Conjugate Functions, Optimality Conditions, and Duality

Pontus Giselsson

Learning goals

- Able to derive conjugate formulas
- Able to prove convexity of conjugate
- Know that biconjugate is convex envelope
- Know when $\partial f = (\partial f^*)^{-1}$ holds
- Know Fenchel-Young's inequality and when equality holds
- Know that strong convexity and smoothness are dual properties
- Formulate Fenchel dual problem in general and for examples
- Derive dual problem with primal-dual optimality conditions
- Able to recover primal solution
- Be aware of inf-sup interpretation in derivation of dual problem

Conjugate Functions

Conjugate functions

• The conjugate function of $f:\mathbb{R}^n\to\mathbb{R}\cup\{\infty\}$ is defined as

$$f^*(s) := \sup_x \left(s^T x - f(x) \right)$$

• Implicit definition via optimization problem

Conjugate interpretation

• Conjugate $f^*(s)$ defines affine minorizer to f with slope s:

where $f^{\ast}(s)$ decides the constant offset to have support at x^{\ast}

- "Affine minorizor generator: Pick slope s, get offset for support"
- Why? Consider $f^*(s) = \sup_x (s^T x f(x))$ with maximizer x^* :

$$\begin{split} f^*(s) &= s^T x^* - f(x^*) & \Leftrightarrow & f^*(s) \geq s^T x - f(x) \text{ for all } x \\ &\Leftrightarrow & f(x) \geq s^T x - f^*(s) \text{ for all } x \end{split}$$

• Support at x^* since $f(x^*) = s^T x^* - f^*(s)$

Consequence

• Conjugate of f and $\mathrm{env} f$ are the same, i.e., $f^* = (\mathrm{env} f)^*$

- Functions have same supporting affine functions
- Epigraphs have same supporting hyperplanes

- Compute conjugate of f(x) = |x|
- For given slope $s:\; -f^*(s)$ is point that crosses |x|-axis

Slope, s = -2 $f^*(s)$

- Compute conjugate of f(x) = |x|
- For given slope $s: -f^*(s)$ is point that crosses |x|-axis

Slope, s = -2 $f^*(s) \to \infty$

- Compute conjugate of f(x) = |x|
- For given slope $s: -f^*(s)$ is point that crosses |x|-axis

- Compute conjugate of f(x) = |x|
- For given slope $s: -f^*(s)$ is point that crosses |x|-axis

- Compute conjugate of f(x) = |x|
- For given slope $s: -f^*(s)$ is point that crosses |x|-axis

- Compute conjugate of f(x) = |x|
- For given slope $s: -f^*(s)$ is point that crosses |x|-axis

- Compute conjugate of f(x) = |x|
- For given slope $s:\; -f^*(s)$ is point that crosses |x|-axis

- Compute conjugate of f(x) = |x|
- For given slope $s:\; -f^*(s)$ is point that crosses |x|-axis

- Compute conjugate of f(x) = |x|
- For given slope $s: -f^*(s)$ is point that crosses |x|-axis

- Compute conjugate of f(x) = |x|
- For given slope $s: -f^*(s)$ is point that crosses |x|-axis

Slope, s = 0.5 $f^*(s) = 0$

- Compute conjugate of f(x) = |x|
- For given slope $s: -f^*(s)$ is point that crosses |x|-axis

- Compute conjugate of f(x) = |x|
- For given slope $s: -f^*(s)$ is point that crosses |x|-axis

- Compute conjugate of f(x) = |x|
- For given slope $s:\; -f^*(s)$ is point that crosses |x|-axis

Slope, s = 2 $f^*(s)$

- Compute conjugate of f(x) = |x|
- For given slope $s{:}~-f^*(s)$ is point that crosses $|x|{\text{-}}{\operatorname{axis}}$

Slope, s = 2 $f^*(s) \to \infty$

• Conjugate is $f^*(s) = \iota_{[-1,1]}(s)$

Conjugate function properties

• Let $a_x(s) := s^T x - f(x)$ be affine function parameterized by x:

$$f^*(s) = \sup_x a_x(s)$$

is supremum of family of affine functions

• Epigraph of f^* is intersection of epigraphs of (below three) a_x

- f^* convex: epigraph intersection of convex halfspaces epi a_x
- f^* closed: epigraph intersection of closed halfspaces epi a_x

Draw the conjugate

• Draw conjugate of $f(f(x) = \infty$ outside points)

Draw the conjugate

• Draw conjugate of $f(f(x) = \infty$ outside points)

• Draw all affine $a_x(s)$ and select for each s the max to get $f^*(s)$

$$f^*(s) = \sup_{x} (sx - f(x)) = \max(-s - 0, 0s - 0.2, s - 0, xs - \infty)$$
$$= \max(-s, -0.2, s) = |s|$$

Biconjugate

- Biconjuate $f^{**} := (f^*)^*$ is conjugate of conjugate
- For every x, it is largest value of all affine minorizers

Why?: Biconjugate

$$f^{**}(x) = \sup_{s} (x^T s - f^*(s)),$$

- is pointwise supremum of affine functions $a_s(x) := x^T s f^*(s)$
- $\{a_s(x)\}_{s\in \mathbb{R}^n}$ are all supporting affine minorizers to f with slope s

Biconjugate and convex envelope

• Biconjugate is closed convex envelope

• $f^{**} \leq f$ and $f^{**} = f$ if and only if f (closed and) convex

Biconjugate – Example

• Draw the biconjugate of $f(f(x) = \infty$ outside points)

Biconjugate – Example

• Draw the biconjugate of $f(f(x) = \infty$ outside points)

- Biconjugate is convex envelope of f
- We found before $f^*(s) = |s|$, and now $(f^*)^*(x) = \iota_{[-1,1]}(x)$

• Therefore also
$$\iota_{[-1,1]}^*(s) = |s|$$

(since $f^* = (envf)^* = (f^{**})^* =: f^{***}$)

Fenchel Young's equality

• Going back to conjugate interpretation:

- Fenchel's inequality: $f(x) \ge s^T x f^*(s)$ for all x, s
- Fenchel-Young's equality and equivalence:

 $f(x^*) = s^T x^* - f^*(s)$ holds if and only if $s \in \partial f(x^*)$

A subdifferential formula

Assume f closed convex, then $\partial f(x) = \operatorname{Argmax}_s(s^Tx - f^*(s))$

- Since $f^{**} = f$, we have $f(x) = \sup_s (x^T s f^*(s))$ and $s^* \in \underset{s}{\operatorname{Argmax}} (x^T s - f^*(s)) \iff f(x) = x^T s^* - f^*(s^*)$ $\iff s^* \in \partial f(x)$
- The last equivalence is Fenchel-Young

Subdifferential of conjugate

 $s \in \partial f(x)$ implies that $x \in \partial f^*(s)$

• Since $f^{**} \leq f$ and $s \in \partial f(x)$, Fenchel-Young's equality gives:

$$0 = f^*(s) + f(x) - s^T x \ge f^*(s) + f^{**}(x) - s^T x \ge 0$$

where last step is Fenchel's inequality

- Hence $f^*(s) + f^{**}(x) s^T x = 0$ and FY $\Rightarrow x \in \partial f^*(s)$
- Apply result above to f^* to get corollary:

 $x \in \partial f^*(s)$ implies that $s \in \partial f^{**}(x)$

Subdifferential of conjugate – Inversion formula

Suppose f closed convex, then $s \in \partial f(x) \iff x \in \partial f^*(s)$

• Using what we have on previous slide and $f^{**} = f$:

$$s \in \partial f(x) \Rightarrow x \in \partial f^*(s) \Rightarrow s \in \partial f^{**}(x) \Rightarrow s \in \partial f(x)$$

• Another way to write the result is that for closed convex *f*:

$$\partial f^* = (\partial f)^{-1}$$

(Definition of inverse of set-valued A: $x \in A^{-1}u \iff u \in Ax$)

Relation between subdifferentials – Example

• What is ∂f^* for below ∂f ?

Relation between subdifferentials – Example

- Since $\partial f^* = (\partial f)^{-1},$ we flip the figure

Another example

- region with slope σ in $\partial f(x) \Leftrightarrow$ region with slope $\frac{1}{\sigma}$ in $\partial f^*(s)$
- Implication: $\partial f \sigma$ -strong monotone $\Leftrightarrow \partial f^*(s) \sigma$ -cocoercive? (Recall: σ -cocoercivity $\Leftrightarrow \frac{1}{\sigma}$ -Lipschitz and monotone)

Cocoercivity and strong monotonicity

 $\partial f: \mathbb{R}^n \to 2^{\mathbb{R}^n}$ maximal monotone and σ -strongly monotone \Longleftrightarrow $\partial f^* = \nabla f^*: \mathbb{R} \to \mathbb{R}$ single-valued and σ -cocoercive

• σ -strong monotonicity: for all $u \in \partial f(x)$ and $v \in \partial f(y)$

$$(u-v)^T (x-y) \ge \sigma ||x-y||_2^2$$
 (1)

or equivalently for all $x \in \partial f^*(u)$ and $y \in \partial f^*(v)$

- ∂f^* is single-valued:
 - Assume $x \in \partial f^*(u)$ and $y \in \partial f^*(u)$, then lhs of (1) 0 and x = y
- ∇f^* is σ -cocoercive: plug $x = \nabla f^*(u)$ and $y = \nabla f^*(v)$ into (1)
- That ∂f^* has full domain follows from Minty's theorem

Duality correspondance

Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$. Then the following are equivalent:

- (i) f is closed and σ -strongly convex
- (ii) ∂f is maximally monotone and σ -strongly monotone
- (iii) ∇f^* is σ -cocoercive
- (iv) ∇f^* is maximally monotone and $\frac{1}{\sigma}$ -Lipschitz continuous
- (v) f^* is closed convex and satisfies descent lemma (is $\frac{1}{\sigma}$ -smooth)

where
$$\nabla f^* : \mathbb{R}^n \to \mathbb{R}^n$$
 and $f^* : \mathbb{R}^n \to \mathbb{R}$

Comments:

- (i) \Leftrightarrow (ii) and (iii) \Leftrightarrow (iv) \Leftrightarrow (v): Previous lecture
- (ii) \Leftrightarrow (iii): This lecture
- $\bullet\,$ Since $f=f^{**}$ the result holds with f and f^* interchanged
- Full proof available on course webpage

Proximal operator

• Recall:
$$\operatorname{prox}_{\gamma g}(z) = \operatorname{argmin}_x(g(x) + \frac{1}{2\gamma} ||x - z||_2^2)$$

Assume g closed convex, then $prox_{\gamma g}(z)$ is 1-cocoercive

• The function $r = \gamma g + \frac{1}{2} \| \cdot \|_2^2$ is 1-strongly convex and

$$prox_{\gamma g}(z) = \operatorname{argmin}(g(x) + \frac{1}{2\gamma} ||x - z||_2^2)$$

= $\operatorname{argmax}(-\gamma g(x) - \frac{1}{2} ||x - z||_2^2)$
= $\operatorname{argmax}(z^T x - (\frac{1}{2} ||x||_2^2 + \gamma g(x)))$
= $\operatorname{argmax}(z^T x - r(x))$
= $\nabla r^*(z)$

where we have used the subgradient formula for r^*

• Therefore $\operatorname{prox}_{\gamma g} = \nabla r^*$ is 1-cocoercive

Moreau decomposition

Assume f closed convex, then $prox_f(z) + prox_{f^*}(z) = z$

• When f scaled by $\gamma > 0$, it becomes

 $z = \operatorname{prox}_{\gamma f}(z) + \operatorname{prox}_{(\gamma f)^*}(z) = \operatorname{prox}_{\gamma f}(z) + \gamma \operatorname{prox}_{\gamma^{-1} f^*}(\gamma^{-1} z)$

(since $\operatorname{prox}_{(\gamma f)^*} = \gamma \operatorname{prox}_{\gamma^{-1} f^*} \circ \gamma^{-1} \operatorname{Id}$)

• Don't need to know f^* to compute $prox_{\gamma f^*}!$

Optimality Conditions and Duality

Composite optimization problem

• Consider primal composite optimization problem

minimize
$$f(Lx) + g(x)$$
 (2)

where $f,g \ {\rm closed} \ {\rm convex}$

• We will derive primal-dual optimality conditions and dual problem

Primal optimality condition

Let $f : \mathbb{R}^m \to \overline{\mathbb{R}}, g : \mathbb{R}^n \to \overline{\mathbb{R}}, L \in \mathbb{R}^{m \times n}$ with f, g closed convex and assume CQ, then: minimize f(Lx) + g(x) (1) is solved by $x \in \mathbb{R}^n$ if and only if x satisfies $0 \in L^T \partial f(Lx) + \partial g(x)$ (2)

• CQ implies subdifferential calculus with equality:

$$0 \in L^T \partial f(Lx) + \partial g(x) = \partial((f \circ L)(x) + g(x))$$

which by Fermat's rule is equivalent to x solution to (1)

Primal-dual optimality condition 1

• Introduce dual variable $\mu \in \partial f(Lx)$, then optimality condition

$$0 \in L^T \underbrace{\partial f(Lx)}_{\mu} + \partial g(x)$$

is equivalent to

$$\mu \in \partial f(Lx)$$
$$-L^T \mu \in \partial g(x)$$

- This is a necessary and sufficient primal-dual optimality condition
- (*Primal-dual* since involves primal x and dual μ variables)

Primal-dual optimality condition 2

• Primal-dual optimality condition

$$\mu \in \partial f(Lx)$$
$$-L^T \mu \in \partial g(x)$$

• Using subdifferential inverse:

$$\mu \in \partial f(Lx) \qquad \Longleftrightarrow \qquad Lx \in \partial f^*(\mu)$$

gives equivalent primal dual optimality condition

$$Lx \in \partial f^*(\mu)$$
$$-L^T \mu \in \partial g(x)$$

Dual optimality condition

• Using subdifferential inverse on other condition

$$-L^T \mu \in \partial g(x) \qquad \Longleftrightarrow \qquad x \in \partial g^*(-L^T \mu)$$

gives equivalent primal dual optimality condition

$$Lx \in \partial f^*(\mu)$$
$$x \in \partial g^*(-L^T\mu)$$

• This is equivalent to that:

$$0 \in \partial f^*(\mu) - L \underbrace{\partial g^*(-L^T \mu)}_x = \partial f^*(\mu) + \partial (g^* \circ -L^T)(\mu)$$

which is a dual optimality condition since it involves only μ

Dual problem

• The dual optimality condition (for solving primal problem)

$$0 \in \partial f^*(\mu) + \partial (g^* \circ -L^T)(\mu)$$
(1)

is sufficient optimality condition for dual problem:

$$\min_{\mu} f^*(\mu) + g^*(-L^T \mu)$$
 (2)

• If contraint qualification holds on *dual* problem (2):

relint dom
$$(g^* \circ -L^T) \cap$$
 relint dom $f^* \neq \emptyset$,

which we call CQ-D, we have equivalence also in last step

Equivalence not needed in last step since (2) is solved via (1), which has solution.

Optimality conditions – Summary

- Assume f,g closed convex and that CQ holds
- Problem $\min_x f(Lx) + g(x)$ is solved by x iff

$$0 \in L^T \partial f(Lx) + \partial g(x)$$

• Primal dual necessary and sufficient optimality conditions:

$$\begin{cases} \mu \in \partial f(Lx) \\ -L^T \mu \in \partial g(x) \end{cases} \begin{cases} Lx \in \partial f^*(\mu) \\ -L^* \mu \in \partial g(x) \end{cases} \\ \begin{cases} \mu \in \partial f(Lx) \\ x \in \partial g^*(-L^T \mu) \end{cases} \begin{cases} Lx \in \partial f^*(\mu) \\ x \in \partial g^*(-L^T \mu) \end{cases}$$

• Dual optimality condition

$$0 \in \partial f^*(\mu) + \partial (g^* \circ -L^T)(\mu) \tag{1}$$

solves dual problem $\min_{\mu} f^*(\mu) + g^*(-L^T\mu)$

• If CQ-D holds, all dual problem solutions satisfy (1)

Solving the primal

• We of course want to solve primal problem

$$\min_{x} \inf f(Lx) + g(x)$$

- Can be solved via primal, primal-dual, or dual optimality condition
- In this course consider only solving via primal or dual condition:

$$0\in \partial f^*(\mu)+\partial (g^*\circ -L^T)(\mu)$$

- Why solve dual? Sometimes easier to solve than primal
- Caveat: Only useful if primal solution can be obtained from dual

Solving the primal from the dual

- Assume f,g closed convex and CQ
- Assume optimal dual μ known: $0\in \partial f^*(\mu)+\partial (g^*\circ -L^T)(\mu)$
- Optimal primal x must satisfy any and all primal-dual conditions:

$$\begin{cases} \mu \in \partial f(Lx) \\ -L^T \mu \in \partial g(x) \end{cases} \begin{cases} Lx \in \partial f^*(\mu) \\ -L^* \mu \in \partial g(x) \end{cases} \\ \begin{cases} \mu \in \partial f(Lx) \\ x \in \partial g^*(-L^T \mu) \end{cases} \begin{cases} Lx \in \partial f^*(\mu) \\ x \in \partial g^*(-L^T \mu) \end{cases}$$

- If one of these uniquely characterizes x, then must be solution:
 - ∂g^* is differentiable at $-L^T \mu$ for dual solution μ
 - ∂f^* is differentiable at dual solution μ and L invertible
 - ...

A dual problem interpretation

- Let L = I, consider dual problem $\min_{\mu} f^*(\mu) + g^*(-\mu)$
- Given CQ-D, μ is solution to dual if and only if

$$\begin{cases} \mu \in \partial f(x) \\ -\mu \in \partial g(x) \end{cases}$$

where x is a primal solution (x^* in figure below)

• "Dual problem searches subgradients of f and g that sum to 0"

• To solve primal, must find corresponding point x^*

Fenchel duality - A minmax formulation

- Write the problem $\min_x f(Lx) + g(x)$ on equivalent form

 $\begin{array}{ll} \mbox{minimize} & f(y) + g(x) \\ \mbox{subject to} & Lx = y \end{array}$

• Equivalent formulation with indicator functions:

minimize
$$f(y) + g(x) + \iota_{\{0\}}(Lx - y)$$

where the indicator function is defined as

$$\iota_{\{0\}}(Lx-y) = \begin{cases} 0 & \text{if } Lx-y=0 \\ \infty & \text{else} \end{cases}$$

Reformulation

• We can show (an exercise) that:

$$\iota_{\{0\}}(x,y) = \sup_{\mu} \mu^T (Lx - y)$$

(this μ is the same as the μ in previous dual formulation)

• Therefore problem is equivalent to

$$\inf_{x,y}\left(f(y)+g(x)+\sup_{\mu}\mu^T(Lx-y)\right)$$

or equivalently

$$\inf_{x,y} \sup_{\mu} \left(f(y) + g(x) + \mu^T (Lx - y) \right)$$

Fenchel weak duality

• We always have:

$$\begin{split} &\inf_{x} (f(Lx) + g(x)) \\ &= \inf_{x,y} \sup_{\mu} (f(y) + g(x) + \mu^{T}(Lx - y)) \\ &\geq \sup_{\mu} \inf_{x,y} \left(f(y) + g(x) + \mu^{T}(Lx - y) \right) \\ &= \sup_{\mu} - \left(\sup_{x,y} \left(-f(y) - g(x) + \mu^{T}(-Lx + y) \right) \right) \\ &= \sup_{\mu} \left(- \left(\sup_{y} \left(y^{T}\mu - f(y) \right) + \sup_{x} \left(x^{T}(-L^{T}\mu) - g(x) \right) \right) \right) \\ &= \sup_{\mu} \left(-f^{*}(\mu) - g^{*}(-L^{T}\mu) \right), \end{split}$$

which is (concave negative) dual problem from before

• This is called *weak duality*

Fenchel strong duality

Let
$$f : \mathbb{R}^m \to \overline{\mathbb{R}}, g : \mathbb{R}^n \to \overline{\mathbb{R}}, L \in \mathbb{R}^{m \times n}$$
 with f, g closed convex
and assume CQ, then:
$$\inf_x (f(Lx) + g(x)) = \max_\mu \left(-f^*(\mu) - g^*(-L^T\mu) \right)$$

- A dual solution exists and optimal values coincide
- Proof steps:
 - Show that solution set to dual is compact under assumption
 - Use Sion's minimax theorem to have equality on previous slide
- Slight generalization useful to show subdifferential calculus rules

Lagrange duality

- Lagrange duality can be derived from Fenchel duality and vice versa
- KKT conditions in Lagrange duality can be derived from optimality conditions in this lecture

Conjugate examples

Conjugate – Example 1

Let $g(x) = \frac{1}{2}x^THx + h^Tx$ with H positive definite (invertible)

- Gradient satisfies $\nabla g(x) = Hx + h$
- Fermat's rule for $g^*(s) = \sup_x (s^T x g(x))$:

$$0 = s - \nabla g(x) \quad \Leftrightarrow \quad 0 = Hx + h - s \quad \Leftrightarrow \quad x = H^{-1}(s - h)$$

• So

$$g^*(s) = s^T H^{-1}(s-h) - \frac{1}{2}(s-h)H^{-1}HH^{-1}(s-h) + h^T H^{-1}(s-h)$$

= $\frac{1}{2}(s-h)H^{-1}(s-h)$

Conjugate – Example 2

• Consider

$$g(x) = \begin{cases} -x - 1 & \text{if } x \le -1 \\ 0 & \text{if } x \in [-1, 1] \\ x - 1 & \text{if } x \ge 1 \end{cases}$$

• Subdifferential satisfies

$$\partial g(x) = \begin{cases} -1 & \text{if } x < -1 & & \partial g(x) \\ [-1,0] & \text{if } x = -1 & & & \\ 0 & \text{if } x \in (-1,1) & & & & \\ [0,1] & \text{if } x = 1 & & & \\ 1 & \text{if } x > 1 & & & \\ \end{cases}$$

Conjugate – Example 2 cont'd

• We use
$$g^*(s) = sx - g(x)$$
 if $s \in \partial g(x)$:
• $x < -1$: $s = -1$, hence $g^*(-1) = -1x - (-x - 1) = 1$
• $x = -1$: $s \in [-1, 0]$ hence $g^*(s) = -s - 0 = -s$
• $x \in (-1, 1)$: $s = 0$ hence $g^*(0) = 0x - 0 = 0$
• $x = 1$: $s \in [0, 1]$ hence $g^*(s) = s - 0 = s$
• $x > 1$: $s = 1$ hence $g^*(1) = x - (x - 1) = 1$

• That is

$$g^*(s) = \begin{cases} -s & \text{if } s \in [-1, 0] \\ s & \text{if } s \in [0, 1] \end{cases}$$

• For s < -1 and s > 1, $g^*(s) = \infty$:

- s < -1: let $x = t \to -\infty$ and $g^*(s) \ge ((s+1)t+1) \to \infty$
- s > 1: let $x = t \to \infty$ and $g^*(s) \ge ((s-1)t+1) \to \infty$