0] hence g*(s) = —s — 0= —s

z € (—1,1): s=0hence ¢g*(0) =0z —-0=0
x=1:s€][0,1] hence g*(s) =s—0=3s
z>1:s=1lhenceg*(l)=z—(z—1)=1

® Thatis

ey )—s ifse[=1,0]
g(s)—{s if s €10,1]

® Fors<—1and s> 1, g*(s) = oc:
® s<—liletz=t— —ocoand g"(s) > ((s+1)t+1) = o0
®s>1l:letz=t—o0and g*(s) > ((s—1)t+1) >
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