
Department of

AUTOMATIC CONTROL

FRTN10 Multivariable Control

Exam 2020-01-08, 08:00–13:00

Points and grades

All solutions must include a clear motivation and a well-formulated answer. Answers may be given

in English or Swedish. The total number of points is 25. The maximum number of points is specified

for each subproblem. Preliminary grade limits:

• Grade 3: 12 points

• Grade 4: 17 points

• Grade 5: 22 points

Accepted aid

The textbook Glad & Ljung, standard mathematical tables like TEFYMA, an authorized “Formel-

samling i Reglerteknik”/”Collection of Formulas” and a pocket calculator. Handouts of lecture notes

and lecture slides (including markings/notes) are also allowed.

Results

The result of the exam will be entered into LADOK. The solutions will be available on the course

home page: http://www.control.lth.se/course/FRTN10



Solutions to Exam in FRTN10 Multivariable Control 2020-01-08

1. Consider the following MIMO linear system:

G(s) =
1

s(s+1)(s+2)

(

s(s+2) 0 s2

−(s+1)(s+2) s(s+1) s(s+1)

)

a. How many inputs and outputs does the system have? (0.5 p)

b. Determine the poles and (transmission) zeros of the system, including their multiplicity.

(2 p)

c. What is the L2 gain of the system? (0.5 p)

Solution

a. The dimensions of G gives that the system has three inputs and two outputs.

b. The relevant subdeterminants of order 1 are the five non-zero elements

1

s+1
,

s

(s+1)(s+2)
,

−1

s
,

1

(s+2)
,

1

(s+2)

and the 3 subdeterminants of order 2, corresponding to deletion of the respective columns, are

−s

(s+1)(s+2)2
,

2

(s+1)(s+2)
,

1

(s+1)(s+2)
.

Considering all subdeterminants, we see that the least common denominator is

p(s) = s(s+1)(s+2)2.

The system has therefore four poles: one at s = 0, one at s =−1 and two at s =−2.

To determine the zeros of the system, adjust the subdeterminants of order two so that their

denominators are the pole polynomial p(s). We get

−s2

p(s)
,

2s(s+2)

p(s)
,

s(s+2)

p(s)
.

The common divisor for these subdeterminants is the zero polynomial z(s) = s. Thus, the

system has a single RHP zero located at s = 0.

c. The system has an integrator; subsystem (2,1) is −1/s. The system thus has infinite (or unde-

fined) L2 gain.

2. Consider the system depicted in Figure 1.

a. Use the Small Gain Theorem to determine a stability bound for ‖∆‖. (1 p)

b. In the case where ∆ =−K, with K > 0 constant, determine the stability bound for K. (1 p)

c. Explain the difference between the two bounds obtained in a and b. (1 p)
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Figure 1: Block diagram for problem 2.

Solution

a. The Small Gain Theorem says that

∥

∥

∥

∥

3s

(s+3)2

∥

∥

∥

∥

· ‖∆‖< 1

is sufficient to guarantee stability. The maximum gain of 3s
(s+3)2 can be obtained by sketching

its Bode magnitude diagram or by calculating

sup
ω

|3iω |
|iω +3|2 = sup

ω

3ω

ω2 +9
= [ω → 3] =

1

2

It can thus be concluded that ‖∆‖< 2 for stability.

b. With ∆ = −K, the closed-loop poles can be determined directly. The characteristic equation

becomes

(s+3)2 +K3s = 0

which has stable (LHP) roots for all K > 0.

c. The SGT is conservative, no assumptions are made on ∆ (sign, for example). In b), the poles

can be determined directly, which tells us exactly when the system is stable.

3. Your boss has heard that you are great at automatic control and wants some help with finding

a good controller for the process P(s) = 1
1+s

e−0.5s.

a. He wants a fast system, the closed-loop bandwidth ωb should be at least 5 rad/s. Will you be

able to satisfy this specification? (0.5 p)

b. Your boss gets a little impatient and tries to find a controller himself. He claims that he will

get a fast enough system that has the crossover frequency ωc = 5 rad/s with the controller

C(s) =
K(1+ s/5)

s/5
e0.5s

Find out what K he used to get this ωc. (1 p)

c. Your boss is happy and shows you the margin plot of the open loop system PC where every-

thing looks nice, see Figure 2. However, you see a very big problem with his design. What is

the problem that you need to explain to your boss? (0.5 p)
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Figure 2: Margin plot for the open loop system in problem 3b.

d. You decide that an Internal Model Controller is a better choice here. Design such a controller

for the process, and aim for a closed-loop bandwidth of approximately 1 rad/s. (3 p)

Solution

a. No, you will not be able to fulfill the specification due to the fundamental limitation on the

bandwidth of a time-delayed system. A system on the form G(s) = G1(s)e
−sL will have the

limited bandwidth ωB < 1/L which in this case means that you can get a bandwidth of at most

2 rad/s.

b. The crossover frequency is given as |PC(iωc)|= 1.

PC(s) =
K(1+ s/5)

s/5(1+ s)

with ωc = 5 we get

|PC(5i)|= K|1+ i|
|i||1+5i| =

K
√

12 +12

1
√

12 +52
=

K
√

2√
26

⇒ K =
√

13.

c. You can not implement a controller with the factor e0.5s in it, since it is not causal.

d. By removing the time-delay in the IMC design, and compensating for the fact that the process

is strictly proper, we get

Q(s) =
s+1

λ s+1
.
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The closed-loop system is then given by

P(s)Q(s) =
1

λ s+1
e−0.5s.

If we pick λ = 1 we get roughly a closed-loop bandwidth of 1 rad/s. Thus, the final IMC

controller is

C(s) =
Q(s)

1−Q(s)P(s)
=

s+1

s+1− e−0.5s
.

4. Consider an integrator process driven by unit intensity white noise:

ẋ(t) = w1(t), R1 = 1

a. Assume that there is one noisy measurement signal, given by

y(t) = x(t)+w2(t), R2 = 1

Assuming an optimal Kalman filter, compute the minimum observer error variance. (1 p)

b. Assume that there are two independent noisy measurements, given by

y1(t) = x(t)+w21(t), R21 = r

y2(t) = x(t)+w22(t), R22 = r

where r > 0 is the intensity of both measurement noise processes. Assuming an optimal

Kalman filter, for what values of r will the observer error variance be smaller than in a? (2 p)

c. Assume that the process noise w1 noise is no longer white but a zero-mean stationary random

process with spectrum

Φw1
(ω) =

9+36ω2

(1+4ω2)2

Find a state-space description of the noise-generating system and extend the original state-

space model with the noise system. Let the new input be a unit intensity white noise process

v. (2 p)

Solution

In both cases, we are looking for the observer error covariance E x̃2 = P, where P is given by

the solution to the algebraic Riccati equation

AP+PAT +R1 − (PCT +R12)R
−1
2 (PCT +R12)

T = 0

a. In this case we have A = 0, C = 1, R1 = R2 = 1, R12 = 0 and the Riccati equation becomes

1−P2 = 0

with the solution P = 1.

b. In this case we have A = 0, C =
(

1
1

)

, R1 = 1, R2 =
(

r 0
0 r

)

, R12 =
(

0
0

)

and the Riccati equation

becomes

1− 2
r
P2 = 0

with the solution P =
√

r
2
. For this to be smaller than in a, we must have r < 2.
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c. First we do a spectral factorization of Φw1
(ω):

Φw1
(ω) =

9+36ω2

(1+4ω2)2
=

9

(1+4ω2)
=

3

(1+2ω i)
· 3

(1−2ω i)
.

Thus we have the noise model

w1(s) =
3

1+2s
v(s),

which has the state-space realization

ẇ1 =−1

2
w1 +

3

2
v.

The extended state space model is the given by

[

ẋ

ẇ1

]

=

[

0 1

0 −1/2

][

x

w1

]

+

[

0

3/2

]

v.
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5. Consider the block diagram of a cascaded controller structure in Fig. 3, where C1,C2 represent

controllers and P1, P2 represent subsystems of the plant we wish to control. The signals in the

system are

• z1, z2 : output signals from P1 and P2 respectively.

• r1, r2 : reference signals for z1 and z2 respectively.

• d1, d2 : load disturbances on the inputs to P1 and P2 respectively.

• n1, n2 : measurement noise on the outputs from P1 and P2 respectively.

All signals are assumed to be multivariate.

P2+P1+C1+C2+

−I

z1

+

−I

z2

+

d1 d2

r2 r1

n1
n2

Figure 3: Block diagram considered in Problem 5

a. Let w1 = [r1 d1 n1]
⊺. The signal z1 is then given by the relation

z1 = Gz1w1
w1.

Give the expression for Gz1w1
. You are allowed to use C1,C2, P1, P2 in your expression. (2 p)

b. Let w = [r2 d1 d2 n1 n2]
⊺. The signal z2 is then given by

z2 = Gz2ww.

Give the expression for Gz2w. You are allowed to use C1,C2, P1, P2 and references to elements

of Gz1w1
from a. in your expression. (2 p)

Solution

a. From the block diagram in Fig. 3 we have

z1 = P1(d1 +C1(r1 − (n1 + z1))),

⇔
z1 = (I +P1C1)

−1P1(C1r1 +d1 −C1n1).

Thus we see that Gz1w1
is given by:

Gz1w1
= (I +P1C1)

−1P1 [C1, I, −C1 ] .
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b. Let Gz1w1
= [Gz1r1

Gz1d1
Gz1n1

] where the elements are given by the expression from a..

From the block diagram in Fig. 3 we then have

z2 = P2(z1 +d2),

z1 = Gz1r1
r1 +Gz1d1

d1 +Gz1n1
n1,

r1 =C2(r2 − (z2 +n2)),

⇔
z2 = P2(Gz1r1

C2(r2 − (z2 +n2)+Gz1d1
d1 +d2 +Gz1n1

n1),

⇔
z2 = (I +P2Gz1r1

C2)
−1P2(Gz1r1

C2(r2 −n2)+Gz1d1
d1 +d2 +Gz1n1

n1).

Thus we see that Gz2w is given by:

Gz2w = (I +P2Gz1r1
C2)

−1P2 [Gz1r1
C2, Gz1d1

, I, Gz1n1
, −Gz1r1

C2 ] .

6. Recall the loop-shaping design of Lab 1. Your clever classmate has the idea to control the

second mass using an LQG controller instead. The system augmented with Gaussian additive

noise is described by

ẋ(t) = Ax(t)+Bu(t)+w1(t)

y(t) =Cx(t)+w2(t)

where w1 and w2 are uncorrelated white noise with covariances R1 = I4×4 and R2 = 0.0025

respectively, and

A =











0 1 0 0

− k
m1

− d1

m1

k
m1

0

0 0 0 1
k

m2
0 − k

m2
− d2

m2











, B =











0
km

m1

0

0











, C = [0 0 ky 0 ] .

We construct the objective function as

J =

∞
∫

0

(

x⊤(t)Q1x(t)+u2(t)
)

dt.

After some tuning you arrive at

Q1 =











0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1/100











, Q2 = 20;

you manage to fulfill all the design specifications except the disturbance rejection, see Figure 4.

The specifications are:

• Well-damped.

• Rise-time between 0.2 and 0.6 seconds.
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Figure 4: The output y (left) and control signal u (right) when applying the LQG regulator in Problem

6 after a reference step followed by a step disturbance.

• Settling time ≤ 2 seconds.

• Rejection of constant load disturbances in at most 2 seconds.

The Gang-of-Four plot for the controlled system is shown in Figure 5.

a. Looking at the maximum sensitivity and complementary sensitivity, is the system reasonably

robust? (1 p)

b. Why does the controller fail to reject a constant load disturbance? How can you deduce this

behavior from the Gang-of-Four plot in Figure 5? (1 p)

c. Modify the system such that an LQG-controller designed for such a system will reject constant

disturbances. You are expected to explicitly write down the matrices which constitute the pa-

rameters of the Riccati equations you would need to solve. If you need to change the weight-

or covariance matrices, give an explanation for doing so and provide reasonable guesses for

any parameters you add. (2 p)

d. The modification in c. will likely result in a controller which quickly rejects the load distur-

bance, but has a large overshoot during the reference step. If this is the case, what could you

do to solve this problem? Give at least two suggestions. (1 p)

Solution

a. From the Gang of Four we read off Mt = 1 and Ms ≈ 2, which could be considered reasonably

robust.

b. The process fails to reject a constant load disturbance because it is lacking integral action. This

can be seen in
P

1+PC
where the static gain is not zero.

c. We could add the integral of the control error as a state in the process model, but then the

process model would no longer be stabilizable and the conditions for applying LQG design

are violated. Thus we have to push the pole just into the left half-plane, i.e. pick a small

positive δ ≈ 0.

Ae =

[

A 0

C −δ

]

, Be =

[

B

0

]

, Ce = [C 0 ]
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Figure 5: Gang-of-Four plot for Problem 6

Then we need to augument Re
1 = I5×5 and

Qe
1 =















0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1/100 0

0 0 0 0 qi















,

where qi should not be too large, as it will make the controller very aggressive. Qe
2 and Re

2 may

be kept as is.

d. Reasonable things to try is lower penalty on the integral state, increase the penalty on the input

or x4. We can also try adding a low-pass filter as feedforward control.
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