
FRTN10 Exercise 6. Fundamental Limitations

6.1 Consider the ball in the hoop in Figure 6.1. This process consists of a cylinder

rotating with the angular velocity ω. Inside the cylinder, a ball is rolling. The

position of the ball is given by the angle θ and the linearized dynamics can

be written as θ̈ + cθ̇ + kθ = ω̇. Let k = 1 and c = 2.

a. What is the transfer function from cylinder velocity ω to the position θ of the

ball? Where is the zero located?

b. What limitation on the sensitivity function for an asymptotically stable closed-

loop system is imposed by the process zero?

c. What consequence does the process zero have on the static error when a

reference signal r(t), e.g.. a step with the magnitude a, is to be followed? Let

the control signal ω(t) be determined from the error signal r(t)−θ(t) via the

controller transfer function C(s). Give a physical interpretation.

d. Usually an integrator is introduced in the controller in order to remove static

errors. How would the ball/hoop-system behave with a PI controller and a

non-zero reference position for the ball?

ω

θ

Figure 6.1 The ball in the hoop.

6.2 A resonant mechanical system has the pole-zero configuration shown in Fig-

ure 6.2. The controller structure is given by Figure 6.3.

a. What constraint does a purely imaginary process pole in iωp impose on the

sensitivity function?

b. What consequence does this give for the control error e, in presence of a

sinusoidal measurement disturbance n with frequency ωp?

c. Can a controller C(s) be designed to attenuate the effect of the measurement

disturbance?

d. What constraint does a purely imaginary process zero in iω z impose on the

sensitivity function?

e. What consequence does this give for the response z, in presence of a sinusoidal

measurement disturbance n with a frequency ω z?
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Figure 6.2 Pole-zero configuration of a resonant mechanical system.
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Figure 6.3 Two degree of freedom controller structure.

6.3 Consider the setup in Figure 6.3 with P(s) = (3− s)/(s + 1)2

a. Does there exist a stabilizing controller C(s) such that the transfer function

from n to z becomes 5/(s + 5) ? (Note: All transfer functions in the gang of

four must be stable.)

b. Show that the specification

pS(iω)p ≤ 2ω√
ω2 + 36

ω ∈ R+

is equivalent to

sup
ω
pWs(iω)S(iω)p ≤ 1

with a = 6 and

Ws(s) =
s+ a

2s

Is this specification possible to satisfy ?

c. (*) ÏÍ Use Matlab to find a stabilizing controller C(s) such that

∣

∣

∣

∣

1

1+ P(iω)C(iω)

∣

∣

∣

∣

≤ 2ω√
ω2 + 1

for ω ∈ [0, 2]

Hint: Use a PI controller of the form:

C(s) = K
s/b+ 1

s
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6.4 For each of the following three design problems, state if it is possible to con-

struct a controller that can achieve the given closed-loop system specification.

Hint: It is not possible in at least two of the cases.

System Specification

P1(s) =
e−2s

s+ 2
The step response must reach 0.9 before t = 1.

P2(s) = 3
(s+ 40)(s− 20)

s2(s− 10)

The gain curve of the complementary sensitivity

function T should lie between the two gain curves

depicted in Figure 6.4.

P3(s) =
1

s− 3

The step response must stay in the interval [0, 2]
for all t. (Hint: Consider a proportional controller.)
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Figure 6.4 Gain specification for the closed-loop transfer function T in Problem 6.4.

6.5 A multivariable system (see the block diagram in Figure 6.5) is supposed

to attenuate all output load disturbances (v) with at least a factor 10 for

frequencies below 0.1 rad/sec. Constant output load disturbances should be

attenuated by at least a factor 100 in stationarity.

Furthermore, the system should also attenuate measurement disturbances

(n) with at least a factor 10 for frequencies above 2 rad/sec.

a. Formulate specifications on (the singular values of) S and T that guarantee

the above requirements.

b. Re-formulate the specifications in a using q · q∞ and the weighting functions

Ws and Wt.
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Figure 6.5 System in Problem 6.5

6.6 Consider the setup in Figure 6.3 with

P(s) = 6− s

s2 + 5s+ 6

Give an upper bound for how fast the closed-loop system can be made. More

precisely, give a value a such that the following specification is impossible to

satisfy if c > a:

pS(iω)p ≤ 2ω√
ω2 + c2

ω ∈ R+

6.7 (*) The specifications

sup
ω
pWs(iω)S(iω)p ≤ 1 sup

ω
pWt(iω)T(iω)p ≤ 1

where S(s) and T(s) are stable and minimum-phase transfer functions, can

be used to make sure that the sensitivity is small in a low frequency range

and measurement noise is rejected in a high frequency range.

a. Show that the two specifications are incompatible if

pWs(s)p = pWt(s)p > 2

for some right half plane s. (Hint: Use the Maximum Modulus Theorem and

the fact that S + T = 1.)

b. Show that the two specifications are incompatible if

Ws(s) =
(

s+ 0.1

s

)n

Wt(s) =
(

s+ 10

10

)n

and n ≥ 8.

Hint: Use the result of a.
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Solutions to Exercise 6. Fundamental Limitations

6.1 a. The transfer function of the process P(s) is given by

P(s) = s

s2 + 2s+ 1

and the zero is located in the origin.

b. The sensitivity function is given by S(s) = 1

1+ P(s)C(s) . For ω = 0 we

will have pS(iω)p = 1 since P(0) = 0. (Note that you can not cancel the

process zero in s = 0 with your controller since you then would not have an

asymptotically stable system.)

c. The error e(t) is given by r(t) −θ(t) and the static error is then given by the

final value theorem, which can be used if all poles of sE(s) have a strictly

negative real-part.

lim
t→∞

e(t) = lim
s→0

sE(s)

Here the transfer function from r to e is given by:

Gre(s) =
1

1+ P(s)C(s)

The following result is obtained if r(t) is assumed to be a step, R(s) = a/s.

lim
s→0

sE(s) = lim
s→0

sGre(s)R(s) = a

since P(0) = 0 (and thereby Gre(0) = 1). This means that the ball will not

follow a reference trajectory that changes step-wise; there will be a static

error equal to a. Hence, no matter the reference value, the ball will end up

at the bottom of the cylinder.

An alternative explanation is that the sensitivity function S is 1 at s = 0,

therefore

T(0) = P(0)C(0)
1+ P(0)C(0) = 1− S(0) = 0

and then y(t) does not follow r(t) in stationarity.

d. The transfer function for the open loop with a PI controller is given by:

P(s)C(s) = s

s2 + 2s+ 1
K

s+ 1/Ti

s
= K

s+ 1/Ti

s2 + 2s+ 1

Here the process zero is canceled by the controller.

If we would have no stationary error the control signal from a PI controller

would be constant. But if we have a constant control signal ω then that would

imply that ω̇ = 0, which would give θ = 0 and we would get a stationary

error (unless r(t) = 0). This is contradictory and therefore we must have a

stationary error.

To remove the stationary error in this case, the controller would need a double

integrator. It would also require that there are no control signal limitations,

since u has to grow linearly to keep the ball at any stationary angle θ ,= 0.
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6.2 The sensitivity function is given by:

S(s) = 1

1+ P(s)C(s)

From this it follows that

S(iω) = 1

1+ P(iω)C(iω)

a. In the case of a purely imaginary process pole in iωp we have

P(iωp) = ∞

and consequently

S(iωp) = 0

b. A measurement disturbance n with frequency ωp will have a vanishing effect

on y and e, since

S(iωp) = 0.

Note that this implies that n will have a big impact on z since z(t) = y(t)−n(t).

c. No. No stabilizing controller can change the fact that S(iωp) = 0. Cancella-

tions of poles on the imaginary axis should be avoided.

d. In the case of a purely imaginary process zero in iω z we have

P(iω z) = 0

and consequently

S(iω z) = 1

e. The transfer function from n to z is given by −T(s), where T is the comple-

mentary sensitivity function. Since S(iω z) = 1 and S + T = 1 it must hold

that T(iω z) = 0, i.e. an output disturbance with frequency ω z will have no

effect on z.

6.3 a. The transfer function from n to z is given by

Gzn(s) = −
P(s)C(s)

1+ P(s)C(s)

We want to determine C(s) such that Gzn(s) = 5/(s + 5). This gives the

equation

− P(s)C(s)
1+ P(s)C(s) =

5

s+ 5
=[ C(s) = −

5
s+5

P(s) · (1+ 5
s+5
)
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Inserting P(s) = (3− s)/(s + 1)2, we obtain

C(s) = − 5 · (s+ 1)2
(3− s)(s+ 10)

However, this is not a stabilizing controller. For example, the transfer function

from n to u, Gun = − C(s)
1+P(s)C(s) , will be unstable because of the cancellation of

the unstable zero in P(s).

b. The specification

pS(iω)p ≤ 2ω√
ω2 + 36

ω ∈ R+

is equivalent to

sup
ω

∣

∣

∣

∣

∣

√
ω2 + 36

2ω
S(iω)

∣

∣

∣

∣

∣

≤ 1

However, Ws(iω) = iω+a
2iω

gives pWs(iw)p =
√

ω2+36
2ω

, for a = 6 so the specification

can equivalently be written

sup
ω
pWs(iω)S(iω)p ≤ 1

This makes the specification impossible to satisfy unless pWs(z)p ≤ 1. We see

here that pWs(3)p = p3+6
2·3
p = 3

2
> 1, so the specification is impossible to satisfy

for a= 6.

c. The Bode plot of P(s) is given in Figure 6.1 and the sensitivity function

when C(s) = 1 is given in Figure 6.2 together with the specification. Since

the specification 2ω√
ω2+1

= 0 when ω = 0 the controller C(s) must contain

an integrator. To avoid instability we must also lift the phase curve through

adding a zero and decrease the gain in the open-loop, P(s)C(s). A controller

on the form

C(s) = K ·
s/b+ 1

s

with e.g. K = 0.17, b= 0.5 will do the job.

To plot the specification on top of the Bode plot of S the following Matlab
commands can be used:

>>[mag, fas, w] = bode(S);

>>loglog(w, 2.*w./sqrt(w.^2+1), ’r --’)

>>hold on

>>bode(S)

6.4 The first case is impossible, because there is a time-delay of 2 seconds in the

plant, so the control signal will affect the output with this delay. Thus, the

controller would need to be non-causal to achieve the specification.

The second specification in the figure says that the gain should be below 2

(actually the requirement is closer to ( 1.6).

7



Solutions 6. Fundamental Limitations

Bode Diagram

Frequency (rad/sec)

P
h
a
s
e
 (

d
e
g
)

M
a
g
n
it
u
d
e
 (

d
B

)

10
−1

10
0

10
1

10
2

−270

−180

−90

0

−40

−30

−20

−10

0

10
Gm = 6.0206 dB (at 2.6458 rad/sec),  Pm = 38.813 deg (at 1.5402 rad/sec)

Figure 6.1 Bode plot of P(s) in Problem 6.3.
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Figure 6.2 Sensitivity function when C(s) = 1 and the specification (dashed) in Problem 6.3.

From the lecture notes we know that if there is both an unstable pole p and

an unstable zero z, we have the following fundamental limitation:

qSq∞ ≥
∣

∣

∣

∣

z+ p

z− p

∣

∣

∣

∣

=
∣

∣

∣

∣

20+ 10

20− 10

∣

∣

∣

∣

= 3

We know that S + T = 1, so in this case, we have

qTq∞ = qS − 1q∞ ≥ qSq∞ − 1 ≥ 3− 1 = 2

where the first inequality follows from the reverse triangle inequality

∣

∣qxq − qyq
∣

∣ ≤ qx− yq
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Figure 6.3 Sensitivity function for the proposed controller and the specification (dashed) in

Problem 6.3.

It is also possible to get to the same conclusion without using the unstable

zero, since the existence of a fast unstable pole is enough the make the

specification impossible to achieve.

The third case is possible. If proportional control, C(s) = K is used the closed-

loop transfer function becomes G(s) = K
s−3+K

. For stability it is required that

K > 3. The static gain is given by K
K−3

. Since it is a first order system there

will be no overshoot in the step response, which means that a P-controller

with K > 6 will fulfill the specification to stay in the interval [0, 2].

6.5 a. The requirements on pS(iω)p = σ̄ (S(iω)) and pT(iω)p = σ̄ (T(iω)) may be

formulated as

pS(iω)p ≤ 1
10

, ω ≤ 0.1, pT(iω)p ≤ 1
10

, ω ≥ 2

pS(0)p ≤ 1
100

b. The specifications in a can be formulated with weighting functions Ws and

Wt as

pS(iω)p ≤ pW−1
s (iω)p, ∀ω

pT(iω)p ≤ pW−1
t (iω)p, ∀ω

If e.g. W−1
s and W−1

t are chosen according to

W−1
s (s) = a1

(

1+ s

b1

)

, W−1
t (s) = a2

s

(

1+ s

b2

)

we get

W−1
s (s) = 1

100
(1+ 100s), W−1

t (s) = 0.14

s

(

1+ s

2

)

9



Solutions 6. Fundamental Limitations

6.6 The specification

pS(iω)p ≤ 2ω√
ω2 + c2

ω ∈ R+

is equal to

sup
ω

∣

∣

∣

∣

∣

√
ω2 + c2

2ω
S(iω)

∣

∣

∣

∣

∣

≤ 1

Since

Ws(iω) =
iω + c

2iω

gives

pWs(iω)p =
√

ω2 + c2

2ω

the specification can be written

sup
ω
pWs(iω)S(iω)p ≤ 1

This specification is impossible to meet when the process has a RHP zero in

s = z, unless pWs(z)p ≤ 1. Here we have a zero in z = 6, so we must have

6+ c

12
≤ 1 \ c ≤ 6 = a.

6.7 a. Assume sup
ω
pWs(iω)S(iω)p ≤ 1 and sup

ω
pWt(iω)T(iω)p ≤ 1 are satisfied.

We know that 1 = pS(s0) + T(s0)p ≤ pS(s0)p + pT(s0)p (triangle inequality).

If pWs(s0)p > 2 for some right half place s0, then pS(s0)p < 1/2, since

sup
ω
pWs(iω)S(iω)p = sup

Re(s)≥0

pWs(s)S(s)p ≤ 1(Maximum Modulus Theorem).

Analogously we get pT(s0)p < 1/2. Then

1 = pS(s0) + T(s0)p ≤ pS(s0)p + pT(s0)p < 1

and we arrive to contradiction. Hence either pWs(s)T(s)p > 1 or pWs(s)S(s)p >
1 and the corresponding specification must fail.

b. We have

Ws(1) =
(

1+ 0.1

1

)n

=
(

1+ 10

10

)n

= Wt(1)

and the value is larger than 2 for n ≥ 8. Hence, the statement in a shows

that the specifications are incompatible.
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