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Introduction

The purpose of this laboratory exercise is to design and study different types
of direct adaptive controllers. The lab consists of a theoretical part concerning
a simple first order process, and an experimental part concerning a second
order DC servo. The purpose is give you a better understanding of how the
adaptive self-tuning regulators (STR) can be formulated and leveraged to
attenuate load disturbances with certain frequency domain characteristics.

In the first part of the lab we consider a simple first order system and derive
a PI controller, minimum-variance controller and direct adaptive controller
(see Section 1). In second part of the lab a DC-servo is controlled using a
standard PID controller, as well as a direct self-tuning regulator. Here we will
derive an STR with an integrator to attenuate constant load disturbances
(see Section 2). In the final part of the lab, iterative learning controll (ILC)
will be studied to improve reference following with PI control (see Section 3).

The laboratory session consists of a set of preparatory exercises which are
to be solved before the session, {1, 2, 3, 4, 7, 8, 11}. The remaining 6 exercises
should be solved during the laboratory session. Some of the preparatory exer-
cises require Simulink files which can be retreived from the course homepage
http://www.control.lth.se/course/FRTN15/.

Helpful Matlab Commands

help Matlab help, try for example help control

tf Create transfer function model.

bode Plot Bode diagram.

margin Plot Bode diagram with gain- and phase margins.

c2d Convert continuous-time system to discrete-time.
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1. Disturbances and Minimum-variance Control

The purpose of this section is to illustrate some properties of a direct adap-
tive controller on a control problem with time-varying high-frequency distur-
bances. The difficulty is that the frequency of the disturbance can be quite
close to the the bandwidth of the controller. With a traditional PI controller
it is then difficult to obtain a sufficiently high gain at the frequency of the
disturbance. However with a model of the disturbance it is possible to design
a controller that is tuned to the disturbance. Such a controller can have a
very high gain at the disturbance frequency.

1.1 The Process
To illustrate the power of adaptive control in light of changing disturbance
patterns, we will investigate a simple first order system

H(q−1) =
B(q−1)

A(q−1)
=

bq−1

1− aq−1 (1)

with some disturbance v(t), such that the finite difference equation becomes

y(t+ h) = ay(t) + b(u(t) + v(t)) (2)

The process dynamics is thus very simple - an integrator with known gain.
The disturbance is modelled narrow band noise, where Ad(q−1)v(t) = e(t),
with

Ad(q−1) = 1− adq+ q−2, (3)

such that the finite difference equation takes the form

v(t) − adv(t− h) + v(t− 2h) = e(t). (4)

with ad = 2 cos(ωh) (see Figure 1). This generates coloured noise with a
sinusoidal disturbance in the time-domain located at the frequency ω (see
Figure 2). Nominal parameter values are a = b = h = 1 and ω = 10−1,
corresponding to the red magnitude plot in the bode diagram.

Figure 1 Flow charts for the PI and minimum variance controllers (left) and the
direct adaptive minimum variance controller (right).
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Figure 2 Noise model magnitude at ω = 10−1 (red) and ω = 1 (black).

1.2 Controller Design
We will compare three different controllers for the process, a proportional-
integral controller (PI), a minimum variance controller (MV) and finally
an adaptive minimum variance controller (DAMV). The PI controller does
not have enough complexity to sufficiently reduce the effects of the distur-
bance, while the MV-controller incorporates the disturbance model to achieve
much better performance. The DAMV-controller is a direct adaptive controller
based on the minimum variance controller, which will be shown to yield good
performance and the capability of adapting to attenuate disturbances where
ω(t) is time-varying.

In order to evaluate the controllers qualitatively, we define a metric in which
to compare them. Let t ∈ [0, T] denote time during which the system is
simulated. Furthermore, and assume that the frequency of the disturbance
is constant at some frequency ω = ω∗ over the course of a simulation. Let
uc(t) be the controller reference, and y(t) denote the system response. Then
we define

E
∣∣∣
ω=ω∗ =

∫ T

0
puc(t) − y(t)pdt (

T∑
k=1

hpuc(hk) − y(hk)p,

as the absolute error between reference and response, taken over the entire
simulation time.

Design of PI controller A PI-controller is first designed. This controller
has a simple structure.

(q− 1)u(t) = −(s0q+ s1)y(t)

With the process model
(q− a)y(t) = bu(t)

the pole placement design equation becomes

(q− a)(q− 1) + b(s0q+ s1) = q(q− am)

where the observer pole is placed in the origin. We find

q1 : −1− a+ bs0 = −am
q0 : a+ bs1 = 0
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This gives

s0 = (1+ a− am)/b
s1 = −a/b

and the controller becomes

u(t) = u(t− 1) − s0y(t) − s1y(t− 1)

Exercise 1 (preparation) Implement the PI controller in the Simulink
model /exercise1/pi_sim.mdl. How does it perform for ω = 0.1? What about
if if the frequency of the disturbance is increased to ω = 1? Write down the
resulting error metric E in both cases, and plot the bode diagram of the
transfer function from v(t) to y(t) and comment on the diagram.

Design of Minimum Variance Controller To account for the distur-
bance in a better way we need a more complex controller which incorporates
the disturbance model in the design procedure. We will therefore design a
minimum variance controller for the problem.

The noise model is given by

Ad(q)v(t) = v(t+ 2) − adv(t+ 1) + v(t) = e(t+ 2)

where ad = 2 cos(ωh) and the process model is

A(q)y(t) = y(t+ 1) − ay(t) = b(u(t) + v(t))

so that
AAdy(t) = bAdu(t) + be(t+ 2)

We write this as
A′y = B′u+ C′ ē

with

A′ = AAd = (q− a)(q2 − adq+ 1)
B′ = BAd = b(q2 − adq+ 1)
C′ = q3

ē(t) = be(t− 1)

The Diophantine equation we have to solve is

A′R + B′S = q3B′

with the constraint that B′ is a factor of R. To get a monic R(q) we divide
the right hand side by b. This will give us a solution, R(q) and S(q), that
is a factor b smaller which does not affect the controller −S(q)/R(q). Hence
we solve

A′R + B′S = q3B′/b

with
R = R′B′/b
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Cancellation of B′/b gives

(q− a)(q2 − adq+ 1)R′ + bS = q3

The minimum degree solution has deg R′ = 0 and deg S = 2. We get R′ = 1
and the coefficients in S(q) can be computed from

q2 : −a− ad + bs0 = 0
q1 : 1+ ada+ bs1 = 0
q0 : −a+ bs2 = 0

This gives

R(q) = q2 + r1q+ r2 = R′(q)B′(q)/b = q2 − adq+ 1
S(q) = s0q2 + s1q+ s2 = ((a+ ad)q2 + (−1− ada)q+ a)/b

and the control law becomes

u(t) = adu(t−1)−u(t−2)+ 1
b

(
−(a+ad)y(t)+(1+ada)y(t−1)−ay(t−2)

)
Exercise 2 (preparation) Implement the MV controller in the Simulink
model /exercise1/mv_sim.mdl tuned to attenuate disturbances at ω = 0.1.
How does it perform for ω = 0.1? What about if if the frequency of the
disturbance is increased to ω = 1? Write down the resulting error metric E
in both cases, and plot the bode diagram of the transfer function from v(t) to
y(t) and comment on the diagram.

Design of Direct Adaptive Controller The minimum variance controller
was designed using the disturbance model and is therefore tuned to that
model. If the characteristics of the disturbance change, the controller might
perform badly. To cope with changing disturbances we will therefore design
an adaptive version of the controller. If we let the design equation (with Ad
canceled ) operate on the output y(t) we get

(
A(q)R(q) + B(q)S(q)

)
y(t) = B(q)q3/by(t)

Using the input-output relation A(q)y(t) = B(q)u(t) we get

B(q)(R(q)u(t) + S(q)y(t)) = B(q)q3/by(t)

and we can cancel B(q). This results in

R(q)u(t) + S(q)y(t) = q3/by(t)

or
b((q2 + r1q+ r2)u(t) + (s0q2 + s1q+ s2)y(t)) = q3y(t)

The relation above holds for the correct controller and we can therefore use
it to directly estimate the unknown controller parameters. The parameter b
is assumed to be known so we can rewrite the relation as

y(t)/b− u(t− 1) = φT(t− 1)θ
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where the left hand side is known and

φ(t− 1) =
(
u(t− 2) u(t− 3) y(t− 1) y(t− 2) y(t− 3)

)T
and

θ =
(
r1 r2 s0 s1 s2

)T
The parameter vector can now be updated using an RLS algorithm. The
estimates are then used in the control law derived previously for the MV
controller.

Exercise 3 (preparation) The direct adaptive MV controller has already
been implemented in the Simulink model /exercise1/da_sim.mdl, and ini-
tialized to attenuate disturbances at ω = 0.1. How does it perform for
ω = 0.1? What about if if the frequency of the disturbance is increased
to ω = 1? Write down the resulting error metric E in both cases. What if you
pause the simulation at t = T/2 ( 250 and change the disturbance, does the
controller adapt the MV-controller? How is the rate of adaption and noise
sensitivity affected by the forgetting factor λ?

2. Control of the DC-servo

Next, we will design and evaluate controllers for angular position control of
a simple DC-servo with a flywheel. The system is modelled using Netwon’s
second law as a second order process

Jÿ(t) = −dẏ(t) + ku(t) + v(t), (5)

where

y [rad] Angular position,
v [rad] Angular disturbance,
u [A] Control signal current,

J [k� ·m2] Moment of inertia,
d [N ·m · s] Coefficient of viscous friction
k [N ·m/A] Motor torque constant.

Inserting values found in a simple system identification experiment,

G(s) , k/J
s(s+ d/J)

=
11.2

s(s+ 0.12)
. (6)

The corresponding pulse transfer operator is then

H(q) = B(q)
A(q)

=
b1q+ b2

q2 + a1q+ a2
. (7)
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The closed-loop characteristic polynomials Am(q) and Ao(q) are conveniently
defined as the discrete-time counterparts to the continuous time polynomials

Amc(s) = s2 + 2ζmωms+ω2
m, (8)

Aoc(s) = s+ω0. (9)

For future reference, the sampling interval is set to Ts = 0.1. The nominal
controller design (conforming with typical industry standards) is a fixed rel-
ative damping of ζm = 0.7, and a natural frequency of ωm = 5. Furthermore,
we will use an observer defined by ωo = 7. The system with a self-tuning
regulator is shown in Figure 3.

Figure 3 The closed loop system with the DC servo, step disturbance model and a
self-tuning regulator.

2.1 Fixed PID control
Instead of deriving of the adaptive controller directly, we start simple by
controlling the angular position using a fixed PID controller. The goal is to get
to know the DC servo and test the robustness of your tuning when changing
the process parameters. The well-known feedback law is defined with control
error e(t) = uc(t) − y(t), whereby control signal u(t) is computed by

u(t) = K
(
e(t) + 1

Ti

∫
e(t)dt+ Td

de(t)
dt

)
.

Exercise 4 (Preparation) Discretize a PID controller using finite differ-
ence approximation (use backward difference for the derivative and forward
difference for the integral part) and determine the resulting pulse transfer
function. What are the orders of the numerator and denominator?

Exercise 5 Tune a PID controller with an acceptable control performance
for the DC process by opening the pidDCsim.slx. Which values of parameters
K , Ti, Td seem suitable? Test the robustness of your tuning by changing the
process parameters during the simulation.
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Exercise 6 When you have found a controller that works well in simula-
tions, you can try it on the real process. Open the pidDCreal.slxmodel, enter
your parameters from the previous exercise and vary the process parame-
ters (e.g., increase the moment of inertia of the plant, change the damping).
How does the control performance change? Would you opt to re-tune the PID
controller if the process parameters change?

2.2 Direct Adaptive Control
With a PID controller one can make an arbitrary pole placement for a sys-
tem of order no greater than 2. In this section, this fact is exploited to
derive a method for online adaptation of the parameters in a self-tuning PID
(STUPID) controller - a direct adaptive controller with integral action.

Exercise 7 (Preparation) Similar to the MV controller, derive the linear
regression model for the Direct Self-Tuning PID with integral action and zero
cancellation, i.e. a controller incorporating the noise model Ad = (q− 1). In
addition, find the explicit equations for computing the control signal u. Before
you start with this assignment, it is strongly recommended to read Chapter
3 in Adaptive Control - Second Edition, paying special attention to pages
121-128. It may also be helpful to revise chapter 6 in the course book.

Exercise 8 (Preparation) Since the controller output is limited by a satu-
ration nonlinearity, the integrator could give rise to the wind-up phenomena.
Introduce an anti-windup observer polynomial Aow, specify how it enters the
computation of the control signal u, and also give the order of the anti-windup
polynomial.

Exercise 9 Simulate the Self-Tuning PID and find a suitable parameter
tuning. How does the control signal behave? Can you explain? Change the
process parameters during simulation and observe the behaviour of your
controller.

Exercise 10 Test your best controller setup on the real process. Try to vary
the process parameters (e.g. vary the moment of inertia of the plant). How
does the controller behave? How much variation in the parameters can you
handle? Investigate the effect of the forgetting factor in your controller.

3. Iterative Learning Control

In this part of the laboratory session we will examine the method of Iterative
Learning Control (ILC) for improving the reference following when perform-
ing repeated tasks. Errors in the reference following can have many causes;
unmodelled dynamics, poorly tuned control parameters, different kinds of dis-
turbances, measurement noise, friction etc. If the system response is highly
repeatable, in the sense that a certain reference signal sequence will generate
roughly the same response whenever it is repeated, then ILC can be applied
to decrease the control error. However, if stochastic disturbances dominate
or if the dynamics vary from one run to another, other methods than ILC
should be considered.
The ILC method is intuitive and simple. We apply the desired reference
signal sequence {yd} to the system and record the whole error sequence

8



{ek} = {yd}−{yk}. Based on the error sequence, we then modify the control
signal {uk+1} to improve the response for the next iteration. These two steps
are repeated this until the deviation from the reference is acceptable.

The ILC-correction {uk} is pre-determined and applied in “open-loop” during
one run, but is updated from feedback information between the runs. In the
lectures, we have seen different kinds of update laws for Iterative Learning
Control in the lectures. Here we will try with a version of the so called
heuristic approach.

{uk+1} = Qd({uk} + Ld{ek})

where {ek} is the sequence of errors from previous run, {uk+1} is the se-
quence of new ILC-corrections, Qd and Ld are linear discrete time filters. As
the filtering is made “off-line” between two runs, when we have access to the
whole sequences of data and may choose Qd and Ld to be non-causal filters.

Exercise 11 (Preparatory) Study the Matlab script ILC_setup.m and
make sure you know the difference between causal and acausal filtering. Try
to filter a sequence [1 : 10] with the filter G1 = z3 using noncausalfilter.m
and with the filter G2 = 1/z3 using filter.m, respectively.

Exercise 12 Open the model /exercise3/ILC_pidDCsim.mdl and run the
ILC iterations by pressing the yellow box (which essentially calls the run_ILC_iteration.m
script). Modify the filters Qd = 1/(s/p + 1) and Ld = αzβ in the Matlab
script ILC_setup.m. How does β affect the ILC performance, and what may
be a reasonable value? How does α affect the rate of convergence, and what
may be a reasonable value? How does the pole p affect the control signal
sequence, any how should it be chosen?

Exercise 13 Once you have found a suitable filter, open and run the ILC
on the real process. How will the system perform? Can you mention any
reason for why the method starts to degenerate after a number of iterations?
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