
Department of
AUTOMATIC CONTROL

FRTN35 System Identification
Final Exam October 31, 2018, 8am - 13pm

General Instructions
This is an open book exam. You may use any book you want, including the slides from the
lecture, but no exercises, exams, or solution manuals are allowed. Solutions and answers to
the problems should be well motivated. The exam consists of 7 problems. The credit for each
problem is indicated in the problem. The total number of credits is 25 points. Preliminary
grade limits:

Grade 3: 12 – 16 points
Grade 4: 17 – 21 points
Grade 5: 22 – 25 points

Results
The result of the exam will become accessible through LADOK.
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1. Consider the system

yk = −ayk−1 +buk−1 + ek

where the {uk} and {ek} are noise process that are mutually independent and fulfill
uk ∼ N(0,σ2

u ) and ek ∼ N(0,σ2
e ).

a. Assume that you want to estimate a and b using the model

yk =−ayk−1 +buk−1

Derive the least-squares estimate of a and b based on N observations of the system.
Show that the estimate will be unbiased. (2 p)

b. Your colleague has been collecting N = 1000 data points from the system and pro-
vided you with the results below. Use what you deem necessary to give a numerical
estimate of the process parameters based on your findings in a.. Give also an estimate
of the process noise variance σ2

e .

∑
N
k=2 y2

k−1 = 2629, ∑
N
k=2 yk−1uk−1 = 18.1, ∑

N
k=2 u2

k−1 = 979.9

∑
N
k=2 ykuk−1 = 1892, ∑

N
k=2 ykyk−1 = 482.8

V (θ̂) = 1016

(1 p)

c. Assuming that the noise variance σ2
e is known, derive the loss function of the maximum-

likelihood estimate of a and b. Show also that the maximum-likelihood estimate in this
case coincides with the least-squares estimate. You may use the fact that the probabil-
ity distribution function for a normally distributed variable v is given by

fv(v) =
1√

2πσv
e−(v−µv)

2/2σ2
v

(1 p)

Solution

a. Start by defining the following matrices

Y =

 y2
...

yN

 , Φ =

 −y1 u1
...

...
−yN−1 uN−1

 , e =

 e2
...

eN


For the equation Y =Φθ , the least-squares estimate of θ is given by θ̂ =(Φ>Φ)−1Φ>Y ,
which is obtained through differentiation of the cost function

V (θ) = (Y −Φθ)>(Y −Φθ)

Therefore we investigate(
1

N−1
Φ

T
Φ

)−1

=

(
1

N−1

(
∑

N
k=2 y2

k−1 −∑
N
k=2 yk−1uk−1

−∑
N
k=2 yk−1uk−1 ∑

N
k=2 u2

k−1

))−1

−→
(

E{y2
k−1} −E{yk−1uk−1}

−E{yk−1uk−1} E{u2
k−1}

)−1

as N→ ∞
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and

1
N−1

Φ
TY =

1
N−1

(−∑
N
k=2 ykyk−1

∑
N
k=2 ykuk−1

)
−→

(−E{ykyk−1}
E{ykuk−1}

)
as N→ ∞

Identifying the elements of the matrices we get

E{y2
k−1} =

b2σ2
u +σ2

e

1−a2

E{yk−1uk−1} = 0
E{u2

k−1} = σ
2
u

E{ykyk−1} = −aE{y2
k−1}=−

ab2σ2
u +aσ2

e

1−a2

E{ykuk−1} = bσ
2
u

Putting the pieces together results in

θ̂ −→

−
E{ykyk−1}
E{y2

k−1}

E{ykuk−1}
E{u2

k−1}

=

(
a

b

)

b. Inserting the given data in the estimator derived in a gives the following result

θ̂ =

(
â

b̂

)
=

(−0.170
1.928

)

As for the noise variance we have σ̂2
e = 2V (θ̂)

N−p = 2.036 (where p = 2).

c. The likelihood function is given by

L(θ̄) = fe(εn, . . . ,εN) =
N

∏
k=n

fe(εk) =

(
1√

2πσe

)N−n

e
− 1

2σ2e
∑

N
k=n ε2

k

where εk = yk− (−ayk−1 +buk−1). Further on,

logL(θ̄) = −(N−n) log(
√

2πσ)− 1
2σ2

e

N

∑
k=n

(yk− (−ayk−1 +buk−1))
2

Hence, in order to maximize the log-likelihood with respect to a and b, it is sufficient
to minimize the loss function

J(a,b) =
N

∑
k=n

(yk− (−ayk−1 +buk−1))
2

This loss function is the same that we minimize when solving the least-squares prob-
lem. We can therefore conclude that the maximum-likelihood and least-squares esti-
mates coincide.

2. The purpose of model validation is to verify that the identified model fulfills the mod-
eling requirements. There are several tests which can be used for model validation.
Describe one limitation to each one of the following test methods. For full points,
each of the described limitations should be different.
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a) Cross-validation simulation. (1 p)

b) Residual analysis. (1 p)

c) Coherence spectrum. (1 p)

Solution

a) From only looking at a cross-validation simulation, it is difficult to know if the
fit percentage value is sufficient or not, i.e. if the unexplained output variance is
high or low.

b) Residual analysis can not be used to investigate if the estimation is consistent. If
we have over-fitted the data the residual analysis still would give good result and
draw the conclusion that the model could be used to predict the behavior. But if
we perform a cross validation test with data that have not been previously used
we might see that the model can not predict the behavior.

c) It can only be used to verify if can expect good result of an identified linear
model by using the data. Even if the coherence is close to one it doesn’t guar-
antee that we can find a good model. We can not separate if the low coherence
value is due to high noise or nonlinearities.
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3. As your employer’s expert in system identification, you have been given the task of
investigating if model-based controller design could be a solution for improving the
performance of a process. The process can be assumed to be on the form

Y (z) = H(z)U(z)+V (z)

a. A colleague of yours, without your skills in system identification, suggests that you
could estimate a process model by

ĤA(eiωh) =
YN(iω)

UN(iω)

where YN and UN are the discrete Fourier transforms of a time-series of output and
input data, respectively. Show your colleague why this might not be such a good idea
from the viewpoints of consistency and noise sensitivity. (2 p)

b. How can the consistency of the estimator in a) be improved? (1 p)

c. Explain why the estimator

ĤB(eiωh) =
Ŝyu(iω)

Ŝuu(iω)

can be expected to be less sensitive to noise than ĤA(eiωh). (1 p)

Solution

a. The suggested estimator is not statistically consistent. It is only defined for a fixed
number of frequency points (which is a result of the discrete Fourier transform), and
is asymptotically unbiased at these points. However, the variance of the estimator does
not decrease as the number of data points increase.

Also, it has poor noise properties, since it does not include a noise model. Thus, any
noise, white or colored, could potentially affect YN severely, and in length, the model
estimate Ĥ. (2 p)

b. Divide the dataset into blocks of data, perform the estimation on each subset, and
average the result. (1 p)

c. The expected contribution from the disturbance v in Ŝyu is small in cases where the
input and the disturbance are uncorrelated, whereas the disturbance contribution to
YN(iω) and thus ĤA(eiωh) might be considerable. (1 p)

4. A second order transfer function G(s) has been identified:

G(s) =
s+0.25

s2 +3s+2

You believe that it might be approximated by a first-order model instead.

a. Compute the first order Padé approximation of G(s):

Ĝ1(s) =
b

s+a

Conclude why this approximation is not good in this particular case. (1 p)
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b. A balanced realization is another method that can be used for model reduction. De-
scribe what is meant by a balanced realization. (1 p)

c. A balanced state-space realization of a stable discrete time linear system is shown
below. Decide if it is advisable to perform a model reduction for this system. (2 p)

x(k+1) =

(
−0.6639 −0.5242
−0.5242 0.2639

)
x(k)+

(
0.8345
−0.5511

)
u(k)

y(k) =
(

0.8345 −0.5511
)

x(k)

Solution

a. The Padé approximation is based on the Taylor series expansion of G(s). This is cal-
culated in (1).

G(s) = G(0)+
dG
ds

(0)+
1
2

d2G
ds2 (0)+ ...=

1
8
+

5
16

s+
1
2

(
−17

16

)
s2 + ... (1)

For a first order approximation we only need to keep the two first terms, giving the
truncated polynomial (3).

G1(s) =
1
8
+

5
16

s (2)

The resulting approximation should be a rational function B1/A1, which should match
G1. B1 and A1 is found by matching polynomial coefficients of (3).

B1(s) = G1(s)A1(s) ⇒ b0 =
(1

8 +
5
16 s
)
(s+a) = a

8 +
(1

8 +
5a
16

)
s+ 5

16 s2 (3)

Skip the s2-coefficient and match the other two, this results in (4), giving the Padé
approximation (5). {

a =−2
5

b =− 1
20

(4)

Ĝ1(s) =
1/20

2/5− s
(5)

This approximation is clearly unstable, which the original process was not. Therefore
this is a bad approximation.

b. A balanced realisation has ’balanced’ observability and reachability properties, that is
to say the Gramians P and Q are equal.

c. To be able to determine if it advisable to perform a model reduction the observability
or the reachability Gramian has to be calculated, which one does not matter as they
are equal. Let us here consider the reachability Gramian, which is the solution P of
(6), where Φ and Γ are system matrices from (c), given in (7).

ΦPΦ
T −P+ΓΓ

T = 0 (6)
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GP (s)GC(s)+
r y

−1

Figure 1 The control system in Problem 5.

Φ =

(
−0.6639 −0.5242
−0.5242 0.2639

)
, Γ =

(
0.8345
−0.5511

)
(7)

P is a diagonal matrix (8), and inserting this and the matrices from (7) gives (9).

P =

(
P1 0
0 P2

)
(8)

(
−0.5592P1 +0.2748P2 +0.6964 0.3480P1−0.1383P2−0.4599
0.3480P1−0.1383P2−0.4599 0.2748P1−0.9304P2 +0.3037

)
= 0 (9)

Solving (9) for P1 and P2 gives (10). As the two values not are of different magnitude,
a model reduction is not advisable.{

P1 = 1.6443
P2 = 0.8121

(10)
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5. You are given the assignment to identify an unstable process. A stabilizing controller
exists, but it is desired to increase the closed loop performance by using some kind of
model-based based control scheme. The current control system is given in Figure 1.
The controller is given as:

Gc(s) =
10s+20

s

You decide to use indirect identification, and the result after system identification is
the transfer function from r to y, given in:

Gyr(s) =
10s2 +70s+100

s3 +12s2 +67s+100

a. Calculate the process transfer function GP(s). Confirm that the process is unstable.
(2 p)

b. What kind of problems might occur when using indirect identification? (1 p)

c. Suggest an alternative identification strategy and conditions for that this strategy re-
turns a correct estimate. (1 p)

Solution

a. The closed loop transfer function is given by (11) (calculated from the block diagram).

Gyuc(s) =
Gp(s)Gc(s)

1+Gp(s)Gc(s)
(11)

The process transfer function is now given as (12)

Gp(s) =
Gyuc(s)

Gc(s)(1−Gyuc(s))
(12)

By inserting the given transfer functions Gp(s) can be calculated, according to (13).

Gp(s) =
10s2+70s+100

s3+12s2+67s+100
10s+20

s

(
1− 10s2+70s+100

s3+12s2+67s+100

) =
10s2+70s+100

s3+12s2+67s+100
(10s+20)(s3+2s2−3s)
s(s3+12s2+67s+100)

=

=
10s2 +70s+100

(10s+20)(s2 +7s−3)
=

(10s+20)(s+5)
(10s+20)(s−1)(s+3)

=
s+5

(s−1)(s+3)
(13)

The transfer function clearly has an unstable pole.

b. Any nonlinearity in the controller, such as saturations and anti-windup schemes, di-
rectly degrade the result.

c. The alternative is to use direct identification. Here you must assure that you use an
input signal, uc that is exciting enough, otherwise you might end up with an inverse
model of the controller.
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6. The impulse response coefficients (or Markov parameters) {hk}∞
k=1 form the transfer

function

H(z) =
∞

∑
k=1

hkz−k, hk =CAk−1B

a. Show that a Hankel matrix of these coefficients can be factorised as

H
(k)

r,s =


hk+1 hk+2 · · · hk+s

hk+2 hk+3 · · · hk+s+1
...

...
. . .

...
hk+r hk+r+1 · · · hk+r+s−1



=


C

CA
...

CAr−1

Ak (B AB . . . As−1B)

(2 p)

b. How can this fact be exploited for system identification purposes? (1 p)

c. Explain the differences between realization-based and subspace-based methods for
system identification. (1 p)

Solution
The factorization property is verified by direct substitution of Markov parameters hk =
CAk−1B. Using a numerical factorization such as the singular value decomposition it
is possible to find estimates of the extended observability and controllability matrices.
In turn, this information can be used to determine a state-space realization {A,B,C}.
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Figure 2 Input-output data in Problem 7.

7. Input-output data from an unknown system is given in Figure 2. One attempt to model
the system is to use an ARX-model according to:

y(k)+a1y(k−1)+a2y(k−2) = b1u(k−1)+b2u(k−2)

Do you expect the model to be a good description of the data? Why? In case your
answer is no to the first question, suggest a more appropriate model. (2 p)

Solution

It is clearly seen in the figure that the system dynamics is changing, and a time-
invariant model is therefore probably not the best choice of model.
A more appropriate model would be time-varying, one could e.g. keep the ARX
model, but estimate its parameters recursively with a Kalman filter or with exponential
forgetting.
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