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2

Black-Box Models

2.1 Consider the system

ẋ = Ax(t) + Bu(t) (2.1)
y(t) = Cx(t) (2.2)

with the input u(t) = δ (t), output y and the state x ∈ Rn. Multiplication

by the integrating factor e−At gives

e−At ẋ(t) − Ae−Atx(t) = e−AtBu(t) (2.3)

where the left-hand side of Eq. (2.3) can be reformulated as

e−At ẋ(t) − Ae−Atx(t) = d
dt
(e−Atx(t))

Integration of both hand sides of (2.3) over the time interval [t0, t] gives

e−Atx(t) − e−At0x(t0) =
∫ t

t0

e−AsBu(s)ds

so that

x(t) = eA(t−t0)x(t0) +
∫ t

t0

eA(t−s)Bu(s)ds

Evaluation of the effect of the input u(t) = δ (t) thus gives

x(t) = eA(t−t0)x(t0) +
∫ t

t0

eA(t−s)Bu(s)ds (2.4)

= eA(t−t0)x(t0) +
∫ t

t0

eA(t−s)Bδ (s)ds (2.5)

= eA(t−t0)x(t0) + eAtB (2.6)

1



2 2 Chap. 2

and for the output

y(t) = Cx(t) = CeA(t−t0)x(t0) +
∫ t

t0

CeA(t−s)Bu(s)ds (2.7)

The output y(t) = Cx(t) is thus

y(t) = CeA(t−t0)x(t0) + CeAtB

which is a sum of the initial value response CeA(t−t0)x(t0) and the impulse
response �(t) = CeAtB. The analytic expression (2.7) for the output can
thus be reformulated

y(t) = Cx(t) = CeA(t−t0)x(t0) +
∫ t

t0

CeA(t−s)Bu(s) (2.8)

= CeA(t−t0)x(t0) +
∫ t

t0

�(t− s)u(s)ds (2.9)

which is on the mathematical form of a convolution.

In the case that t0 = 0 and x(t0) = x(0) = x0 we thus have the initial value
response CeAtx0.

2.2 A rectangular pulse input

u(t) =
{
1/T , 0 ≤ t ≤ T
0, t > T and t < 0 (2.10)

gives the output response

y(t) =





1

T

∫ t

0

�(τ )dτ , 0 ≤ t ≤ T

1

T

∫ t

0

�(τ )dτ − 1
T

∫ t−T

0

�(τ )dτ , t ≥ T
(2.11)

If we denote the system step response by

s(t) = 1
T

∫ t

0

�(τ )dτ

then we can express the system output as

y(t) =
{
s(t), 0 ≤ t ≤ T
s(t) − s(t− T), t > T (2.12)

©Rolf Johansson, 2008-2014
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Figure 2.1 Pulse response and calculated impulse response �̂(t) of a system
with the transfer function G(s) = 1/(s2 + s+ 1).

and we can compute the step response s(t) from the output y(t) as

s(t) =
{
y(t), 0 ≤ t ≤ T
y(t) + s(t− T), t > T (2.13)

The impulse response �(t) is then obtained as

�(t) = T d
dt
s(t) (2.14)

which has to be done by means of numerical differentiation. An approxi-

mate procedure applicable to regularly sampled data with a sampling pe-

riod h can be done according to the formula

�̂(kh) = 1
h
(y(kh) − y((k− 1)h) + �̂(kh− T) (2.15)

2.3 We consider a case of noise corrupted frequency response analysis with an

integration time T = k ⋅ (2π /ω ) for k ∈ Z+ —i.e., k full periods of the test

©Rolf Johansson, 2008-2014



4 2 Chap. 2

frequency sinusoid. The noise signal ν(t) is assumed to affect the output
of the system. The goal is to determine pG(iω )p and φ(ω ) from the system
with the stationary output

y(t) = pG(iω )p sin(ω t+ φ(ω )), φ(ω ) = arg G(iω ) (2.16)

The output from the integrators

sT =
∫ T

0

(y(t) +ν(t)) sinω tdt = 1
2
T pG(iω )p cosφ(ω ) +

∫ T

0

ν(t) sinω tdt

= 1

2
TRe (G(iω )) + ∆sT (2.17)

cT =
∫ T

0

(y(t) +ν(t)) cosω tdt = 1
2
T pG(iω )p sinφ(ω ) +

∫ T

0

ν(t) cosω tdt

= 1

2
TIm (G(iω )) + ∆cT (2.18)

The transfer function estimate is thus

Ĝ(iω ) = 2
T
(sT + icT) = G(iω ) + ∆G(iω ) (2.19)

where the error in the transfer function estimate is

∆G(iω ) = 2
T
(∆sT + i∆cT) (2.20)

a. In the case of a sinusoidal disturbance ν(t) = Aν sinων t whereων ,= ω
we have

∆sT =
∫ T

0

Aν sinων t ⋅ sinω tdt (2.21)

= 1

2

∫ T

0

Aν (cos(ων −ω )t− cos(ων +ω )t)dt (2.22)

where we have used the standard trigonometric formula 2 sinα sin β =
cos(α − β ) − cos(α + β ). Integration of (2.21 ) gives

∆sT = 1

2
Aν [
sin(ων −ω )t

ων −ω
− sin(ων +ω )t

ων +ω
]T0 = (2.23)

= 1

2
Aν (
sin(ων

ω
2π k− 2π k)

ων −ω
−
sin(ων

ω
2π k+ 2π k)

ων +ω
) (2.24)

= Aνω

ω 2ν −ω 2
sin(ων

ω
2π k), ων ,= ω (2.25)

where we have used the circumstance that T is chosen as a full num-

ber of periods T = k ⋅ (2π /ω ) for any number k ∈ Z+.

©Rolf Johansson, 2008-2014
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The case of ων = ω gives

∆sT(ω ) =
∫ T

0

Aν sin
2ω tdt = 1

2
AνT

and so we can summarize for the sine channel

∆sT (ω ) =





Aνω

ω 2ν −ω 2
sin(ων

ω
2π k), ων ,= ω

12AνT , ων = ω

(2.26)

Similar calculations for the cosine channel for ων ,= ω gives

∆cT =
∫ T

0

Aν sinων t cosω tdt (2.27)

= 1

2

∫ T

0

Aν (sin(ων −ω )t+ sin(ων +ω )t)dt (2.28)

= 1

2
Aν [−

cos(ων −ω )t
ων −ω

− cos(ων +ω )t
ων +ω

]T0 (2.29)

= −1
2
Aν (
cos(2π kων

ω
− 2π k) − 1

ων −ω
+ cos(2π k

ων

ω + 2π k) − 1
ων +ω

)

= Aν
ων

ω 2ν −ω 2
(1− cos(2π kων

ω
)) (2.30)

and for ων = ω we have

∆cT =
∫ T

0

Aν sinων t cosω tdt (2.31)

=
∫ T

0

Aν sinων t cosων tdt (2.32)

= 1

2

∫ T

0

Aν sin 2ων tdt (2.33)

= 1

4
[Aν cos 2ων t]T0 = 0 (2.34)

Thus, we can summarize for the cosine channel error

∆cT(ω ) =





Aνων

ω 2ν −ω 2
(1− cos(ωνω2π k)), ων ,= ω

0, ων = ω

(2.35)

Hence, the transfer function error is

∆G(iω ) = 2
T
(∆sT + i∆cT ) (2.36)

©Rolf Johansson, 2008-2014



6 2 Chap. 2

which decreases as 1/T except at ων = ω in which case it does not
help to increase the measurement duration.

Remark: Notice that a sinusoidal disturbance ν(t) = Aν sin(ων t +
φ) with a phase shift φ would result in somewhat different transfer
function error.

b. Consider the case of white noise or high-bandwidth noise with the

properties

E{ν(t)} = 0, E{ν(t)ν(s)} = σ 2δ (t− s) (2.37)

Thus we have

Ĝ(iω ) = G(iω ) + ∆G(iω ), G̃(iω ) = Ĝ(iω ) − G(iω ) = ∆G(iω )

The accuracy of the estimate is then given by the statistical properties

of ∆G(iω ).

∆G(iω ) = 2
T

∫ T

0

ν(t)(sinω t+ i cosω t)dt = 2i
T

∫ T

0

e−iω tν(t)dt (2.38)

The mean value

E{∆G̃(iω )} =E{∆G(iω )} = 2i
T

∫ T

0

e−iω tE{ν(t)}dt = 0 (2.39)

so that the estimate of G(iω ) is unbiased

E{Ĝ(iω )} =E{G(iω )} = G(iω (2.40)

To investigate the variance properties of a complex-valued stochastic

variable x we notice that

Var{x} = E{(x −E{x})(x −E{x})∗} (2.41)
= E{xx∗} −E{E{x}x∗} −E{xE{x∗}} +E{E{x}E{x∗}}
= E{xx∗} −E{x}E{x∗} −E{x}E{x∗} +E{x}E{x∗}
= E{xx∗} −E{x}E{x∗} (2.42)

Moreover, for x = a+ ib with mean E{x} = µa + iµb we have

Var{x} = E{(a+ ib)(a+ ib)∗} − (µa + iµb)(µa + iµb)∗ (2.43)
= E{aaT + bbT) − µaµ

T
a − µbµ

T
b (2.44)

and

Var{Re x} = E{(a− µa)(a− µa)T} =E{aaT} − µaµ
T
a (2.45)

Var{Im x} = E{(b− µb)(b− µb)T} =E{bbT} − µbµ
T
b (2.46)

©Rolf Johansson, 2008-2014
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Figure 2.2 Illustration of the error of the transfer function with a test

frequency ω = 1 and a sinusoidal disturbance of frequency ων . The upper

graph shows the real (solid line) and imaginary parts (dashed line) of the
tranfer function error versus frequency of the disturbance. The lower graph

shows the transfer function error magnitude versus frequency and versus

measurement duration.

so that

Var{x} = Var{Re x} + Var{Im x} (2.47)

Application of this property gives

Var{Ĝ(iω )} = E{(Ĝ(iω ) −E{Ĝ(iω )})(Ĝ(iω ) −E{Ĝ(iω )})∗}
= E{G̃(iω )G̃(iω )∗} = Var{G̃(iω )} (2.48)

©Rolf Johansson, 2008-2014



8 2 Chap. 2
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Figure 2.3 Graphical interpretation of the relationships between G, G̃, Ĝ

in a polar diagram.

and further calculation gives

Var{Ĝ(iω )} = E{G̃(iω )G̃(iω )∗} (2.49)

= E{2i
T

∫ T

0

e−iω tv(t)dt ⋅ (2i
T

∫ T

0

e−iω sv(s)ds)∗} (2.50)

= 4

T2

∫ T

0

∫ T

0

eiω (t−s)E{v(t)v(s)∗}dsdt (2.51)

= 4

T2

∫ T

0

∫ T

0

eiω (t−s)σ 2δ (t− s)dsdt (2.52)

= 4

T2

∫ T

0

σ 2ds = 4σ
2

T
(2.53)

We conclude that the variance of Ĝ(iω ) is decreasing as 1/T and that
E{Ĝ(iω )} = G(iω ).

E{G̃(iω )} = 0 (2.54)
Var{G̃(iω )} = E{G̃(iω )G̃(iω )∗} =E{pG̃(iω )p2} (2.55)

An interpretation of this result can be done according to Fig. 2.3. If

we make several measurements of G(iω ), then we will have different
estimates Ĝ(iω ) distributed around the mean G(iω ).
Consider the choice of measurement time T and frequencies when the

estimate Ĝ(iω ) is to be used for control purposes. We have seen from

©Rolf Johansson, 2008-2014
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Exercise 2.3b that the accuracy of Ĝ(iω ) is proportional to 1/T . In
consequence, if Var{ν} is large, then T needs to be large. In order to
achieve a given, required accuracy of the estimate Ĝ(iω k) at a set of
frequencies {ω k} with the same disturbance properties, we need to
apply the same measurement time T .

In addition, we need to estimate G(iω ) with higher accuracy in the fre-
quency range where the sensitivity function has its maximum which

usually appears around the cross-over frequency of the system; see

Chapter 8 of System Modeling and Identification. Assuming that the

sensitivity function is large in the frequency interval (ω 1,ω 2), then
we need to make longer experiments (yielding more accurate results)
in the frequency interval (ω 1,ω 2). In order to achieve a certain given
measurement time T = k ⋅ (2π /ω ) we need more periods of the sinu-
soidal input for high frequencies than for low frequencies.

2.4 As in Exercise 2.3b we find that

Ĝ(iω ) = G(iω ) + G̃(iω )

with

E{G̃(iω )} = 0 (2.56)

Var{G̃(iω )} = 4σ 2

T
(2.57)

If we consider the values σ = 0.1 and T = 50 s, we can evaluate the
transfer function variance as

Var{G̃(iω )} = 0.008

Considering the experimental Nyquist curve of Ĝ(iω ) in Fig 2.11 of the
book, it is obvious that we can not exclude the possibility that the Nyquist

curve of G(iω ) encircles the point −1 and that the closed-loop system
G/(1+ G) is unstable.

As a conclusion we have that nothing can be stated about closed-loop sta-

bility and that we would need more measurements or larger T for test fre-

quencies of the neighborhood of Re Ĝ(iω ) = −1—i.e., where argG(iω ) (
180o.

2.5 A relay-type output nonlinearity will result in an output in the form of a

square wave. According to Fourier series expansion of a square wave we

have

y(t) = A
∞∑

k=1
ak sin(kω t+ φ k(ω ))

©Rolf Johansson, 2008-2014



10 2 Chap. 2

The contribution to the sine channel and cosine channel are

sT(ω ) = 1

2
a1AT cos(φ1) (2.58)

cT(ω ) = 1

2
a1AT sin(φ1) (2.59)

This follows since

∫ T

0

sinω t sin kω tdt =
{
T/2, k = 1
0, k > 1 (2.60)

and we get the transfer function estimate

Ĝ(iω ) = 2
T
(sT(ω ) + icT (ω )) = Aa1eiφ(ω )

Thus we will be able to estimate the phase correctly but we will not obtain

the correct gain which will appear to be constant.

2.6 According to Fig. 2.9 in the textbook we conclude that both gain and phase

estimates are affected for sampled systems. Similar problems appear for

discrete-time frequency response analysis. The most obvious effect of dis-

cretization is the generation of harmonics in the input. These harmonics

add fortunately little to the sine and cosine channels as the integrals of

sinω t sin kω t over an interval chosen as a multiple of the test-frequency
period become zero. Similar to the solution of Exercise 2.5 we expect that

the frequency response pG(iω )p might be affected. In order to avoid such
problems one should recommend rapid sampling at a rate which is a mul-

tiple of the test frequency, i.e., ω s = nω with n > 20. (A detailed analysis
from a signal power perspective is given in the answer to Exercise 8.1.)

2.7 Consider frequency response analysis with the system input u(t) = u1 sinω t.
If the measurement is chosen as a multiple of half the period of the mea-

surement frequency, i.e.,

T = kπ

ω

then we conclude that the integrals of the frequency response analysis are

cT (ω ) =
∫ T

0

y(t) cosω tdt = 1
2
T pG(iω )pu1 sinφ(ω ) (2.61)

sT (ω ) =
∫ T

0

y(t) cosω tdt = 1
2
T pG(iω )pu1 cosφ(ω ) (2.62)

with the same expressions as in the textbook.

©Rolf Johansson, 2008-2014
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If the measurement time is chosen as a multiple of the full period of test

frequency, i.e.

T = k2π
ω

then for constant v we can find that

∫ T

0

v sinω tdt = 0

which means that the constant disturbance v is eliminated and does not

perturb the transfer function estimate. However, using a measurement

time T as a multiple of the half period will not allow for elimination a

constant disturbance v from the sine channel and the cosine channel.

©Rolf Johansson, 2008-2014



3

Signals and Systems

3.1 We assuming that the input u(t) is constant over the sampling interval
and takes on the value u(kh) over the time interval kh ≤ t < (k+ 1)h. If
we represent the step input

ϑ (t) =
{
0, t < 0
1, t ≥ 0 (3.1)

then we may represent a rectangular pulse of width h and beginning at

time t = 0 by the rectangular pulse function

p(t) = ϑ (t) −ϑ (t− h) =





0, t < 0
1, 0 ≤ t < h
0, t > h

(3.2)

with the z-transform

p(z) = (1− z−1)
A zero-order-hold input u(t) may thus be represented by

u(t) =
N∑

k=0
u(kh)

(
ϑ (t− kh) −ϑ (t− (k+ 1)h)

)
, 0 ≤ t ≤ Nh

We can represent the input as the Laplace transform and z-transform

U(s) =
N∑

k=0

1

s
(1− e−sh)e−khsu(kh) (3.3)

U(z) = Z{u(t)} =
N∑

k=0
u(kh)z−k (3.4)

12
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Time

Magnitude

u(kh)

Figure 3.1 Illustration to Exercise 3.1.

and the output from a system with the transfer function G(s) and the
input according to Eq. (3.4 ) and Eq. (3.3).

Y(s) = G(s)U(s) =
N∑

k=1
G(s)1

s
(1− e−sh)e−khsu(kh)

The z-transform of the output is

Y(z) =Z{L−1{Y(s)}} =Z{L−1{
N∑

k=0
G(s)1

s
(1− e−sh)e−khsu(kh)}}

The pulse response of a transfer function G(s), i.e., the response to u(t) =
p(t) is

H(s) = Y(s) = G(s)U(s) = G(s)1
s
(1− e−sh)

or in the time domain

h(t) = L−1{H(s)} = L−1{G(s)1
s
} ∗L−1{(1− e−sh)}

The pulse transfer function is thus

H(z) = Z{h(t)} =Z{L−1{(1− e−sh)}} ⋅Z{L−1{G(s)1
s
}} (3.5)

= (1− z−1)Z{L−1{G(s)1
s
}} (3.6)

©Rolf Johansson, 2008-2014



14 3 Chap. 3

Example: Consider discretization of a system with the continuous-time

transfer function

G(s) = 1

s+ 1
Application of the procedure formulated in Exercise 3.1 gives

Z{L−1{G(s)1
s
}} = Z{L−1{ 1

s+ 1 ⋅
1

s
}} (3.7)

= Z{L−1{− 1

s+ 1 +
1

s
}} = −z

z− e−h +
z

z− 1 (3.8)

and the resultant pulse transfer function is

H(z) = (1− z−1) ⋅
( −z
z− e−h +

z

z− 1
)
= 1− e

−h

z− e−h =
(1− e−h)z−1
1− e−hz−1

3.2 The coherence spectrum is

γ 2(ω ) = 1

1+ Svv(iω )
Suu(iω )pG(iω )p2

where Suu > 0, Svv > 0, and pG(iω )p > 0. Hence, we immediately verify
that

0 ≤ γ 2(ω ) ≤ 1, ∀ω

where the lower bound is obtained for a high value of the ratio of spectral

densities Svv/Suu and the upper bound is obtained for Svv/Suu = 0.
3.3 An expression for the signal-to-noise ratio (SNR) is

SNR = exx

evv
= eyy
evv
− 1− exv

evv
− evx
evv

= eyy

evv
− 1− 2Re exv

evv
(3.9)

in which the nonzero correlation between x and v affects the signal-to-noise

ratio.

3.4 We consider a normally distributed white-noise process {xk} with compo-
nents xk ∈N (0,σ 2) and covariance function

Cxx(τ ) = Cov {xk, xk−τ} = σ 2δ k,k−τ , τ = qh, q∈ Z

i.e., τ is discretized. The corresponding spectral density is

Sxx(iω ) = F {Cxx(τ )} (3.10)

= h

∞∑

q=−∞
Cxx(qh)e−iω qh (3.11)

= hσ 2 (3.12)

©Rolf Johansson, 2008-2014
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which proves that the white-noise process has constant spectral density

up to the Nyquist frequency ω N = π /h.
3.5 Consider the stochastic processes {xk} and {yk} generated by the state-
space system (or Markov chain)

S :

{
xk+1 = Φxk + Γvk

yk = Cxk + vk
, xk ∈ R

n (3.13)

where {vk} is a scalar white-noise process with constant spectral density

Svv(iω ) = hσ 2, pω p ≤ ω N =
π

h

The output {yk} fulfills the input-output relationship

Y(z) = H(z)V (z) =
(
C(zIn$n − Φ)−1Γ + 1

)
V (z)

The output spectral density is then

Syy(iω ) = H(eiωh)Svv(iω )HT (e−iωh) (3.14)
= pH(eiωh)p2Svv (3.15)
= pH(eiωh)p2hσ 2 (3.16)

For the state vector xk we compute the input-output relationship

X (z) = Hx(z)V (z) = (zIn$n − Φ)−1ΓV (z)

Correspondingly, the spectral density of the state vector xk is

Sxx(iω ) = Hx(eiωh)Svv(iω )HTx (e−iωh) (3.17)
= (eiωh I − Φ)−1ΓΓT (e−iωh I − Φ)−Tσ 2h (3.18)

3.6 The variance of the sum

x1 = θ̂1 + θ̂2 =

 1 1




 θ̂1

θ̂2


 (3.19)

is

Cov{x1} = Cov{

 1 1




 θ̂1

θ̂2


 (3.20)

=

 1 1


Cov{θ̂}



1

1


 (3.21)

=

 1 1





c −cρ
−cρ c





1

1


 = 2c(1− ρ) (3.22)
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Covariance ellipsoid

Figure 3.2 Covariance ellipsoids for the covariance matrix Σθ for a zero-

mean stochastic variable θ̃ of Exercise 3.6 with ρ = 0.9.

Now introduce the variable α and consider the sum

xα = θ̂1 cosα + θ̂2 sinα =

 cosα sinα


 θ̂ ,

with the variance

V (α ) =

 cosα sinα





c −cρ
−cρ c





cosα

sinα


 (3.23)

= c(cos2α − 2ρ sinα cosα + sin2α ) (3.24)
= c(1− ρ sin 2α ) (3.25)

The variance V (α ) has extrema for α = π /4 and α = −π /4
{

α = π /4, V (α ) = c(1− ρ)
α = −π /4, V (α ) = c(1+ ρ) (3.26)

with the minimum V (α ) = c(1− pρp).

©Rolf Johansson, 2008-2014



Chap. 3 3 17

The singular value decomposition of Σθ is

Σθ = UΣV

with

U = V =




1√
2

− 1√
2

− 1√
2

− 1√
2



, and Σ =



c(1+ ρ) 0

0 c(1− ρ)


 (3.27)

for ρ > 0 and

U = V =




1√
2

− 1√
2

− 1√
2

1√
2




and Σ =


c(1− ρ) 0

0 c(1+ ρ)


 (3.28)

for ρ < 0. Thus we have that the 2-norm of Σθ is

qΣθq2 = σ 1 = c(1+ pρp)

which is also the maximum eigenvalue of Σθ . The Frobenius norm of Σθ is

qΣθqF =
√
c2 + (cρ)2 + (cρ)2 + c2 =

√
2c2(1+ ρ2)

or

qΣθqF =
√

σ 21 +σ 22 =
√
2c2(1+ ρ2)

The covariance ellipsoid is determined by the equation

θ̃TΣ−1θ θ̃ = constant

or more generally the set

Ω(r) = {θ̃ : θ̃TΣ−1θ θ̃ = r2}, r2 = constant

The points belonging to the set Ω(r), i.e, the covariance ellipsoid, can be
parametrized as follows

θ̂ r = θ + T−1


r cosα

r sinα


 (3.29)

= θ̃ r = θ̂ − θ = T−1


r cosα

r sinα


 (3.30)
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where T is a matrix factor of Σ−1θ in the sense that

TTT = Σ−1θ , T =




1√
2c(1− ρ)

0

0
1√

2c(1+ ρ)






1 −1
1 1


 (3.31)

For a normally distributed variable θ̃ ∈ N (0,Σθ) we notice that the level
surfaces Ω(r) constitute the level surfaces of the probability density func-
tion

p(x) = 1

(2π det Σθ )n/2
exp(−1

2
xTΣ−1θ x) =

1

(2π det Σθ )n/2
exp(−1

2
r2) (3.32)

Hence the designation covariance ellipsoid.

3.7 Assuming that θ̃ ∈ Rn is normally distributed N (0,Σθ ) with the n $ n
covariance matrix Σθ . Consider the following matrix factorization

Σ−1θ = TTT

and introduce the variables

Θ = Tθ̃ , Θ ∈N (0, In$n), n = 2

A standard result, see Appendix B, is that a sum of squares of independent

normally distributed variables {ξk}mk=1 is χ 2−distributed with m degrees
of freedom, i.e.,

χ 2 = ξ 21 + ξ 22 + ⋅ ⋅ ⋅+ ξ 2m, χ 2 ∈ χ 2(m)

Direct application of this result to the set of normally distributed variables

Θ = Tθ̃ ∈N (0, In$n) gives the desired result

ΘTΘ = θ̃TΣ−1θ θ̃ ∈ χ 2(n)

For a vector-valued stochastic variable, e.g., a parameter error vector, of

dimension n and with a covariance matrix of dimensions n$ n we have

E{θ̃TΣ−1θ θ̃} = E{tr {θ̃TΣ−1θ θ̃}} =E{tr {Σ−1θ θ̃θ̃T}} (3.33)
= tr {Σ−1θ E{θ̃θ̃T}} = tr {Σ−1θ Σθ} = tr {In$n} = n (3.34)

The covariance ellipsoid also determines the level surfaces for constant

value of the probability density function

p(x) = 1

(2π det Σθ )n/2
e
−1
2
xTΣ−1θ x = 1

(2π det Σθ )n/2
e
−1
2
r2

(3.35)
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4

Spectrum Analysis

4.1 Let X1(z) = Z{x1(k)} and X2(z) = Z{x2(k)}. The z-transform of the con-
volution of x1 and x2 is

X (z) = Z{x1(k) ∗ x2(k)} =Z{
∞∑

i=−∞
x1(i)x2(k− i)} = (4.1)

=
∞∑

j=−∞

∞∑

i=−∞
x1(i)x2( j − i)z− j = (4.2)

=
∞∑

j=−∞

∞∑

i=−∞
x1(i)x2( j − i)z−( j−i)−i = (4.3)

=
∞∑

j=−∞

∞∑

i=−∞
x1(i)z−ix2( j − i)z−( j−i) = (4.4)

=
∞∑

i=−∞
x1(i)z−i

∞∑

m=−∞
x2(m)z−m =Z{x1(k)} ⋅Z{x2(k)} (4.5)

where the last row has been obtained by changing the summation index

from j to m = j − i.
4.2 A swept-frequency sinusoid of the type used as input can be represented

by the sequence of complex exponentials

{uk}N−1k=0 = {eiω 0k
2/2}N−1k=0 , for some constant ω 0

which is set of points located on the unit circle on the complex z-plane. The

output response in the absence of an initial condition reponse is then

yk =
N−1∑

j=0
h juk− j

19



20 4 Chap. 4

where {h j} represents the system transfer function H(z) and

yk =
N−1∑

j=0
h juk− j (4.6)

=
N−1∑

j=0
h j e

iω 0(k− j)2/2 = (4.7)

= eiω 0k
2/2
N−1∑

j=0
h j e

iω 0 j
2/2e−iω 0kj (4.8)

so that

yk

uk
= yke−iω 0k

2/2 =Z{hkeiω 0k
2/2}pz=eiω0k (4.9)

Application of the inverse discrete Fourier tranform to (4.9 ) gives

h′k =
N−1∑

j=1

yj

u j
eiω 0 jk (4.10)

hk = h′ke
−iω 0k2/2 (4.11)

which determines the weighting function sequence {hk} of the transfer
function H(z) of the input-output relationship.
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5

Linear Regression

5.1 Assuming that the linear regression model based on N data is

Y N = ΦNθ + e,





Y N ∈ R
N

ΦN ∈ R
N$p

θ ∈ R
p

e ∈ R
N

(5.1)

The least-squares estimate is

θ̂ = (ΦTNΦN)−1ΦTNY N (5.2)
= (ΦTNΦN)−1ΦTN(ΦNθ + e) (5.3)
= θ + (ΦTNΦN)−1ΦTN e (5.4)

from which we conclude that the parameter error is

θ̃ = θ̂ − θ = (ΦTNΦN)−1ΦTN e

with the expectation

E{θ̃} =E{(ΦTNΦN)−1ΦTN e} =E{(
1

N
ΦTNΦN)−1(

1

N
ΦTN e)}

which is the bias of the estimate

5.2 Consider the data

U2 =


1

2


 and Y 2 =



6

17


 (5.5)

generated from the system

S : y=

 1 u u2







θ0

θ1

θ2



=

 1 u u2







1

2

3




(5.6)
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22 5 Chap. 5

Assuming that the model is

M : y=

 1 u u2







θ0

θ1

θ2




(5.7)

it is possible to organize the regressor matrix ss

Φ2 =


1 1 1

1 2 4


 (5.8)

so that

ΦT2 Φ2 =




1 1

2 1

4 1






1 1 1

1 2 4


 =




2 3 5

3 5 9

5 9 17




(5.9)

which is rank deficient. The data set in Eq. (5.5) is obviously too small for
the purpose to determine all three parameters θ0, θ1, and θ2.

All solutions compatible with data and the regression model Y 2 = Φ2θ can
be expressed as

θ̂ =ψ 1λ +ψ 0 =




2

−3
1




λ +




1

2

3




(5.10)

where λ is an arbitrary real number and where ψ 1, ψ 0 satisfy

Φ2ψ 1 = 0 (5.11)
Φ2ψ 0 = Y 2 (5.12)

If we proceed to choose the θ̂ with the lowest two-norm of all minimizers,
then we find the λ for which

λ∗ = argmin
λ
qθ̂ (λ)q2 = −

ψ T0ψ 1
ψ T1ψ 1

= 1

14

The corresponding solution θ̂ is

θ̂ (λ∗) = ψ 1λ∗ +ψ 0 = (I −
ψ 1ψ

T
1

ψ T1ψ 1
)ψ 0 (5.13)

=




1

2

3



+




2

−3
1



1

14
(




1.1429

1.7857

3.0714




(5.14)
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The same result can be obtained by means of the pseudoinverse of the

matrix in Eq. (5.9)

(ΦT2 Φ2)† =




1.0816 0.5204 −0.6020
0.5204 0.2551 −0.2755
−0.6020 −0.2755 0.3776




(5.15)

which yields the least-squares estimate

θ̂ = (ΦT2 Φ2)†ΦT2Y 2 =




1.1429

1.7857

3.0714



, qθ̂q2 = 3.7321 (5.16)

Notice that

qθ̂q2 < qθq2 =
√
12 + 22 + 32 = 3.7417

5.3 We consider the least-squares estimate

θ̂ = θ + (ΦTNΦN)−1ΦTN e (5.17)

= θ +
( 1
N

ΦTNΦN)−1(
1

N
ΦTN e

)
(5.18)

based on the linear regression model yk = φTkθ + ek where the components
ek of e are assumed to be independent and identically normally distributed

variables N (0,σ 2).

From Eq. (5.17) we notice that θ̂ is a sum of θ and a linear combination
of the ek’s. It is well known that a a linear combination

z = Te, e ∈ R
n, and T ∈ R

m$n

of normally distributed stochastic variables is also normally distributed

with mean and covariance

E{z} = E{Te} = TE{e} = 0 (5.19)
E{zzT} = E{TeeTTT} = TE{eeT}TT = σ 2TTT (5.20)

5.4 The weighted least-squares criterion aims to minimize the weighted sum

of the squared errors between the model output and the observations.

V (θ̄ ) = 1
2

ε TWε = 1
2

N∑

i=1

N∑

j=1
wi jε iε j =

1

2
(Y N − ΦNθ̄ )TW(Y N − ΦNθ̄ )(5.21)

with the minimum

min
θ̄
V (θ̄ ) = V (θ̂ )
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24 5 Chap. 5

obtained for the optimal estimate

θ̂ = (ΦTNWΦN)−1ΦTNWY N

This can be seen by taking the gradient of the optimization criterion (5.21)

�V (θ̄)
�θ̄ = Γ(θ̄ ) = −Y TNWΦN + θ̄T(ΦTNWΦN) (5.22)

where the minimum �V/�θ̄ = 0 provides the normal equations

Γ(θ̄ ) = −Y TNWΦN + θ̄T (ΦTNWΦN) = 0 (5.23)

The gradient Γ(θ̄ ) of the loss function V (θ̂) takes on the value zero for
θ̄ = θ̂ = (ΦTNWΦN)−1ΦTNWY N , i.e., when θ̄ is chosen as the weighted
least-squares estimate.

Notice that (5.22) and (5.23) are necessary conditions for obtaining a min-
imum. If the positive semidefinite matrix ΦTNWΦN is assumed to be in-
vertible, then we can also show sufficiency by completing the squares of

(5.21).

V (θ̄ ) = 1

2
(Y N − ΦNθ̄ )TW(Y N − ΦNθ̄ ) =

= 1

2
Y TN (W −WΦN(ΦTNWΦN)−1ΦTNW)Y N (5.24)

+ 1

2
Γ(θ̄ )(ΦTNWΦN)−1ΓT(θ̄ ) (5.25)

which attains its unique minimum for Γ(θ̄ ) = 0, i.e., for θ̄ = θ̂ .

5.5 The prediction error based on N observations fitted to a linear regression

model Y N = ΦNθ is
ε = Y N − ΦNθ̂N

and the orthogonality principle yields the modified equation

ΦTNWε = 0

which together give the set of linear equations



IN$N ΦN

ΦTNW 0






ε

θ̂


 =



Y N

0


 (5.26)

However, it might be preferred to exploit the symmetric characteristics of

the augmented system equation and we achieve



W−1 ΦN

ΦTN 0





Wε

θ̂


 =



Y N

0


 (5.27)
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If we introduce the weighted prediction error ε ′ = Wε , we have the aug-
mented system equation



W−1 ΦN

ΦTN 0






ε ′

θ̂


 =



Y N

0


 (5.28)

5.6 We consider data generated by the system

S : yk = φTkθ + ek, E{eieTj } = Rδ i j

and consider the linear regression model Y N = ΦNθ with

Y N =




y1

y2

...

yN




and ΦN =




φT1
φT2
...

φTN




(5.29)

The residual sum is

V (θ̂) = 1

2
(Y TNY N − Ŷ TN Ŷ N) (5.30)

= 1

2
eT(I − ΦN(ΦTNΦN)−1ΦTN)e (5.31)

= 1

2
tr(eeT) − 1

2
tr(ΦN(ΦTNΦN)−1ΦT eeT) (5.32)

The expected value of the residual sum is

E{V (θ̂)} = 1

2
tr(E{eeT}) − 1

2
tr(ΦN(ΦTNΦN)−1ΦTNE{eeT}) (5.33)

= N

2
tr(R) − tr(ΦN(ΦTNΦN)−1ΦTN




R 0 ⋅ ⋅ ⋅ 0

0 R
. . .

...
...
. . .

. . . 0

0 ⋅ ⋅ ⋅ 0 R



(5.34)

In the case of a scalar R, we have the familiar result from Sec. 5.2 that

E{V (θ̂)} = N

2
tr(R) − tr(ΦN(ΦTNΦN)−1ΦT




R 0 ⋅ ⋅ ⋅ 0

0 R ⋅ ⋅ ⋅ 0
...

. . .
...

0 ⋅ ⋅ ⋅ 0 R



(5.35)

= 1

2
(N − p)R (5.36)
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5.7 The Lagrangian associated with constrained least-squares identification

presented in Sec. 5.3 of System Modeling and Identification is

L(T ,Λ) = θ̃TTTRTθ̃ + tr Λ(TTΦN − I)

where Λ is a set of Lagrangian multipliers. Differentiation with respect to
T shows that there is an extremum for

Λ = −2(ΦTNR−1ΦTN)−1θ̃θ̃T

After elimination of Λ we have

L(T) = θ̃TTTRTθ̃ − 2tr[(ΦTNR−1ΦN)−1θ̃θ̃T(TTΦN − I)] (5.37)
= θ̃TTTRTθ̃ − 2θ̃T(TΦN − I)(ΦTNR−1ΦN)−1θ̃ (5.38)
= θ̃T [(T − R−1ΦN(ΦTNR−1ΦN)−1)TR(T − R−1ΦN(ΦTNR−1ΦN)−1)
+ (ΦTNR−1ΦN)−1]θ̃ (5.39)

where the last step has been achieved by completing the squares of terms

including the transformation matrix T . By choosing

T = R−1ΦN(ΦTNR−1ΦN)−1 (5.40)
θ̂ = (ΦTNR−1ΦN)−1ΦTNR−1Y N (5.41)

one minimizes L(T) and eliminate the first term of Eq. (5.40). The corre-
sponding minimum value L∗ of the Lagrangian L(T) is

L∗ = θ̃T(ΦTNR−1ΦN)−1θ̃

and

θ̃ = (ΦTNR−1ΦN)−1ΦTNR−1e (5.42)
ε = (I − ΦN(ΦTNR−1ΦN)−1ΦTNR−1)e (5.43)

The residual sum of squares is

V (θ̂) = 1

2
ε (θ̂)Tε (θ̂) = 1

2
(Y N − ΦNθ̂ )T (Y N − ΦNθ̂ ) (5.44)

= 1

2
(ΦNθ + e− ΦNθ̂)T (ΦNθ + e− ΦNθ̂ ) (5.45)

= 1

2
(e− ΦNθ̃ )T(e− ΦNθ̃ ) (5.46)

with the expected value

E{V (θ̂ )} = E{1
2
(e− ΦNθ̃ )T(e− ΦNθ̃ )} (5.47)

= tr(E{12(e− ΦNθ̃ )(e− ΦNθ̃ )T}) (5.48)

= 1

2
tr(E{eeT} +E{ΦNθ̃θ̃TΦTN} −E{2ΦNθ̃ eT}) (5.49)

= 1

2
tr(R − ΦN(ΦTNR−1ΦN)−1ΦTN) (5.50)
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with

E{θ̃θ̃T} = E{(ΦTNR−1ΦN)−1ΦTNR−1eeTR−1ΦN(ΦTNR−1ΦN)−1} (5.51)
= (ΦTNR−1ΦN)−1 (5.52)

whereas the unconstrained estimation gives

θ̃ = (ΦTNΦN)−1ΦTN e (5.53)
ε = (I − ΦN(ΦTNΦN)−1ΦTN)e (5.54)

with the expected value

E{V (θ̂ )} = E{1
2
(e− ΦNθ̃ )T(e− ΦNθ̃ )} (5.55)

= tr(E{1
2
(e− ΦNθ̃ )(e− ΦNθ̃ )T}) (5.56)

= 1

2
tr(E{eeT} +E{ΦNθ̃θ̃TΦTN} −E{2ΦNθ̃ eT}) (5.57)

= 1

2
tr(E{eeT} +E{ΦN(ΦTNΦN)−1ΦTN eeTΦN(ΦTNΦN)−1})

− 1

2
tr(E{2ΦN(ΦTNΦN)−1ΦTN eeT}) (5.58)

= 1

2
tr(R− ΦN(ΦTNΦN)−1ΦTNR) (5.59)

and

E{θ̃θ̃T} = E{(ΦTNΦN)−1ΦTN eeTΦN(ΦTNΦN)−1} (5.60)
= (ΦTNΦN)−1ΦTNRΦN(ΦTNΦN)−1 (5.61)

We introduce the variables

θ̂constrained = (ΦTNR−1ΦN)−1ΦTNR−1Y N (5.62)
θ̂unconstrained = (ΦTNΦN)−1ΦTNY N (5.63)

and

∆θ = θ̂constrained − θ̂unconstrained (5.64)
= (ΦTNR−1ΦN)−1ΦTNR−1Y N − (ΦTNΦN)−1ΦTNY N (5.65)
= [(ΦTNR−1ΦN)−1ΦTNR−1 − (ΦTNΦN)−1ΦTN ](ΦNθ + e) (5.66)
= (ΦTNR−1ΦN)−1ΦTNR−1e− (ΦTNΦN)−1ΦTN e (5.67)

The residual sum expressed as the prediction error loss function is

V (θ̄ ) = 1

2
(Y N − ΦNθ̄ )T(Y N − ΦNθ̄ ) (5.68)

= 1

2
Y TN (I − ΦN(ΦTNΦN)−1ΦTN)Y N (5.69)

+ 1

2
(θ̄ − (ΦTNΦN)−1ΦTNY N)T (ΦTNΦN)(θ̄ − (ΦTNΦN)−1ΦTNY N)
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The prediction error loss function for the unconstrained least-squares es-

timate is

V (θ̂unconstrained) = 1

2
Y TN (I − ΦN(ΦTNΦN)−1ΦTN)Y N (5.70)

whereas that for the constrained estimate is

V (θ̂constrained) = 1

2
(Y N − ΦNθ̂constrained)

T(Y N − ΦNθ̂constrained)

= 1

2
Y TN (I − ΦN(ΦTNΦN)−1ΦTN)Y N (5.71)

+ 1

2
(∆θ )T(ΦTNΦN)∆θ (5.72)

so that

∆V = V (θ̂constrained) − V (θ̂unconstrained) (5.73)

= 1

2
∆θT (ΦTNΦN)∆θ ≥ 0 (5.74)

Hence

V (θ̂constrained) ≥ V (θ̂unconstrained) (5.75)
E{V (θ̂constrained)} ≥ E{V (θ̂unconstrained)} (5.76)

In order to evaluate the parameter mean-square error E{θ̂θ̂T}, it is nec-
essary to check whether

(ΦTNR−1ΦN)−1 ≤ (ΦTNΦN)−1(ΦTNRΦN)(ΦTNΦN)−1 (5.77)

This is equivalent to testing whether

(ΦTNR−1ΦN) ≥ (ΦTNΦN)(ΦTNRΦN)−1(ΦTNΦN)

or whether

R−1 ≥ ΦN(ΦTNRΦN)−1ΦTN
or whether

R−1 − ΦN(ΦTNRΦN)−1ΦTN ≥ 0 (5.78)

Now let W designate the positive definite matrix

W = ΦTNRΦN (5.79)
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Using the matrix decomposition in Eq. (A.26) in System Modeling and
Identification [1, p. 408] gives


W ΦTN

ΦN R−1


 =




I 0

ΦNW
−1 I






W 0

0 R−1 − ΦNW
−1ΦTN






I W−1ΦTN
0 I


(5.80)

and resubstituting W = ΦTNRΦN of Eq. (5.79) into the left-hand side of
Eq. (5.80 ) gives




ΦTNRΦN ΦTN

ΦN R−1


 =




ΦTN 0

R−1 I






R 0

0 0







ΦN R−1

0 I


 ≥ 0 (5.81)

which is a positive semidefinite matrix for R = RT > 0. According to this
calculation we ascertain that the inequalities (5.78) and (5.77) are valid
for any R = RT > 0 and as a result we conclude that

(ΦTNR−1ΦN)−1 ≤ (ΦTNΦN)−1(ΦTNRΦN)(ΦTNΦN)−1

This shows that the constrained parameter estimate Eq. (5.52) has a
smaller mean-square error than the unconstrained least-squares estimate

Eq. (5.61).
We summarize for the prediction error and the parameter covariance

E{V (θ̂ )}constrained ≥ E{V (θ̂ )}unconstrained (5.82)
E{θ̃θ̃T}constrained ≤ E{θ̃θ̃T}unconstrained (5.83)

5.8 The augmented system matrix is



I ΦN

ΦTN 0


 (5.84)

with the inverse



I ΦN

ΦTN 0


 =



I − ΦN(ΦTNΦ)−1ΦTN ΦN(ΦTNΦN)−1
(ΦTNΦN)−1ΦTN −(ΦTNΦN)−1


 (5.85)

with ΦTNΦN being invertible. It is easy to verify that



I ΦN

ΦTN 0





I − ΦN(ΦTNΦ)−1ΦTN ΦN(ΦTNΦN)−1
(ΦTNΦN)−1ΦTN −(ΦTNΦN)−1


 = I2N$2N (5.86)

and



I − ΦN(ΦTNΦ)−1ΦTN ΦN(ΦTNΦN)−1
(ΦTNΦN)−1ΦTN −(ΦTNΦN)−1





I ΦN

ΦTN 0


 = I2N$2N (5.87)

which proves the statement.
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5.9 Introduce the function

Γ(θ̄ ) = −Y TN R−1ΦN + θ̄T (ΦTNR−1ΦN)

By completing the squares we find

V (θ̄ ) = 1

2
(Y N − ΦNθ̄ )TR−1(Y N − ΦNθ̄ ) (5.88)

= 1

2
Y TN (R−1 − R−1ΦN(ΦTNR−1ΦN)−1ΦTNR−1)Y N (5.89)

+ 1

2
Γ(θ̄ )(ΦTNR−1ΦN)−1ΓT(θ̄ ) (5.90)

which attains its unique minimum for Γ(θ̄ ) = 0, i.e., for

θ̄ = θ̂ = (ΦTNR−1ΦN)−1ΦTNR−1Y N

5.10 Consider a multi-input, multi-output system

S : A(z−1)Y(z) = B(z−1)U(z), det A(z−1) ,= 0

with p inputs uk ∈ Rp and m outputs yk ∈ Rm and time index k and

polynomial matrices

A(z−1) = Im$m + A1z−1 + ⋅ ⋅ ⋅+ Anz−n, A1, . . . , An ∈ R
m$m (5.91)

B(z−1) = B1z
−1 + ⋅ ⋅ ⋅+ Bnz−nB1, . . . , Bn ∈ R

m$p (5.92)

For the purpose of least-squares identification, then, it is suitable to orga-

nize model and data according to

yk = −A1yk−1 − ⋅ ⋅ ⋅− Anyk−n + B1uk−1 + ⋅ ⋅ ⋅+ Bnuk−n (5.93)

φ k =

−yTk−1 . . . −yTk−n uTk−1 . . . uTk−n


T (5.94)

with yk ∈ Rm and φ k ∈ Rn(m+p). The parameter matrix

θ =




AT1
...

ATn

BT1
...

BTn




, θ ∈ R
n(m+p)$m (5.95)
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which suggests the linear regression model

M : Y = Φθ , with Y =




yT1

yT2
...

yTN



, and Φ =




φT1
φT2
...

φTN




(5.96)

with Y ∈ RN$m and Φ ∈ RN$n(m+p). Now introduce the following matrix
decompositions into column vectors

Y =

Y :1 Y :2 . . . Y :m


 (5.97)

Φ =

Φ:1 Φ:2 . . . Φ:m


 (5.98)

ε =

 ε :1 ε :2 . . . ε :m


 (5.99)

θ =

θ :1 θ :2 . . . θ :m


 (5.100)

Let θ̄ : j , j = 1, 2, . . . ,m denote an arbitrary estimate of the parameter
vector θ : j . The least-squares criterion aims to minimize the sum of the
squared errors between the model output and the observations.

Vj(θ̄ : j) =
1

2
ε T: jε : j =

1

2
(Y : j − Φθ̄ : j)T(Y : j − Φθ̄ : j) (5.101)

each Vj with the minimum

min
θ̄ : j
Vj(θ̄ : j) = Vi(θ̂ : j)

obtained for the optimal estimate θ̄ : j = θ̂ : j . By taking the gradient of the
optimization criterion (5.101), we have

0 = �Vj(θ̄ : j)
�θ̄ : j

= −Y T: j Φ + θ̄T: j (ΦTΦ) (5.102)

where the minimum �Vi/�θ̄ = 0 provides the normal equations

−ΦTY : j + (ΦTΦ)θ̄ : j = 0, i = 1, 2, . . . ,m (5.103)

for each parameter vector θ : j , i = 1, 2, . . . ,m. By arranging these equa-
tions column-wise, we have the set of normal equations

−ΦT

Y :1 Y :2 . . . Y :m


+ (ΦTΦ)


 θ̄ :1 θ̄ :2 . . . θ̄ :m


 = 0 (5.104)
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or

−ΦTY + (ΦTΦ)θ̄ = 0
which is a suitable formulation of the matrix normal equations. The normal

equations of the associated least-squares estimation of θ will, as a result
of the non-uniqueness of parameters, in general exhibit rank deficit. It is

therefore natural to apply the least-squares solution

θ̂ = (ΦTΦ)†ΦTY

where (ΦTNΦN)† denotes the matrix pseudo-inverse of ΦTΦ; see Appendix
A of System Modeling and Identification. The associated least-squares es-

timate then obtained has the smallest 2-norm of all possible minimizers

of the least-squares criterion.

From the properties of the least-squares solution, we have

Y N = ΦNθ + eN , θ̂ = (ΦTNΦN)−1ΦTNY N (5.105)

so that

Ŷ N = ΦNθ̂ = ΦN(ΦTNΦN)−1ΦTNY N (5.106)
ε N = Y N − Ŷ N = (IN − ΦN(ΦTNΦN)−1ΦTN)Y N (5.107)

= (IN − ΦN(ΦTNΦN)−1ΦTN)(ΦNθ + eN) (5.108)
= (IN − ΦN(ΦTNΦN)−1ΦTN)eN (5.109)

ε TNε N = (Y N − Ŷ N)T(Y N − Ŷ N) (5.110)
= Y TN (IN − ΦN(ΦTNΦN)−1ΦTN)Y N (5.111)
= eTN(IN − ΦN(ΦTNΦN)−1ΦTN)eN (5.112)

The residual sum of squares is

V (θ̂ ) =
m∑

j=1
V (θ̂ : j) = tr{

1

2
(Y TY − Ŷ TŶ )} (5.113)

= tr{1
2
eT(I − ΦN(ΦTNΦN)−1ΦTN)e (5.114)

5.11 It is straightforward to adopt the first-order linear regression model

M :

{
yk = φTk θ

Y N = ΦNθ
with θ =



a

b


 (5.115)

based on N data samples with

Y N =




y2

y3

...

yN



, and ΦN =




−y1 u1

−y2 u2

...
...

−yN−1 uN−1




(5.116)
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Assuming that the model generating data is

S : yk+1 = −ayk + buk + wk+1 + cwk,





E{u2k} = σ 2u = σ 2

E{w2k} = σ 2w = σ 2

E{u jwk} = 0, ∀i, k

(5.117)

and that {uk} and {wk} are uncorrelated sequences, we verify that

E{ 1

N − 1ΦTNΦN} =E{




1

N − 1
∑N−1
k=1 y

2
k

−1
N − 1

∑N−1
k=1 ykuk

−1
N − 1

∑N−1
k=1 ykuk

1

N − 1
∑N−1
k=1 u

2
k



}(5.118)

Under stationary conditions so thatE{yk+1} =E{yk},E{ykuk} = 0,E{u2k} =
σ 2u, it holds that

E{ 1

N − 1ΦTNΦN} =


E{y2k} 0

0 σ 2u


 (5.119)

and

E{ 1

N − 1ΦTNY N} = E{




−1
N − 1

∑N
k=2 ykyk−1

1

N − 1
∑N
k=2 ykuk−1




(5.120)

=


aE{y2k} − cσ 2w

bσ 2u


 (5.121)

where the following properties have been used

E{ykuk} = 0 (5.122)
E{yk+1yk} = E{−ay2k + bukyk + wk+1uk + cwkuk} (5.123)

= −aE{y2k} + bE{ukyk} +E{wk+1uk} + cE{wkuk} (5.124)
= −aE{y2k} + cσ 2w (5.125)

E{y2k+1} = E{(−ayk + buk + wk+1 + cwk)2} (5.126)
= a2E{y2k} + b2E{u2k} +E{w2k+1} + c2E{w2k}
− 2abE{ykuk} − 2aE{ykwk+1} − 2acE{ykwk}
+ 2bE{ukwk+1} + 2bcE{ukwk} + 2E{wk+1wk} (5.127)
= a2E{y2k} + b2σ 2u +σ 2w + c2σ 2w − 2acσ 2w (5.128)

Under stationary conditions, we find that E{y2k+1} =E{y2k} so that

E{y2k} =
σ 2

1− a2 (b
2 − 2ac+ 1+ c2)
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For the least-squares estimate based on N samples, it is found that

E{θ̂N} = E{(
1

N − 1ΦTNΦN)−1(
1

N − 1ΦTNY N)} (5.129)

As N →∞, we have asymptotically

θ̂∞ = lim
N→∞
E{θ̂N} = lim

N→∞
E{( 1

N − 1ΦTNΦN)−1(
1

N − 1ΦTNY N)} (5.130)

=


E{y2k} 0

0 σ 2



−1

aE{y2k} − cσ 2
bσ 2


 =



a− c σ 2

E{y2k}
b




Thus, we summarize the asymptotical least-squares estimate as N → ∞
as

θ̂∞ = limN→∞E{θ̂N} =



a− c σ 2

E{y2k}
b


 (5.131)

The corresponding prediction error is

E{ε 2k(θ̂ )} = E{
1

N − 1ε T(θ̂ )ε (θ̂ )} =E{ 1

N − 1(Y
T
NY N − Ŷ TN Ŷ N)} (5.132)

= E{ 1

N − 1Y
T
N

(
I − ΦN(ΦTNΦN)−1ΦTN

)
Y N} (5.133)

= E{ 1

N − 1 (Y
T
NY N)} −E{θ̂T(

1

N − 1ΦTNΦN)θ̂} (5.134)

As the number of samples N increases, we have the asymptotic result

σ 2ε (θ̂∞) = lim
N→∞
E{ε 2k(θ̂N)} (5.135)

= lim
N→∞
E{( 1

N − 1Y
T
NY N − θ̂T( 1

N − 1ΦTNΦN)θ̂ )} (5.136)

= E{y2k} −


a− cσ 2E{y2k}

b



T
E{y2k} 0

0 σ 2





a− cσ 2E{y2k}

b




= (1+ c2)σ 2 − c2σ 4

E{y2k}
(5.137)

whereas the true parameters give the result

E{ε 2k(θ )} = E{(ŷk+1pk − yk+1)2} =E{(−ayk + buk − yk+1)2} (5.138)
= E{(wk+1 + cwk)2} = (1+ c2)σ 2 >E{ε 2k(θ̂ )} (5.139)

which proves that the biased least-squares parameter estimates yield a

lower prediction-error variance than the true parameters.
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Figure 5.1 Observed data and estimated obtained in Exercise 5.12.

REMARK: The asymptotical prediction error can also be computed as follows

E{ε 2k(θ̂ )} = (â− a)2E{y2k} + (b̂− b)2E{u2k} + 2(â− a)cE{ykwk}(5.140)

= c2σ 4

E{y2k}
+ (1+ c2)σ 2 − 2 c

2σ 4

E{y2k}
(5.141)

= (1+ c2)σ 2 − c2σ 4

E{y2k}
(5.142)

5.12 Consider the impulse response

M : h(t) = K e−t/τ

and assume that this is fitted to the given data. As the model is not linear

in parameters K ,τ one is faced with a number of problems how to estimate
the parameters.

a. The least-squares estimate

J(K ,τ ) = 1
2

N∑

k=1
(h(tk) − K e−tk/τ )2, N = 5
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function [J]=mim(x);

K=x(1);

tau=x(2);

j=0;

t=[ 0; 0.2000; 0.4000; 0.6000; 0.8000];

h=[ 3.4000; 2.3000; 1.7000; 1.2000; 0.9000];

for k=1:5,

pe=h(k)-K*exp(-t(k)/tau);

j=j+pe*pe;

end

J=j/2

end

Listing 5.1 A function to minimize in order to solve Exercise 5.12 a.

with the gradient

�J
�K = −

∑N
k=1 e

−tk/τ (h(tk) − K e−tk/τ ) (5.143)
�J
�τ = −

∑N
k=1 K

tk

τ 2
e−tk/τ (h(tk) − K e−tk/τ ) (5.144)

Putting the gradient to zero gives the solution (or solutions) to the opti-
mization problem. As this is a difficult problem to solve analytically, we

would prefer to solve the problem numerically. A suitable approach is to

use an iterative procedure of gradient descent such as

K̂ (i+1) = K̂ (i) −α
�J
�K (K̂

(i),τ (i)) (5.145)

τ (i+1) = τ (i) −α
�J
�τ (K̂

(i),τ (i)) (5.146)

which yields the solution


 K̂

τ


 =



3.359

0.588


 (5.147)

b. The exponential function formulated in the free variables K and τ is

h(t) = K e−t/τ

The relative error of the estimates of K and τ are

K̃

K
= K̂ − K

K
, K = h(t)/e−t/τ (5.148)

τ̃

τ
= τ̂ − τ

τ
, τ = t

log
K

h(t)

(5.149)
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function [J]=femb(x);

K=x(1); tau=x(2);

t=[ 0; 0.2000; 0.4000; 0.6000; 0.8000];

h=[ 3.4000; 2.3000; 1.7000; 1.2000; 0.9000];

j=0;

for k=1:5,

x1=(tau-t(k)/log(K/h(k)))/tau;

x2=(K-h(k)/exp(-t(k)/tau))/K;

j=j+x1*x1+x2*x2;

end

J=j/2

end

Listing 5.2 A function to minimize in order to solve Exercise 5.12 a.

A possible optimization criterion in order to minimize the relative error is

J(K ,τ ) = 1
2

N∑

k=1

1

τ 2
(τ − tk

log K − log h(tk)
)2 + 1

K 2
(K − h(tk)

exp (−tk/τ )
)2 (5.150)

Numerical minimization of J(K ,τ ) yields the result


K

τ


 =



3.2081

0.6200


 (5.151)

c. A linear regression model can be formulated as

log h(t) = log K − t1
τ
=

 1 −t





log K

1/τ


 (5.152)

and we find for the data provided

t = 0+ 0.200 0.400 0.600 0.800

h(t) = 3.400 2.300 1.700 1.200 0.900

log h(t) = 1.2238 0.8329 0.5306 0.1823 −0.1054
(5.153)

Least-squares estimation of the parameters

θ =


log K

1/τ


 (5.154)

of the linear regression model of Eq. (5.152) yields

θ̂ =


1.1946

1.6544


 (5.155)
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Optimization criterion of Exercise 5.12a

Optimization criterion of Exercise 5.12b

Figure 5.2 Optimization criteria of Exercises 5.12a-b close to the mini-

mum.

with the resultant parameters



K

τ


 =



3.3022

0.6044


 (5.156)
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6

Identification of

Time-Series Models

6.1 We consider the data from the system

S : yk + ayk−1 = buk−1 + wk + cwk−1

where {uk} and {wk} are independent zero-mean white noise processes
with the variances E{u2k} = σ 2u and E{w2k} = σ 2w, respectively. Looking for
the asymptotic parameter estimates of the model

M : yk + ayk−1 = buk−1

it is straightforward to adopt a least-squares estimate based on the linear

regression model

M : Y N = ΦNθ , θ =


a

b


 (6.1)

with N data samples

Y N =




y2

y3

...

yN



, and ΦN =




−y1 u1

−y2 u2

...
...

−yN−1 uN−1




(6.2)

and the least-squares solution

θ̂ =


â

b̂


 = (ΦTNΦN)−1ΦNY N (6.3)
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Assuming that the system generating data is

S : yk+1 = −ayk + buk +wk+1 + cwk,
{
E{uk} = σ 2u

E{wk} = σ 2w
(6.4)

and that {uk} and {wk} are uncorrelated sequences, we verify that

1

N − 1ΦTNΦN =




1N − 1∑N−1
k=1 y

2
k

−1
N − 1

∑N−1
k=1 ykuk

−1
N − 1

∑N−1
k=1 ykuk

1

N − 1
∑N−1
k=1 u

2
k




(6.5)

and

1

N − 1ΦTNY N =




−1
N − 1

∑N
k=2 ykyk−1

1

N − 1
∑N
k=2 ykuk−1




(6.6)

Under an assumption of ergodicity we find the mathematical expectation

E{ykuk} = 0 and that

E{yk+1yk} = E{−ay2k + bukyk +wk+1uk + cwkyk} (6.7)
= −aE{y2k} + bE{ukyk} +E{wk+1yk} + cE{wkyk} (6.8)
= −aE{y2k} + cσ 2w (6.9)

E{y2k+1} = E{(−ayk + buk + wk+1 + cwk)2} (6.10)
= a2E{y2k} + b2E{u2k} +E{w2k+1} + c2E{w2k}
− 2abE{ykuk} − 2aE{ykwk+1} − 2acE{ykwk}
+ 2bE{ukwk+1} + 2bcE{ukwk} + 2E{wk+1wk} (6.11)
= a2E{y2k} + b2σ 2u +σ 2w + c2σ 2w − 2acσ 2w (6.12)

Under stationary conditions we find that E{y2k+1} =E{y2k} so that

E{y2k} =
1

1− a2 (b
2σ 2u + (1+ c2 − 2ac)σ 2w) (6.13)

For the special case σ 2w = σ 2u with signal-to-noise ratio SNR= 1 we have

E{y2k} =
σ 2

1− a2 (b
2 − 2ac+ 1+ c2) (6.14)

Considering asymptotic properties of Eq. (6.5), we have

lim
N→∞

1

N − 1ΦTNΦN = lim
N→∞




1

N − 1
∑N−1
k=1 y

2
k

−1
N − 1

∑N−1
k=1 ykuk

−1
N − 1

∑N−1
k=1 ykuk

1

N − 1
∑N−1
k=1 u

2
k




=


E{y2k} E{ykuk}
E{ykuk} E{u2k}


 =



E{y2k} 0

0 σ 2u


 (6.15)
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and for Eq. (6.6)

lim
N→∞

1

N − 1ΦTNY N = lim
N→∞




−1
N − 1

∑N
k=2 ykyk−1

1

N − 1
∑N
k=2 ykuk−1




(6.16)

=


E{yk+1yk}
E{ykuk−1}


 (6.17)

=


aE{y2k} − cσ 2w

bσ 2u


 (6.18)

Thus, we summarize the asymptotical least-squares estimate as N → ∞
as

θ̂∞ = lim
N→∞

θ̂N = lim
N→∞

( 1

N − 1ΦTNΦN)−1(
1

N − 1ΦTNY N) (6.19)

=


E{y2k} 0

0 σ 2u



−1

aE{y2k} − cσ 2w
bσ 2u


 =



a− c σ 2w
E{y2k}
b


 (6.20)

The mean-square prediction error is

1

N − 1

N∑

k=2
ε 2k(θ̂N) = 1

N − 1Y
T
N

(
I − ΦN(ΦTNΦN)−1ΦTN

)
Y N (6.21)

= 1

N − 1(Y
T
NY N − Ŷ TN Ŷ N) (6.22)

= 1

N − 1(Y
T
NY N − θ̂TN(ΦTNΦN)θ̂N) (6.23)

= 1

N − 1(θ̃
T
N(ΦTNΦN)θ̃N) (6.24)

Using the asymptotical parameter estimate θ̂∞ and Eq. (6.13) we have the
mathematical expectation of the mean-square prediction error

E{ε 2k(θ̂∞)} = E{ lim
N→∞

( 1

N − 1Y
T
NY N − θ̂T∞(

1

N − 1ΦTNΦN)θ̂∞)} (6.25)

= E{y2k} −



a− c σ 2

E{y2k}
b




T 

E{y2k} 0

0 σ 2






a− c σ 2w
E{y2k}
b




= (1− a2)E{y2} + 2acσ 2w −σ 2ub
2 − c2σ 4w
E{y2

k
} (6.26)

= (1+ c2)σ 2w −
c2σ 4w
E{y2

k
} (6.27)
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whereas the true parameters give the result

E{ε 2k(θ )} = E{(ŷk+1 − yk+1)2} =E{(−ayk + buk − yk+1)2} (6.28)
= E{(wk+1 + cwk)2} = (1+ c2)σ 2w >E{ε 2k(θ̂∞)} (6.29)

which proves that the biased least-squares parameters yield a lower ex-

pected mean-square prediction error than the true parameters.

Remark: The asymptotical prediction error associated with

θ̂∞ =


â

b̂


 (6.30)

may also be computed according to the definition of the prediction error

as follows

ε k+1 = ŷk+1 − yk+1 (6.31)
= −(â− a)yk + (b̂− b)uk − wk+1 − cwk (6.32)

and

E{ε 2k(θ̂ )} = (â− a)2E{y2k} + (b̂− b)2E{u2k} +E{(wk+1 + cwk)2} (6.33)
+ 2(â− a)E{yk(wk+1 + cwk)} − 2(b̂− b)E{uk(wk+1 + cwk)}
− 2(â− a)(b̂− b)E{ykuk}
= (â− a)2E{y2k} + (b̂− b)2σ 2u (6.34)
+ (1+ c2)σ 2w + 2(â− a)cE{ykwk}

= c2σ 4w
E{y2

k
} + (1+ c

2)σ 2w − 2
c2wσ 4

E{y2
k
} (6.35)

= (1+ c2)σ 2w −
c2σ 4w
E{y2k}

(6.36)

6.2 Notice that

x̂ = −Q−12 q1
minimizes the function

V (x) = 1
2
xTQ2x + xTq1 + q0

Now introduce the error

e(i) = x(i) − x̂ = x(i) + Q−12 q1

and consider the error norm

qe(i)q2P = (e(i))TPe(i)
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The optimization algorithm is supposed to be

x(i+1) = x(i) −α i(V ′′(x(i)))−1V ′(x(i))

The error norm develops in one iteration of the

e(i+1) = e(i) −α i(V ′′(x(i)))−1V ′(x(i)) (6.37)
= e(i) −α iQ

−1
2 (Q2x(i) + q1) = (1−α i)e(i) (6.38)

The error norm develops in one iteration of the as

qe(i+1)q2P = (1−α i)2qe(i)q2P

so that qe(i)q2P decreases for step lengths chosen in the range 0 < α i < 2.
6.3 Consider data generated by the MA-process

S : yk = b1uk−1 + b2uk−2 + ⋅ ⋅ ⋅+ bmuk−m + vk

where {vk} is a colored noise sequence. Assume that the following model
is adopted

M : yk = b1uk−1 + b2uk−2 + ⋅ ⋅ ⋅+ bmuk−m
Least-squares identification based on the linear regression model

M ′ : yk = φTkθ =

uk−1 uk−2 . . . uk−m







b1

b2
...

bm




(6.39)

or Y N = ΦNθ with

Φn =




um um−1 . . . u1

um+1 um . . . u2

...
...

...

uN−1 uN−2 . . . uN−m



, and Y N =




ym+1

ym+2
...

yN




(6.40)

The least-squares estimate is

θ̂ = (ΦTNΦN)−1ΦTNY N = (ΦTNΦN)−1ΦTN(ΦNθ + v) (6.41)
= θ + (ΦTNΦN)−1ΦTNv (6.42)

with the expected value

E{θ̂} = E{(ΦTNΦN)−1ΦTNY N} =E{(ΦTNΦN)−1ΦTN(ΦNθ + v)} (6.43)

= θ +E{( 1

N −mΦTNΦN)−1(
1

N −mΦTNv)} (6.44)
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As ΦN depends only on past values {uk}, we have

lim
N→∞
E{( 1

N −mΦTNΦN)−1(
1

N −mΦTNv)} = 0

if and only ifE{ΦTNv} = 0, i.e., if and only if {vk} is uncorrelated with {uk}.
According to Def. B9 in Appendix B of System Modeling and Identification

(p. 422) we conclude that such an estimate is consistent (in probability)
with the probability limit

plim θ̂ = θ

As a result, we are not faced with the dilemma encountered in the context

of least-squares identification of autoregressive moving average models

in which the the noise sequence {vk} and the output sequence {yk} are
generally correlated. The only essential restriction imposed for MA-models

is the the input sequence {uk} may not be generated by output feedback
which would introduce undesired correlation.

6.4 Assume that the noise components {vk}Nk=1 are arranged as the vector v
with the associated probability density function

f (v) =
N∏

k=1
f (vk) =

N∏

k=1

vk

σ 2
e
−
v2i

2σ 2 = 1

σ 2N
(
N∏

k=1
vk)e

−
vTv

2σ 2 , ∀vk ≥ 0

Assuming a linear model

yk = φTkθ + vk (6.45)
ε k = yk − φTk θ̄ (6.46)

and given the observations Y N and the regressor matrix ΦN thus results
in the following likelihood function for θ

L(θ̄ ,σ 2) = (
N∏

k=1
f (ε kpθ̄ ,σ 2)) (6.47)

= 1

σ 2N
(
N∏

k=1
ε k) exp

(
(− 1

2σ 2
)(Y N − ΦNθ̄ )T(Y N − ΦNθ̄ )

)
(6.48)

for ε k ≥ 0, ∀k and the log-likelihood function, ∀ε k ≥ 0, is

log L(θ̄ ,σ 2) = −N logσ 2 −
N∑

k=1
log ε k −

1

2σ 2
(Y N − ΦNθ̄ )T(Y N − ΦNθ̄ )
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The partial derivatives with respect to σ 2 and θ̄ are

�L(θ̄)
�θ̄ = −

N∑

k=1

1

yk − φ kθ̄
φ k −

1

σ 2
(−ΦTNY + ΦTNΦNθ̄ ) (6.49)

�L(θ̄)
�σ 2 = −Nσ 2 + 1

2σ 4
(Y N − ΦNθ̄ )T(Y N − ΦNθ̄ ) (6.50)

Putting the gradient to zero shows that there are extrema for

σ 2 = 1

2N
(Y N − ΦNθ̄ )T(Y N − ΦNθ̄ )

If we substitute σ 2 in the log-likelihood function, then we obtain

log L(θ̄) = −N log( 1
2N

(Y N − ΦNθ̄ )T(Y N − ΦNθ̄ ))

− 1

2

N∑

k=1
log ε 2k − N − N log(

N∑

k=1
ε 2k) −

1

2

N∑

k=1
log ε 2k (6.51)

and for its gradient

�L(θ̄)
�θ̄ = −

N∑

k=1

1

ε (θ̄ )φ k − 2N
ΦNε (θ̄)

ε (θ̄ )Tε (θ̄ )

which can be solved numerically by evaluating L(θ̄) and �L(θ̄)/�θ̄ , see
Appendic C of System Modeling and Identification.

6.5 The system generating data is assumed to be

yk+1 = a(uk +wk), wk ∈N (0,σ 2), E{wiwj} = σ 2δ i j

Considering this as a linear regression problem we have

M : yk+1 = auk

with the observation and regressor matrices

Y N =

 y1 y2 . . . yN


T (6.52)

and

ΦN =

u0 u1 . . . uN−1


T (6.53)

Evaluate

ΦTNΦN =
N−1∑

k=1
u2k, and ΦTNY N =

N∑

k=1
ykuk−1
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and

θ̂N = (
1

N
ΦTNΦN)−1(

1

N
ΦTNY N)

with the asymptotical result

lim
N→∞

θ̂N = (E{u2k})−1E{ykuk−1} = C−1uu Cyu(−1)

where

Cyu(−1) =E{(auk + awk)uk} = aCuu(0) + aCwu(0)
When Cwu(0) = 0 we find that the parameter estimate is consistent as

lim
N→∞

θ̂N = C−1uu (0)(aCuu(0) + aCwu(0)) = a+ aC−1uu (0)Cwu(0) = a

An alternative solution to this problem in the case of a known value σ 2 is
to adopt the maximum-likelihood approach with the log-likelihood function

log L(θ ) = −N log
√
2π − 1

2
N logθ 2σ 2 − 1

2θ 2σ 2

N∑

k=1
(yk − φ kθ )2, θ = a

with the derivative

� log L(θ )
�θ = −N 1

θ
+ 1

θ 3σ 2

N∑

k=1
(yk − φ kθ )2 +

1

θ 2σ 2

N∑

k=1
φ k(yk − φTk θ )

As it is a difficult task to analytically solve for the optimum of the log-

likelihood function, it is common practice to solve such problems numer-

ically, see Fig. 6.1. Unfortunately, few software packages support the nu-

merical solution of such problems.

6.6 The idea behind the instrumental variable method is to find a set of vari-

ables Z for the linear regression model Y N = ΦNθ + v or

ε = v = Y N − ΦNθ

so that

0 = ZTv = ZTY N − ZTΦNθ = ZTε

which enables the solution

θ̂ = (ZTΦN)−1ZTY N

Thus we have the requested augmented system equation



I ΦN

ZT 0






ε

θ̂


 =



Y N

0


 (6.54)
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Figure 6.1 Log-likelihood function for the example in Exercise 6.5 (a = 1)
based on N = 1000 data points with minimum at θ̄ = 0.987.

6.7 The augmented system equation gives




ε

θ̂


 0



I ΦN

ZT 0



−1
Y N

0


 (6.55)

and it is straightforward to verify that



I ΦN

ZT 0



−1
=


I − ΦN(ZTΦN)−1ZT ΦN(ZTΦN)−1

(ZTΦN)−1ZT −(ZTΦN)−1

 (6.56)

so that




ε

θ̂





I − ΦN(ZTΦN)−1ZT ΦN(ZTΦN)−1

(ZTΦN)−1ZT −(ZTΦN)−1




YN

0


 (6.57)

6.8 We consider a linear regression modelY N = ΦNθ+v with Cov(v) = Σv and
E{v} = 0. The augmented system equation for the instrumental variable
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method is


I ΦN

ZT 0






ε

θ̂


 =



Y N

0


 (6.58)

By subtracting



I ΦN

ZT 0





0

θ


 =




ΦNθ

0


 (6.59)

from Eq. (6.58 ) we obtain the relationship


I ΦN

ZT 0






ε

θ̃


 =



v

0


 (6.60)

Hence we have the requested relationship

Cov{


I ΦN

ZT 0






ε

θ̃


 = Cov{



v

0p$1


 =




Σv 0N$p

0p$N 0p$p


 (6.61)

or

Cov{



ε

θ̃


} = Cov



I ΦN

ZT 0




= Cov{


v

0p$1


 (6.62)

(


I ΦN

ZT 0



−1
Cov{



v

0p$1





I ΦN

ZT 0



−T

(6.63)

=


I ΦN

ZT 0



−1

Σv 0N$p

0p$N 0p$p





I ΦN

ZT 0



−T
(6.64)

By applying the result of Exercizes 6.7 to Eq. (6.64) we obtain the covari-
ance estimate

Cov{



ε

θ̃


 (



I ΦN

ZT 0



−1

Σv 0N$p

0p$N 0p$p





I ΦN

ZT 0



−T
(6.65)

=


PΣvP

T PΣvR
T

RΣvP
T RΣvR

T


 (6.66)

for P = (I − ΦN(ZTΦN)−1ZT) and R = (ZTΦN)−1ZT .
6.9 Consider the functions

f1(A) = log det A (6.67)
f2(A) = tr(WA) (6.68)

where W is a symmetric positive definite weighting matrix.
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For square symmetric matrices A and A0 where A ≥ A0 > 0 there is a
matrix factorization such that

A0 = LTL

Thus for any matrix ∆ = ∆T > 0 we can evaluate the function

f1(A0 + ∆) − f1(A0) = log det(A0 + ∆) − log det(A0) (6.69)
= log det(I + L−T∆L−1) (6.70)
= log detT−1(I + L−T∆L−1)T (6.71)
= log det(I + T−1L−T∆L−1T) (6.72)

where T is any invertible matrix. In particular, we can choose T according

to a similarity transformation such that

T−1L−T∆L−1T =




λ1 0 . . . 0

0 λ2
. . .

...

...
. . .

. . . 0

0 . . . 0 λN




(6.73)

so that we can verify the inequality

f1(A0 + ∆) − f1(A0) =
n∑

k=1
log(1+ λ k) > 0

An alternative solution is

f1(A) − f1(A0) = log det A− log det A0 (6.74)

= log

n∏

k=1
λ k(A) − log

n∏

k=1
λ k(A0) (6.75)

=
n∏

k=1
(logλ k(A) − logλ k(A0)) ≥ 0 (6.76)

where λ k(A); k = 1, 2, . . . ,n denotes the kth eigenvalue of the n$n−matrix
A.

For the second inequality in Eq. (6.68) with a positive definite weighting
matrix W factorized as W = LTL, we find that

f2(A0 + ∆) − f2(A0) = tr(W∆) = tr(L∆LT) ≥ 0

For square symmetric matrices A and A0 where A > A0 it holds that
f1(A) ≥ f1(A0) and f2(A) ≥ f2(A0).
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6.10 The sequence {vk} is a sequence of independent identically distributed
stochastic variables, each with the probability density function f (x) =
µ e−µx. We have the following equations for the system and the model

S : vk = yk + ayk−1 − buk−1 (6.77)
M : ε k = yk + âyk−1 − b̂uk−1 (6.78)

An assumption underlying the formulation of the likelihood function is that

for true parameter theta we have

ε k(θ ) = yk + ayk−1 − buk−1 = vk (6.79)
f (ε k(θ )) = f (vk) (6.80)

The likelihood function is then

L(θ̄ ,µ) =
N∏

k=1
f (ε k) (6.81)

=
N∏

k=1
µ exp

(
−µ(yk + âyk−1 − b̂uk−1)

)
(6.82)

and the log-likelihood function is

log L(θ̄ ,µ) = N log µ − µ
N∑

k=1

(
yk + âyk−1 − b̂uk−1

)
, θ̄ =



a

b


 (6.83)

The partial derivative with respect to µ is

� log L(θ̄ ,µ)
�µ

= N
µ
−

N∑

k=1

(
yk + âyk−1 − b̂uk−1

)

which suggest µ to be chosen as

µ̂ = N

N∑

k=1

(
yk + âyk−1 − b̂uk−1

)

If µ is substituted for µ̂ in the log-likelihood function, we have

log L(θ̄ ) = N log N − N − log
N∑

k=1

(
yk + âyk−1 − b̂uk−1

)

This modified optimization problemmay be approached by numerical meth-

ods in order to find the optimal θ̄ .

©Rolf Johansson, 2008-2014



7

Modeling

7.1 XSAssuming y(t) to be the observed variable, we solve the differential
equation given in the formulation of this exercise in the textbook

x(t) = e−r(t−t0)x(t0) (7.1)
y(t) = ce−r(t−t0)x(t0) = e−r(t−t0)y(t0) (7.2)

Taking logarithms we obtain

log y(t) = log y(t0) − r(t− t0)

and we can solve for the desired transfer coefficient by means of the equa-

tion

r = log y(t0) − log y(t)
t− t0

7.2 Consider the serum and gastrointestinal compartments with the distribu-

tion volumes V1 and V2 and the concentration x1 and x2, respectively.

ẋ1 = −r1x1 + r2x2 + r3x3 − r4x1 (7.3)
ẋ2 = −r2x2 (7.4)
ẋ3 = −r3x3 + r4x1 (7.5)

where oral intake loads the gastrointestinal compartment x2 whereas in-

travenous (i.v.) infusion loads the serum compartment x1. Visual interpre-
tation of the graphs of data suggests that a first order model might suffice

for intravenous (i.v.) intake, i.e., a first hypothesis is that the tissue com-
partment might be neglected. A reduced set of equation to model this case

is

ẋ1 = −r1x1 + r2x2 (7.6)
ẋ2 = −r2x2 (7.7)
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Gastrointestinal

  compartment

     Serum

compartment

x
  2

x
  1

    Tissue

compartment

x
 3

r
 4

r
 3

Figure 7.1 Compartment model of Exercise 7.2.

Loading of the serum compartment at time t = t0 gives rise to elimination
according to the equation

x1(t) = e−r1(t−t0)x10, where x10 =
m1

V1

and where

{
mi, Dose loaded into compartment i

Vi, Distribution volume of compartment i
i = 1, 2, 3 (7.8)

The transfer coefficient r1 and the distribution volume can thus be deter-

mined by fitting data to a model.

Numerical optimization can be done of the following least-squares criterion

J1(K , r1) =
N∑

k=1
(x1(tk) − K e−r1tk)2; K = m

V
(7.9)

which is nonlinear in parameters. Another approach is to optimize the

following least-squares criterion model

J2(K , r1) =
N∑

k=1
(log x1(tk) − log K + r1tk)2 (7.10)

=
N∑

k=1
(log x1(tk) − logm + logV + r1tk)2 (7.11)

based on the linear regression

M : Y N = ΦNθ
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which can be organized as

Y N =




log x1(t1) − logm
log x1(t2) − logm

...

log x1(tN) − logm



, and ΦN =




−1 −t1
−1 −t2
...

...

−1 −tN




(7.12)

and the parameter vector

θ =
(
log K

r1

)
(7.13)

The advantage of optimizing Eq. (7.12 ) as compared to Eq. (7.9) is that it
is linear in the parameters logV and r1 and can be solved as an ordinary

least-squares problem. Application to the data provided in the textbook

yields

(
logV

r1

)
=
(
3.2754

0.2387

)
[

(
V

r1

)
=
(
56.64 [l]
0.2572 [h]

)
(7.14)

The distribution volume of 56 [l] might appear large in comparison to
the human blood volume of about 5 [l]. Standard interpretations of such
results are that the drug is somehow chemically bound to some component

of the blood and released slowly. Another interpretation is that the blood

compartment and the tissue compartment are indistinguishable from the

point of view of drug distribution.

When loading the gastrointestinal compartment we have

ẋ1 = −r1x1 + r2x2 (7.15)

ẋ2 = −r2x2




x1(t) =

r2x20

r2 − r1
(e−r2t − e−r1t)

x2(t) = x20e−r2t
(7.16)

Byminimizing the function (for instance by means of the procedure “FMINS”
in Matlab)

J3(K , r1, r2) =
N∑

k=1
(x1(tk) − K (e−r2tk − e−r1tk))2

we obtain the numerical values



K

r1

r2


 =



4.22 ⋅ 10−3

0.249

2.38


 (7.17)
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Figure 7.2 Fitting of two-compartment model to the data in Exercise 7.2

The fitted two-compartment model output and data are shown in Fig. 7.17.

The estimate of the transfer coefficient r1 is consistent with the estimate

provided in Eq. (7.14). The transfer coefficient r2 representing the absorp-
tion of the drug from the gastrointestinal tract is about ten times larger

than the time constant r1 representing elimination. Further refinement

can be achieved by additional modeling of the tissue compartment.

A major drawback with the explicit method presented above is that the

complexity of the optimization problem increases at a fast rate as the num-

ber of compartments increases. An alternative means of analysis can be

approached by considering the methods of Chapter 12 of System Modeling

and Identification. If we model the loading of a certain compartment by

means of the linear model

ẋ(t) = Ax(t) + Bδ (t) (7.18)
sX (s) = AX (s) + B (7.19)

then we can apply the operator transform

λ = 1

1+ τ s
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to Eq. (7.19) we find
1

τ

1− λ(s)
λ(s) X = AX + B

which yields the linear regression model

X = (I + τ A)(λ(s)X ) + τ (λ(s)B)

which is expressed in the compartment states x and the input.

Application of the same methodology to a transfer function model from

input to (a restricted set of) outputs according to the equations

ẋ(t) = Ax(t) + Bδ (t) (7.20)
y = Cx [ Y(s) = C(sI − A)−1B (7.21)

For instance, for the two-compartment model given above with y(t) be-
ing the elimination rate r1x1(t) and with loading of the gastrointestinal
compartment at the time t = 0, we arrive at the transfer function model

Y(s) = r1r2

(s+ r1)(s+ r2)
L{m2
V2

δ (t)}

Application of the operator transform

λ = 1

1+ τ s

gives the linear regression model

[(1− λ)2Y(s)] = −(r1 + r2)[τ λ(1− λ)Y(s)] − r1r2[τ 2λ2Y(s)] (7.22)
+ r1r2

m2

V2
[τ 2λ2L{δ (t)}] (7.23)

or in the time domain

[(1− λ)2{y(t)}] = −(r1 + r2)[τ λ(1− λ){y(t)}] − r1r2[τ 2λ2{y(t)}] (7.24)
+ r1r2

m2

V2
[τ 2λ2{δ (t)}] (7.25)

which can be solved by linear regression methods with results similar

to Eq. (7.14) being obtained. The continuous-time modeling exhibits nice
properties as the model-order dependent complexity effectively precludes

explicit criterion minimization for model complexity greater than model

order two or three.
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7.3 We consider the logistic curve

y(u) = x(u) + ǫ = 1

1+ exp(−(α + βu)) + ǫ

By making the suggested transformation

z = log
y

1− y (7.26)

= log
1+ ǫ(1+ exp(−(α + βu)))

exp(−(α + βu)) − ǫ(1+ exp(−(α + βu))) (7.27)

= log(1+ ǫ(1+ exp(−(α + βu)))) − log exp(−(α + βu)) (7.28)

− log(1− ǫ(1+ exp(−(α + βu)))
exp(−(α + βu)) ) (7.29)

= (α + βu) log(1+ ǫ(1+ exp(−(α + βu)))) (7.30)

− log(1− ǫ(1+ exp(−(α + βu)))
exp(−(α + βu)) ) (7.31)

Using the standard identity log(1+ x) ≤ x we obtain for small ǫ that

z ( (α + βu) + ǫ

(1+ exp(−(α + βu)))2
exp(−(α + βu))

Assuming observations {ǫk} of ǫ to be small and statistically independent,
we would expect such a linear regression model to yield unbiased esti-

mates. The magnification factor is, however, very large for certain values

of u.

7.4 In this exercise is considered a cylindrical water tank with cross section

area A and outlet area a

a. The differential equation

A
dh

dt
= −a

√
2�h

is solved by separation of variables, resulting in

h′

2
√
h
= − a

A

√
�
2
, h′ = dh

dt

and √
h(t) −

√
h(t0) = −

a

A

√
�
2
(t− t0)

which gives

h(t) = h0(1−
t

T
)2, t0 ≤ t ≤ t0 + T

where h(t0) = h0, and T =
A

a

√
2h0�.
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b. The equation

h(t) = h0(1−
t

T
)2, 0 ≤ t ≤ T

can be rewritten as

y(t) = 1

1−
√
h(t)
h0

= 1
t
T = ϕ (t)θ

c. The data are h0 = 10 and

t = 1 2 3 4

h(t) = 8.9 7.4 6.3 5.5

y(t) = 17.67 7.16 4.85 3.87

φ(t) = 1 0.5 0.333 0.25

(7.32)

which yields the least-squares estimate

T̂ =
(
4∑

1

ϕ 2k

)−1 4∑

1

ϕ kyk = 16.7

7.5 The robot dynamics equations for τ1 and τ2 are linear in the mass param-
eters m1 and m2. Collecting terms gives

τ =
(

τ1

τ2

)
=
(

ϕ11 ϕ12

ϕ21 ϕ22

)(
m1

m2

)
= ϕTθ (7.33)

with

ϕ11 = l21 q̈1 + l1�c1 (7.34)
ϕ12 = l22(q̈1 + q̈2) + l1l2c2(2q̈1 + q̈2) + l21 q̈1 − l1l2s2 q̇22 − 2l1l2s2 q̇1 q̇2

+ l2�c12 + l1�c1 (7.35)
ϕ21 = 0 (7.36)
ϕ22 = l1l2c2 q̈1 + l1l2s2 q̇21 + l2�c12 + l22(q̈1 + q̈2) (7.37)

b. The accelerations q̈i occurs in the robot dynamics equations as α q̈i and
ci q̈j = cos(qi)q̈j . Filtering of α q̈i with a first order low pass filter (see
Chapter 12 in System Modeling and Identification for details of this the-

ory.)
λ = 1

1+ pT
where p = d/dt, gives

λ{α q̈j} =
1

1+ pTα q̈j = α
p

1+ pT q̇j
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which is a realizable filtering of the speed q̇j . The terms cos(qi)q̈j cannot
be handled in the same way. Instead we use the relationship

cos(qi)q̈j =
d

dt
(cos(qi)q̇j) + sin(qi)q̇i q̇j

A low pass filtering now gives

1

1+ pT (cos(qi)q̈j) =
p

1+ pT (cos(qi)q̇j) +
1

1+ pT (sin(qi)q̇i q̇j)

where the right side is realizable. Introduce the filters

F1 = 1

1+ pT , (7.38)

F2 = p

1+ pT =
1

T
(1− λ) (7.39)

Applying the filter F1 on the robot dynamics equations, the result can be

written as

τ f =
(

τ f1
τ f2

)
=
(

ϕ f11 ϕ f12
ϕ f21 ϕ f22

)(
m1

m2

)
= ϕTf θ ( ) (7.40)

where τ f = F1τ and

ϕ f11 = l21F2 q̇1 + l1�F1c1 (7.41)
ϕ f12 = l22(F2 q̇1 + F2 q̇2) + l1l22(F2(c2 q̇1) + F1(s2 q̇1 q̇2)) (7.42)

+ l1l2(F2(c2 q̇2) + F1(s2 q̇22)) + l21F2 q̇1 − l1l2F1(s2 q̇22) (7.43)
− 2l1l2F1(s2 q̇1 q̇2) + l2�F1c12 + l1�F1c1 (7.44)

ϕ f21 = 0 (7.45)
ϕ f22 = l1l2(F2(c2 q̇1) + F1(s2 q̇1 q̇2)) + l1l2F1(s2 q̇1 q̇2) (7.46)

+ l2�F1c12 + l22(F2 q̇1 + F2 q̇2 (7.47)

c. The robot dynamics equations can be written as

τ =
(

ϕ11 ϕ12 ϕ13 ϕ14 ϕ15

ϕ21 ϕ22 ϕ23 ϕ24 ϕ25

)




m2l
2
2

m2l1l2

(m1 +m2)l21
m2l2

(m1 +m2)l1



= ϕTθ (7.48)

where ϕ ii are functions of qi, q̇i and q̈i. We see that the parameter vector
now contains combinations of the original parameters m1, m2, l1 and l2.
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Identification is thus possible if the nonlinear equations relating the iden-

tified parameters θ , and the original parameters, are solvable. One such
alternative is to solve for




m1

m2

l1

l2


 =




θ 25
θ3
− θ 24

θ1

θ 24
θ1
θ2
θ4
θ1
θ4




(7.49)

7.6

a. Introducing the variables

a(t) = −α (t)u(t) (7.50)
v(t) = α (t)u(t)c(t) − R(t) (7.51)

the dynamic equation for the dissolved oxygen dynamics can be written as

ẏ(t) − a(t)y(t) = v(t) (7.52)

Given y(t0), the solution is

y(t) = e
∫ t
t0
a(τ )dτ

y(t0) +
∫ t

t0

e
∫ t
s
a(τ )dτ v(s)ds

Sampling gives

y(kh+ h) = e
∫ kh+h
kh

a(τ )dτ y(kh) +
∫ kh+h

kh

e
∫ kh+h
s

a(τ )dτ v(s)ds

Since a(t) and v(t) are constant between the sampling instants, this sim-
plifies to

y(kh+ h) = ea(kh)hy(kh) +
∫ h

0

ea(kh)(h−s)ds v(kh) (7.53)

Introduce ho by

ho =
∫ h

0

ea(kh)(h−s)ds = 1

a(kh)(e
a(kh)h − 1)

This gives

ea(kh)h = a(kh)ho + 1
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Figure 7.3 Definition of coordinates

Equation (7.53) can now be written as
y(kh+ h) − y(kh)

ho
= a(kh)y(kh) + v(kh)

But (7.52) gives a(kh)y(kh) + v(kh) = ẏ(kh) which gives the resulting
sampled model

ẏ(kh) = α (kh)u(kh)(c(kh) − y(kh)) − R(kh)

where

ẏ(kh) = y(kh+ h) − y(kh)
ho

= y(kh+ h) − y(kh)
1

a(kh)(e
a(kh)h − 1)

(7.54)

b. We see from (7.54) that if ho is replaced by the sampling interval h, we
obtain a forward Euler approximation of the derivative. The sampling in-

terval must typically be chosen smaller for the Euler approximation. This

may lead to a sampling interval that is too small for identification of the

relevant dynamics. If the assumption on piecewise constant signals is cor-

rect, the expression (7.54) gives an exact formula for ẏ, which gives more
freedom in the choice of sampling interval.

7.7 Introducing the horizontal position y and the vertical position z for the

ball (see Figure 7.3), we get

y = d sin(ϕ ) + x cos(ϕ ) (7.55)
z = d− d cos(ϕ ) + x sin(ϕ ) (7.56)

Differentiation gives

ÿ = dϕ̈ cos(ϕ ) − dϕ̇ 2 sin(ϕ ) + ẍ cos(ϕ ) (7.57)
− 2ẋϕ̇ sin(ϕ ) − xϕ̈ sin(ϕ ) − xϕ̇ 2 cos(ϕ ) (7.58)

z̈ = dϕ̈ sin(ϕ ) + dϕ̇ 2 cos(ϕ ) + ẍ sin(ϕ ) (7.59)
+ 2ẋϕ̇ cos(ϕ ) + xϕ̈ cos(ϕ ) − xϕ̇ 2 sin(ϕ ) (7.60)

©Rolf Johansson, 2008-2014



Chap. 7 7 61
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Figure 7.4 Forces acting on the ball

A force balance for the ball (see Fig. 7.4) is given by

mÿ = −N sin(ϕ ) − F cos(ϕ ) (7.61)
mz̈ = N cos(ϕ ) − F sin(ϕ ) −m� (7.62)

The force N is eliminated by multiplying the upper equations in (7.60)
and (7.61) with cos(ϕ ), and multiplying the lower equations with sin(ϕ ),
resulting in

m(ÿcos(ϕ ) + z̈sin(ϕ )) = −F −m� sin(ϕ ) = m(dϕ̈ + ẍ − xϕ̇ 2) (7.63)

Assuming that the friction between the ball and the beam is such that the

ball is rolling along the beam, the force F is given by

Fr = J1ω̇ = J1
ẍ

r
= αmr2

ẍ

r
[ F = αmẍ (7.64)

Using (7.63) and (7.64), we now obtain the dynamics from the angle ϕ of
the beam, to the position x of the ball, as

(1+α )ẍ − xϕ̇ 2 + dϕ̈ = −� sin(ϕ ) (7.65)

An equation where also the applied torque τ is included is obtained from
a torque balance for the beam:

J2ϕ̈ = τ − M�d sin(ϕ ) − Nx + Fd (7.66)

Using (7.60) and (7.61), the force N is given by

N −m� cos(ϕ ) = m(z̈cos(ϕ ) − ÿsin(ϕ )) (7.67)
= m(dϕ̇ 2 + 2ẋϕ̇ + xϕ̈) (7.68)
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where the upper equations in (7.60) and (7.61) are multiplied by − sin(ϕ ),
and the lower equations are multiplied by cos(ϕ ). The dynamic equation
for the beam then becomes

J2ϕ̈ = τ − M�d sin(ϕ ) −m(dϕ̇ 2 + 2ẋϕ̇ + xϕ̈ + � cos(ϕ ))x +αmẍd

Using (7.65) for replacing xϕ̇ 2, we get

J2ϕ̈ = τ − M�d sin(ϕ ) −m(d((1+α )ẍ + dϕ̈ + � sin(ϕ )) + 2xẋϕ̇ (7.69)
+ x2ϕ̈ + �x cos(ϕ )) +αmẍd (7.70)

which is simplified to

J2ϕ̈ = τ − M�d sin(ϕ ) (7.71)
− m

(
dẍ + d2ϕ̈ + d� sin(ϕ ) + 2xẋϕ̇ + x2ϕ̈ + �x cos(ϕ )

)
(7.72)

b. The measurable signals are x, ẋ, ϕ and τ . The dynamic equation (7.72)
contains also ϕ̇ , ϕ̈ , and ẍ. The relation

2xẋϕ̇ + x2ϕ̈ = d
2

dt2
(x2ϕ ) − 2 d

dt
(xẋϕ )

can be used to rewrite the dynamics (7.72) as

J2ϕ̈ = τ − M�d sin(ϕ ) −m(dẍ + d2ϕ̈ + d� sin(ϕ ) + �x cos(ϕ ) (7.73)

+ d
2

dt2
(x2ϕ ) − 2 d

dt
(xẋϕ )) (7.74)

and we see that by filtering both sides in (7.73) with

G f (p) = λ2 = 1

(1+ pT)2

where p = d
dt
, an identification model on the form

τ f = ϕTf θ

is obtained.

7.8 We consider a compartmental model which evolves according to the differ-

ential equation

ẋ = Ax, x ∈ R
n

with a matrix A containing the transfer coefficients which describe transfer

from one compartment to another. Let us interpret the transfer of material

between the compartments as the flow variable J, i.e.,

J(x(t)) = ẋ(t) = Ax(t), x ∈ R
n
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Let us also introduce the candidate potential function as

V (x) = 1
2
xTPx, P = PT > 0 (7.75)

If V (x) is the potential, then one would obtain the force variable as the
gradient, i.e.,

F(x) = −�V (x)�x = −Px

The equilibrium x = 0 is thus the point where the force F(x) and the flow
J(x) both are zero. We also notice that

FT(x)J(x) = −1
2
xT(PA+ ATP)x

It is well known in stability theory that for any stable system matrix A,

i.e., with all eigenvalues of A having negative real part, we are able to find

a positive definite solution

P = PT = lim
T→∞

∫ T

0

eA
T tQeAtdt > 0

to the Lyapunov equation

PA+ ATP = −Q, Q = QT > 0

Hence, for any stable systemmatrix A, i.e., with all eigenvalues of A having

negative real part, we are able to find a P of Eq. (7.75) which is a potential
function. For such systems we notice that

FT(x)J(x) = −1
2
xT(PA+ ATP)x = 1

2
xTQx ≥ 0

In addition, the value of the potential V (x(t)) for stable systems decreases
in the course of time as

V (x(t)) − V (x(t0)) =
∫ t

t0

(�V�x )
T ẋ(t)dt (7.76)

= −
∫ t

t0

FT(x(t))J(x(t))dt (7.77)

= −
∫ t

t0

xT(t)Qx(t)dt ≤ 0 (7.78)
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The Experimental

Procedure

8.1 Consider a discrete-time sinusoidal sequence {uk}∞k=1 where the compo-
nents uk = sinω 0k. It has a periodic Fourier transform

U∆(iω ) = U(iω ) ⋆F {Xh(t)} =
π

i
(δ (ω −ω 0) − δ (ω +ω 0)) ⋆

h

2π
X2π/h(ω )

which results in

U∆(iω ) =
∞∑

k=−∞

π

i
(δ (ω −ω 0 + kω s) − δ (ω +ω 0 + kω s))

with ω s = Nω 0.

The signal u(k) is fed to the DA-converter which acts like a filter with
impulse response

w(t) =
{
1, 0 ≤ t < T
0, otherwise

(8.1)

where T = 2π /ω s, and transfer function

W(iω ) =
∫ T

0

e−iω t dt = e−iωT/2 sinωT/2
ω/2 .

The power of the fundamental frequency component is proportional to

P0 =
sin2ω 0/2T
(ω 0/2)2

= sin
2π /N

(ω 0/2)2
.
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The strongest harmonic frequency component is the one at ω = ω s −ω 0.
Its power is proportional to

P1 =
sin2(ω s −ω 0)T/2
(ω s −ω 0)2/4

= sin
2 π (1− 1/N)

(ω 0/2)2(N − 1)2
= sin2π /N
(ω 0/2)2(N − 1)2

.

The total power in all the harmonic frequency components is proportional

to

Ph =
∞∑

k=1

(
sin2(kω s −ω 0)T/2
(kω s −ω 0)2/4

+ sin
2(kω s +ω 0)T/2
(kω s +ω 0)2/4

)
(8.2)

=
∞∑

k=1

(
sin2π (k− 1/N)
(ω 0/2)2(kN − 1)2

+ sin2 π (k+ 1/N)
(ω 0/2)2(kN + 1)2

)
(8.3)

=
∞∑

k=1

(
sin2 π /N

(ω 0/2)2(kN − 1)2
+ sin2π /N
(ω 0/2)2(kN + 1)2

)
(8.4)

= sin2π /N
(ω 0/2)2

1

N2

∞∑

k=1

(
1

(k− 1/N)2 +
1

(k+ 1/N)2
)
= [ 1/N small ]

( sin2π /N
(ω 0/2)2

2

N2

∞∑

k=1
1k2 = sin

2π /N
(ω 0/2)2

π 2

3N2
(8.5)

a. If we require that the power in the strongest harmonic to be less than 1%

of the power at the fundamental frequency

P1

P0
= 1

(N − 1)2 < 0.01 [ N > 11

b. If we require that more than 99% of the power appear at the fundamental

frequency

Ph

P0 + Ph
= π 2

3N2 + π 2
< 0.01 [ N > 18

We conclude that we need to sample the signal with a sampling frequency

20 times higher than that of the test frequency sinusoid.

8.2 Each value in the sequence {uk} is assumed to be normally distributed
N (0,σ 2). Let F(x) denote the normal distribution function

F(x) = 1√
2π

∫ x

−∞
e
−
t2

2 dt

A confidence interval with an upper and a lower limit—i.e., a two-sided

test—is relevant(see Table B.1). The probability that pukp > ulim is given
by

P < 2(1− F(ulim
σ
))
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Figure 8.1 Allowed standard deviation σ of white-noise input {uk} where
uk ∈N (0,σ 2) for various number of samples N .

To have P < 0.01, we have to have

F(ulim
σ
) > 0.995 [ σ < ulim2.5758 =

1

2.5758
= 0.3882

This is the relevant answer if we want to assure that a particular pukp
does not exceed the limit the sequence ulim = 1. However, if we want to
assure that {pukp}Nk=1 does not exceed the limit ulim at any sample k with
the probability P=0.01, then we should choose σ so that

[1− 2(1− F(ulim
σ
))]N < P = 0.01

so that

F(ulim
σ
) = 1+ P

1/N

2
or

σ = ulim

F−1(1
2
(1+ P1/N))

The upper limit of σ for a range of values of N is shown in Fig. 8.1.

8.3 Direct calculations give

m2 = 1/3, m3 = 1/7
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and

C2(τ ) =
{
8/9 = 1− 1/9, τ = 3k, k = 0,±1,±2, . . .
−4/9 = −1/3− 1/9, otherwise

(8.6)

C3(τ ) =
{
48/49 = 1− 1/49, τ = 7k, k = 0,±1,±2, . . .
−8/49 = −1/7− 1/49, otherwise

(8.7)

and hence in general

CN(τ ) =
{
1− 1/M2, τ = Mk, k = 0,±1,±2, . . .
−1/M − 1/M2, otherwise

(8.8)

with M = 2N − 1.
Even for moderately large values of N, M will be large and the term 1/M2
in CN(τ ) can be discarded. Then

CN(τ ) = −
1

M
+ M + 1

M

∞∑

k=−∞
�(τ + (2N − 1)k)

hence

CN(iω ) = − 1
M

1

T

∞∑

k=−∞
δ (ω + kω s) +

M + 1
M

1

MT

∞∑

k=−∞
δ (ω + kω s

M
)

= 1

T

∞∑

k=−∞
ckδ (ω + kω s

M
) (8.9)

with

ck =
{
1/M , k = nM , n = 0,±1,±2, . . .
(M + 1)/M2, otherwise

(8.10)

That is, the spectrum of a PRBS consists of a sum of sinusoids of (almost)
equal amplitude spaced ω s/(2N − 1) apart.

8.4 A DA-converter can be thought of as a linear system with the impulse

response

w(t) =
{
1, 0 ≤ t < T
0, otherwise

(8.11)

fed with a train of Dirac pulses where each pulse have an energy corre-

sponding to the digital value fed to the converter (T is the sample period).
The transfer function of the converter is

W(iω ) =
∫ T

0

e−iω t dt = e−iωT/2 sinωT/2
ω/2 .
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Therefore when feeding the PRBS through the DA-converter its spectrum

is changed with

pW(iω )p2 = sin
2ωT/2
(ω/2)2

and although the PRBS has flat spectrum, the signal at the output of the

DA-converter no longer has any flat spectrum.

8.5 The coherence function can be written

γ yu =

√
S2yu

SuSy
=
√

pGp2S2u
Su(pGp2Su + Sn)

= 1√
1+ Sn

pGp2Su
Hence, γ yu will be close to 1 at frequences where the effect of the input sig-
nal dominates over the disturbance, while it will approach 0 for frequences

where the disturbance dominates.

8.6 The conclusion about low pass character is correct, but claiming a reso-

nance at frequency 20 is dubious since the coherence function is almost 0

at that frequency.

8.7 A sinusoid is only exciting of order two and therefore not sufficient if three

unknown parameters are to be consistently identified according to criteria

of persistency of excitation.

8.8 The system that generates data is assumed to be

S : yk+1 = −ayk + buk +wk+1 + cwk (8.12)
uk = −K yk (8.13)

which gives the closed-loop system

S ′ : yk+1 = −(a+ bK )yk + wk+1 + cwk

A least-squares estimate of α = −(a+ bK ) gives

α̂ = (ΦTNΦN)−1ΦTNY N (8.14)

= (
N−1∑

k=0
y2k)−1(

N−1∑

k=0
−ykyk+1) (8.15)

= ( 1

N − 1

N−1∑

k=0
y2k)−1(

1

N − 1

N−1∑

k=0
−ykyk+1) (8.16)
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The asymptotic results are

E{y2k+1} = E{(−(a+ bK )yk + wk+1 + cwk)2} (8.17)
= (a+ bK )2E{y2k} +σ 2 + c2σ 2 − 2(a+ bK )cσ 2} (8.18)

E{yk+1yk} = E{(−(a+ bK )yk + wk+1 + cwk)yk} (8.19)
= −(a+ bK )E{y2k} + cσ 2 (8.20)

E{yk+2yk} = E{(−(a+ bK )yk+1 +wk+2 + cwk+1)yk} (8.21)
= −(a+ bK )E{yk+1yk} (8.22)

Under stationary conditions we have E{y2k+1} =E{y2k} so that

E{y2k} =
σ 2

1− (a+ bK )2 (1+ c
2 − 2c(a+ bK ))

and the asymptotical least-squares estimate is

E{α̂ } = E{(ΦTNΦN)−1ΦTNY N} (8.23)

= E{(
N−1∑

k=0
y2k)−1(

N−1∑

k=0
−ykyk+1)} (8.24)

= E{( 1

N − 1

N−1∑

k=0
y2k)−1(

1

N − 1

N−1∑

k=0
−ykyk+1)} (8.25)

= 1

E{y2k}
(−(a+ bK )E{y2k} + cσ 2) (8.26)

= (a+ bK ) − cσ 2

E{y2k}
(8.27)

= (a+ bK ) − cσ 2

σ 2

1− (a+ bK )2 (1+ c
2 − 2c(a+ bK ))

(8.28)

which is biased as expected.

By solving the Yule-Walker equations

(−E{yk+1yk} 0

−E{y2k} 1

)(
a+ bK
cσ 2

)
=
(
E{yk+2yk}
E{yk+1yk}

)
(8.29)

or
(−Cyy(1) 0
−Cyy(0) 1

)(
a+ bK
cσ 2

)
=
(
Cyy(2)
Cyy(0)

)
(8.30)

with the solution

(
a+ bK
cσ 2

)
=
(−E{yk+1yk} 0

−E{y2k} 1

)−1(E{yk+2yk}
E{yk+1yk}

)
(8.31)
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or—using estimates Ĉyy(τ )—we have

(
â+ bK
ĉσ 2

)
=

(
−Ĉyy(1) 0
−Ĉyy(0) 1

)−1(
Ĉyy(2)
Ĉyy(0)

)
(8.32)

= 1

Cyy(1)

(
−Ĉyy(2)

Ĉyy(1)2 − Ĉyy(0)Ĉyy(2)

)
(8.33)

8.9 We use the correlation matrix Ruu(n) as formulated in the context of per-
sistency of excitation (see System Modeling and Identification Sec. 8.5).
For the step-formed input we have

Ruu(n) =




1 1 . . . 1

1 1 . . . 1
...
...
. . .

...

1 1 . . . 1



, Ruu(n) ∈ R

n$n (8.34)

with rank Ruu(n) = 1 for all orders n. Hence we have persistency of ex-
citation of order one. Using such a step-formed input in an identification

experiment we can expect one parameter only—for instance, a static gain—

to be consistently estimated.

REMARK: To avoid possible confusion arising we have to remind the reader

that statistical consistency deals with asymptotic properties and not with

transients. Traditional step-response tests rely on the information received

in the course of a transient behaviour of the system whereas the stationary

properties of a step response only give information about the static gain of

the system.

8.10 We consider a continuous-flow fermentation process can be modeled by the

equations

ẋ = µx − iinx (8.35)
ṡ = −Rµx + iin(sin − s) (8.36)

where x is the produced biomass, s substrate concentration, sin influent

substrate concentration, iin influent flow rate, R yield coefficient, µ specific
growth rate.

The first problem in this context is that this is a nonlinear equation if we

consider iin to be a control input. On the other hand, if we assume iin to

be constant, then we have a linear but autonomous system, i.e., a system

without any control input. Second, according to Eq. (8.35) we find that x
increases exponentially for iin < µ. Third, for such an unstable system we
anticipate problems with the system’s initial condition which somehow has
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to be estimated. One approach to solve this problem is to formulate linear

regression models in the form of integrals over time intervals [t,t1],

x(tk+1) − x(t0) = µ

∫ tk+1
tk

x(t)dt−
∫ tk+1
tk

iinx(t)dt (8.37)

s(tk+1) − s(tk) = −Rµ

∫ tk+1
tk

x(t)dt+
∫ tk+1
tk

iin(sin − s(t))dt (8.38)
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Model Validation

9.1 The augmented system equation for the error of the least-squares estimate

is
(
I ΦN

ΦTN 0

)(
ε

θ̃N

)
=
(
e

0

)
(9.1)

so that

(
ε

θ̃N

)
=
(
I ΦN

ΦTN 0

)−1 (
e

0

)
(9.2)

A covariance calculation gives

Cov{
(
e

0

)
} =

(
Σe 0

0 0

)
(9.3)

Thus, we can estimate

Cov{
(

ε

θ̃N

)
} =

(
I ΦN

ΦTN 0

)−1( Σe 0

0 0

)(
I ΦN

ΦTN 0

)−1
(9.4)

9.2 A first calculation is

(
I ΦN

ΦTN 0

)−1
=
(
I − ΦN(ΦTNΦN)−1ΦTN ΦN(ΦTNΦN)−1

(ΦTNΦN)−1ΦTN −(ΦTNΦN)−1
)

(9.5)

when ΦTNΦN is invertible. Direct application to the covariance expression
in Exercise 9.1 gives

(I − ΦN(ΦTNΦN)−1ΦTN)ΣeΦN(ΦTNΦN)−1

In the special case when Σe = σ 2 I we note that the covariance between ε
and θ̃N is zero.
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Model Approximation

10.1 A polynomial series expansion of G2(s) is

G2(s) =
β

α
+ 1

α
(1− β − βα )s+ ⋅ ⋅ ⋅

Matching of the truncated Taylor expansion to an mth order transfer func-

tion gives

Bm(s) = Gm(s)Am(s)
For m = 1 we have

b = (�0 + �1s)(s+ a)
so that





a = −�0/�1 = −
β

α
/( 1

α
(1− β − βα ))

b = �0a = −�20/�1 = −(
β

α
)2/( 1

α
(1− β − βα ))

(10.1)

10.2 As σ 1 and σ 2 are of the same order of magnitude it is not advisable to do
any model reduction. Factorization of the transfer function

z− 1
z2 − 1.79z+ 0.792 =

z− 1
(z− 0.99)(z− 0.8)

shows that the zero at z= 1 “almost” cancels the pole at z= 0.99.
10.3 Let z = x̄ = T−1x and apply the theory presented in Sec. 10.2 of System

Modeling and Identification [1]. We find the T−1 that diagonalizes

P̄ = T−1PT−T (10.2)
Q̄ = TTQT (10.3)
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10.4 Assuming that the balanced state-space representation of a certain given

continuous-time system is

d

dt

(
x1

x0

)
=

(
A11 A10

A01 A00

)(
x1

x0

)
+
(
B1

B0

)
u (10.4)

y = ( C1 C0 )
(
x1

x0

)
+ Du (10.5)

one can approach model reduction by approximating

ẋ0 = 0, and x0 = −A−100 A01x1 − A−100 B0u (10.6)

The reduced-order state-space model is then

ẋ1 = (A11 − A10A−100 A01)x1 + (B1 − A10A−100 B0)u (10.7)
y = (C1 − C0A−100 A01)x1 + (D − C0A−100 B0)u (10.8)

which contains a direct term from u to y also if the full-order direct term

is zero.

Now assume that we define X according to

x0 ∈ Rm

x1 ∈ Rn

u ∈ Rp

and X =



x0

x1

u


 ∈ R

m+n+p (10.9)

From Eq. (10.6) we find that the states of the reduced-order model evolve
on the subspace determined by the the equation

( A−100 A01 Im$m A−100 B0 )



x1

x0

u


 = 0 (10.10)

which we may denote

AmX = 0, Am ∈ R
m$(m+n+p)

A suitable projection matrix is

P = I(m+n+p)$(m+n+p) − ATm(AmATm)−1Am

The system output can thus be written

y = (C1 C0 D )



x1

x0

u


 (10.11)
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and the output of the reduced-order model

yr = (C1 C0 D ) PX = ( C1 C0 D ) P



x1

x0

u


 (10.12)

which gives the desired geometric interpretation of projection of the origi-

nal (m+n+p)−dimensional state vector to a (n+p)−dimensional subspace.
10.5 We consider a state vector x with the system equation

ẋ = Ax + Bu

and the impulse response

x(t) = eAtB, t ≥ 0

The following integral is essential in order to evaluate the energy of x

exx =
∫ ∞

0

x(t)xT(t)dt =
∫ ∞

0

eAtBBT eA
T tdt

If we introduce

P(t) =
∫ t

0

eAτ BBT eA
Tτdτ

with the derivative
dP(t)
dt

= eAtBBT eAT tdt

we also notice that

P(t)AT + AP(t) =
∫ t

0

eAτ BBT eA
Tτ AT + AeAτ BBT eA

Tτdτ (10.13)

=
∫ t

0

d

dτ
eAτ BBT eA

Tτdτ (10.14)

= eAtBBT eA
T t − BBT (10.15)

= dP(t)
dt

− BBT (10.16)

and we can summarize the matrix differential equation

dP(t)
dt

= P(t)AT + AP(t) + BBT

For a stable system we expect to have the limit

lim
t→∞
dP(t)
dt

= 0 [ 0 = P(∞)AT + AP(∞) + BBT

©Rolf Johansson, 2008-2014



76 10 Chap. 10

which satisfies the Lyapunov equation

PAT + AP = −BBT

Assume now that we consider a state-space transformation

z = Tx, with ż = TAT−1x + TBu

with the impulse response energy

ezz =
∫ ∞

0

z(t)zT(t)dt = Pz

where Pz solves the Lyapunov equation

PzT
−TATTT + TAT−1Pz = −TBBTTT

By multiplication from the left by T−1 and T−1 we have

T−1PzT
−TAT + AT−1PzT−T = −BBT

so that

P = T−1PzT−T

By choosing T as a matrix factor of P−1 obtained from the matrix factor-
ization equation

P−1 = TTT
we manage to find the state-space transformation

z= Tx

with the finite energy integral

ezz =
∫ ∞

0

z(t)zT(t)dt = Pz = I

and we may conclude that the impulse responses in the state vector z are

“orthogonal.”

EXAMPLE: Consider the state-space system

ẋ =
(
ẋ1

ẋ2

)
=
(−1 1

−1 0

)(
x1

x2

)
+
(
1

1

)
u (10.17)

A solution to the Lyapunov equation

P

(−1 1

−1 0

)T
+
(
1 1

−1 0

)
( ) P = −

(
1 1

1 1

)
(10.18)
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Figure 10.1 Ortogonalized impulse resonses by means of a state space

transformation derived from the Lyapunov equation.

is

P =
(
1 0.5

0.5 0.5

)
(10.19)

and

T =
√
2

(
1 −1
0 1

)
(10.20)

solves the equation P−1 = TTT . The state-space transformation

z= Tx, z =
(
z1

z2

)
(10.21)

has components z1 and z2 with orthogonal impulse responses, i.e,
∫ ∞

0

zi(t)zj(t)dt = δ i j , i, j = 1, 2

Orthogonal signals can be applied in order to produce test signals with

suitable excitation properties.
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Real-Time Identification

11.1 The prediction error least-squares criterion applied to recursive least-

squares identification is

V (θ̂ k) =
1

2
(Y k − Φkθ̂ k)T (Y k − Φkθ̂ k) =

1

2
ε (θ̂ k)Tε (θ̂ k)

and a weighted parameter error criterion is

Q(θ̂ k) =
1

2
(θ̂ k − θ )T(ΦTkΦk)(θ̂ k − θ ) = 1

2
θ̃Tk (ΦTkΦk)θ̃ k =

1

2
θ̃Tk P

−1
k θ̃ k

The prediction error least-squares criterion can be expressed as

V (θ̂ k) = 1

2
(Y k − Φkθ̂ k)T(Y k − Φkθ̂ k)

= 1

2
(−Φkθ̃ k + v)T(−Φkθ̃ k + v)

= 1

2
(θ̃TkΦTkΦkθ̃ k + vTv− 2θ̃TΦTk v) (11.1)

The orthogonality principle states that

0 = ε (θ̂ k)TΦk = vTΦk − θ̃TkΦTkΦk (11.2)

Substitution of Eq. (11.2) into Eq. (11.1) and rearrangement of the terms
gives the requested relationship

V (θ̂ k) + Q(θ̂ k) = vTv

11.2 The recursive least-squares algorithm including a forgetting factor for es-

timation of time-varying parameters is

θ̂ k = θ̂ k−1 + Pkφ kε k (11.3)
ε k = yk − φTk θ̂ k−1 (11.4)

Pk = 1

λ
(Pk−1 −

Pk−1φ kφTk Pk−1
λ + φT

k
Pk−1φ k

) (11.5)
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as presented in Sec. 11.2 of the textbook. The prediction error least-squares

criterion and a parameter error criterion applied to recursive least-squares

identification with forgetting factor λ are

V (θ̂ k) = 1

2
(Y k − Φkθ̂ k)TWk(Y k − Φkθ̂ k) =

1

2
ε (θ̂ k)TWkε (θ̂ k) (11.6)

Q(θ̂ k) = 1

2
(θ̂ k − θ )TWk(ΦTkΦk)(θ̂ k − θ ) = 1

2
θ̃Tk P

−1
k θ̃ k (11.7)

where Wk is a weighting matrix with components

wi j = λ k−iδ i j , i = 1, 2, . . . , k and j = 1, 2, . . . , k

The prediction error least-squares criterion can be expressed as

V (θ̂ k) = 1

2
(Y k − Φkθ̂ k)TWk(Y k − Φkθ̂ k) (11.8)

= 1

2
(−Φkθ̃ k + v)TWk(−Φkθ̃ k + v) (11.9)

= 1

2
(θ̃TkΦTkWkΦkθ̃ k + vTWkv− 2θ̃TΦTkWkv) (11.10)

The orthogonality principle states that

0 = ε (θ̂ k)TWkΦk = vTWkΦk − θ̃TkΦTkWkΦk (11.11)

Substitution of Eq. (11.11 ) into Eq. (11.10) and rearrangement of the
terms gives the requested relationship

V (θ̂ k) + Q(θ̂ k) = vTWkv

As can be seen from the following calculation, the parameter error develops

irregularly over time

Q(θ̂ k) − λQ(θ̂ k−1) = λ

2
θ̃Tk P

−1
k θ̃ k −

1

2
θ̃Tk−1P

−1
k−1θ̃ k−1 = (11.12)

= 1

2
θ̃Tk−1(P−1k − λP−1k−1)θ̃ k−1 (11.13)

+ θ̃Tk−1φ kε k +
1

2
φTk Pkφ kε

2
k = (11.14)

= 1

2
(θ̃Tk−1φ k + ε k)2 +

1

2
(−1+ φTk Pkφ k)ε 2k (11.15)

= 1

2
(θ̃Tk−1φ k + ε k)2 −

1

2

λ

λ + φTk Pk−1φ k
ε 2k (11.16)

Under the linear model assumption yk = φTkθ + vk so that ε k = −θ̃Tk−1φ k +
vk one can conclude that the parameter error develops in the following

indefinite way

Q(θ̂ k) − λQ(θ̂ k−1) =
1

2
v2k −

1

2

λ

λ + φT
k
Pk−1φ k

ε 2k (11.17)
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whereas

V (θ̂ k) + Q(θ̂ k) = vTWkv
and

E{V (θ̂ k) + Q(θ̂ k)} =E{vTWkv} = tr(WkE{vvT}) = tr(WkΣv)

In particular, if Σv = σ 2 I and we recall that the weighting matrix Wk with
components wi j = λ k−iδ i j , then

E{V (θ̂ k) + Q(θ̂ k)} = σ 2
N∑

k=1
λN−i = σ 2

1− λN+1

1− λ
< σ 2

1− λ
(11.18)

Finally, if we impose the condition of persistent excitation of the form

R = RT = lim
k→∞

1

k
ΦTkWkΦk = lim

k→∞

1

k
P−1k > 0

we can conclude from Eq. (11.18) that

E{ 1
N
V (θ̂ k) +

1

N
Q(θ̂ k)} =

1

N

σ 2

1− λ

so that

0 ≤ lim
k→∞
E{1
k
V (θ̂ k)} = lim

k→∞
E{ 1
2k

θ̃TΦTkWkΦkθ̃} ≤ lim
k→∞

1

k
Q(θ̂ k) = 0

As the weighting matrix Pk/k converges to the nonzero matrix R un-
der conditions of persistent excitation, we can in such cases claim that

limk→∞ qθ̃q = 0, i.e., we claim to have consistent estimates of θ . However,
as the condition of persistent excitation is difficult to check, this informa-

tion is not very helpful in application.

11.3 We consider the variables

V (θ̂ k) = 1

2
ε (θ̂ k)Tε (θ̂ k) (11.19)

Q(θ̂ k) = 1

2
(θ̂ k − θ )TP−1k (θ̂ k − θ ) = 1

2
θ̃Tk P

−1
k θ̃ k (11.20)

which satisfy the relationship

V (θ̂ k) + Q(θ̂ k) = vTv

The mathematical expectation

E{V (θ̂ k) + Q(θ̂ k)} =E{vTv} =E{tr(vvT)} = tr(Σv)
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where Σv is the covariance matrix of the noise v under the assumption of a
zero-mean noise sequence. For instance, assuming the uncorrelated noise

sequence {vk}Nk=1 has independent identically distributed components with
Σv = σ 2 I, we find that

E{vTv} =E{tr{vvT}} = tr{Σv} = Nσ 2

and

E{V (θ̂ k)} +E{Q(θ̂ k)} =E{V (θ̂ k)} +E{tr(P−1k θ̃ kθ̃
T
k )} (11.21)

As E{θ̃ kθ̃Tk } = Pkσ 2 we find for the last term of Eq. (11.21 ) is

E{tr(P−1k θ̃ kθ̃
T
k )} = σ 2tr(Ip$p)

Hence we have the equation

E{V (θ̂ k)} = (N − p)σ 2

Based on this relationship we suggest the variance estimate

σ̂ 2 = 1

N − pV (θ̂ k)

11.4 Consider the weighted parameter error

V (θ̂ k) =
1

2
(θ̂ k − θ )TQ−1(θ̂ k − θ )

in the case of an algorithm

θ̂ k = θ̂ k−1 + γ kε k (11.22)
ε k = yk − φTk θ̂ k−1 (11.23)
γ k = Qφ k/rk, Q = QT > 0 (11.24)
rk = rk−1 + φTk Q

−1φ k (11.25)

where Q is some positive definite weighting matrix.

Assuming the system generating data can be described by the linear re-

gression model yk = φTkθ + vk, we now consider how V (θ̂ k) develops over
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time

V (θ̂ k) − V (θ̂ k−1) = 1

2
θ̃Tk Q

−1θ̃ k −
1

2
θ̃Tk−1Q

−1θ̃ k−1 (11.26)

= 1

2
(θ̃ k−1 + γ kε k)TQ−1(θ̃ k−1 + γ kε k)T (11.27)

− 1

2
θ̃Tk−1Q

−1θ̃ k−1 (11.28)

= ε kγ
T
k Q

−1θ̃ k−1 +
1

2
ε 2kγ

T
k Q

−1γ k (11.29)

= ε k(−ε k + vk)
1

rk
+ 1
2

φTk Qφ k
ε 2k
r2
k

(11.30)

= ε 2k
r2k
(−rk−1 + φTk (Q − Q−1)φ k) +

ε kvk
rk

(11.31)

= ε 2k
r2k
(φTk (Q − Q−1)φ k) (11.32)

− rk−1(
ε k
rk
− 1
2

vk

rk−1
)2 + v2k

4rk−1
(11.33)

In the disturbance-free case with vk = 0 for k = 1, 2, . . . we may conclude
that V (θ̂ k) converges to zero if Q < Q−1. Moreover, modification of the
textbook algorithm to

θ̂ k = θ̂ k−1 + γ kε k (11.34)
ε k = yk − φTk θ̂ k−1 (11.35)
γ k = Qφ k/rk, Q = QT > 0 (11.36)
rk = rk−1 + φTk Qφ k (11.37)

is suitable in order to eliminate the restriction Q < Q−1
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Continuous-Time

Models

12.1 The DC-motor transfer function is

G0(s) =
K

Js+ D = K/J
s+ D/J

expressed in the the gain K , the moment of inertia J and the damping D.

a. Introduce the operator translation

λ = 1

1+ sτ

so that

s = 1
τ

1− λ

λ
(12.1)

Substitution of Eq. (12.1) into the transfer function gives

G0(λ) =
K

J
1

τ

1− λ

λ
+ D

= (Kτ/J)λ

1+ (−1+ τD

J
)λ

and a suitable linear regression model is

y(t) = (−1+ τD

J
)λ{y} + Kτ

J
λ{u} (12.2)

By determining the coefficents of Eq. (12.2) it is clear that it is possible
to to identify the parameters K/J and D/J. However, as multiplication of
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the transfer function numerator and denominator by any nonzero number

does not alter the original transfer function, it is clear already from Eq.

(12.1) that we cannot hope to estimate all three system parameters. Thus,
two of the three physical parameters are uniquely identifiable.

12.2

a. Assuming that there is a sinusoidal disturbance acting on the system

Y(s) = −α λ(s)Y(s) + β λ(s)U(s) + 1

s2 +ω 2
W(s)

where W(s) represents white noise with constant spectral density. Now
introduce the notch filter

F(s) = s2 +ω 20
s2 + 2ξω 0s+ω 20

where ω 0 is chosen with respect to the intended sampling rate so that
ω 0 < ω N . Now introduce the filtered variables

Y f (s) = F(s)Y(s) (12.3)
U f (s) = F(s)U(s) (12.4)

which satisfy the relationship

Y f (s) = −α λ(s)Y f (s) + β λ(s)U f (s) +
1

s2 + 2ξω 0s+ω 20
W(s)

Thus, application of the notch filter yields a linear regression model with a

spectral density of the noise that is close to constant up to the Nyquist fre-

quency ω N . In addition, we may assume little bias of parameter estimates
to appear in least-squares estimation of α and β .

b. Sampling of the variables

y(t)
λ{u}(t)
λ{y}(t)

(12.5)

for the sequence of time instants t1, t2, t3, . . .. Application of the following

recursive identification algorithm

ε (tk) = y(tk) − (−λ{y}(tk) λ{u}(tk) )
(

α̂

β̂

)
= φTk θ̂ k−1 (12.6)

Pk = Pk−1 −
Pk−1φ kφ

TPk−1

1+ φTk Pk−1φ k
(12.7)

θ̂ k = θ̂ k−1 + Pkφ kε (tk) (12.8)
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i=sqrt(-1);

b=theta(2);

a=theta(1);

Nplot=300;

w=logspace(-2.5,0.5,Nplot)’;

for k=1:Nplot,

G(k,1)=b/(i*w(k) + a);

end;

subplot(211); xlabel(’Frequency [Hz]’)

loglog(w,abs(G)); title(’Bode diagram - Gain’);

subplot(212); xlabel(’Frequency [Hz]’)

semilogx(w,angle(G)); title(’Bode diagram - Phase’);

Listing 12.1 Frequency response of the continuous-time transfer function

G(s).

will provide estimates of

θ =
(

α

β

)
(12.9)

12.3 We chose MatlabTM as a tool for implementing the requested frequency

response

In addition, if it is desireable to plot the errors

12.4 We consider the equations of rigid-body mechanics in the form of Euler-

Lagrange eqautions

d

dt
(�L�q̇ ) −

�L
�q = τ , where L(q, q̇) = 1

2
q̇TM(q)q̇− U(q) (12.10)

where the partial derivatives are

�L
�q̇ = M(q)q̇ (12.11)

�L
�q = 1

2

�
�q(q̇

TM(q)q̇) − �U�q =
1

2

�
�q(q̇

TM(q)q̇) − G(q) (12.12)

Expressed in term of the inertia forces M(q)q̈, the Coriolis and centripetal
forces C(q, q̇)q̇, the gravitation forces G(q) and the applied forces τ , we
have the force equation

τ = M(q)q̈+ C(q, q̇)q̇+ G(q) (12.13)

= M(q)q̈+ (Ṁ(q, q̇)q̇− 1
2

�
�q(q̇

TM(q)q̇)) + G(q) (12.14)
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i=sqrt(-1);

b=theta(2);

a=theta(1);

Nplot=64;

w=logspace(-2.5,0.5,Nplot)’;

for k=1:Nplot,

G(k,1)=b/(i*w(k) + a);

end;

%

% Estimate the error in the transfer function

%

% (epsilon is the sequence of residuals sampled with

% sampling period h)

%

[w,fu]=DFT(u,h);

[w,fepsilon]=DFT(epsilon,h);

dG=fepsilon./fu;

%

% Bode diagram

%

subplot(211); xlabel(’Frequency [Hz]’)

loglog(w,abs(G),’-’,w,abs(G.*dG),’:’,w,abs(G./dG),’:’);

title(’Bode diagram - Gain’);

subplot(212); xlabel(’Frequency [Hz]’)

semilogx(w,angle(G),’-’,w,angle(G+dG),’:’,w,angle(G-dG),’:’);

title(’Bode diagram - Phase’);

Listing 12.2 Frequency response of the continuous-time transfer function

G(s).

Application of the linear operator

λ(p) = 1

1+ τ p

gives the equation

d

dt
(λ{�L�q̇ }) = λ{�L�q } + λ{τ}

From the operator algebra we find that

pλ(p) = p

1+ τ0p
= 1

τ0
(1− 1

1+ τ0p
) = 1

τ0
(1− λ)

Thus we find that

d

dt
(λ{�L�q̇ }) =

1

τ0

�L
�q̇ −

1

τ0
λ{�L�q̇ }
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and we verify that

1

τ0

�L
�q̇ =

1

τ0
λ{�L�q̇ } + λ{�L�q } + λ{τ}

A kind of input-estimation algorithm can thus be suggested as follows

λ{τ} = 1
τ0

�L
�q̇ −

1

τ0
λ{�L�q̇ } − λ{�L�q } = φθ , φ ∈ R

n$p, θ ∈ R
p

where θ contains the unknown parameters of L(q, q̇).
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