FRTN10 Exercise 3. Specifications and Disturbance
Models

3.1 A feedback system is shown in Figure 8.1l in which a first-order process if
controlled by an I controller.
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Figure 3.1 System in Problem [3.1]

a. Verify that the closed-loop system is stable.

b. Sketch the Bode amplitude diagrams of the “Gang of Four” for the feedback
system:
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Based on the diagrams, answer the following questions:

e Up to approximately what frequency can the process output track the
reference value?

¢ Can the feedback system reject a constant input load disturbance?

e What is the maximum amplification from measurement noise to the
control signal?

c. Calculate how much the process output z will vary if the disturbance v is a
sinusoidal with amplitude 1 and frequency 0.5 rad/s.

d. Extend the block diagram to explicitly model that v is a sinusoidal disturbance
with frequency 0.5 rad/s. (The exact amplitude and phase of the disturbance
is not important here.)

3.2 A continuous-time stochastic process y(t) has the power spectrum ®,(w). The
process can be represented by a linear filter G(s) that has unit-intensity white
noise v as input. Determine the linear filter when

a.
a2
@y(ﬂ)) = m, a>0
b.
a?b?

@, (w) a,b>0

T (@ + @) (w? + b2)
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3.3 A linear system with two inputs and one output has the state-space description
. [-5 -3 N 2 0
Tl2 o]""lo 2]"
y=[0 3]«

Assuming that u; and us are independent, zero-mean, unit intensity white
noise processes, calculate the stationary variance of y.

34 Consider a missile travelling in the air. It is propelled forward by a jet force u
along a horizontal path. The coordinate along the path is z. We assume that
there is no gravitational force. The aerodynamic friction force is described by
a simple model as

f=Fkiz+y,

where v are random variations due to wind and pressure changes. Combining
this with Newton’s second law, mZ = u—f, where m is the mass of the missile,
gives the input-output relation

a. Express the input-output relation in state-space form.
b. The disturbance v has been determined to have the spectral density

1

@v((u) = k()m, k(), a>0

Expand your state-space description so that the disturbance input can be
expressed as white noise.

3.5 (*) This problem builds on Problem [3.4l

a. Assume that the position measurement is distorted by an additive error n(t),

y(t) = 2(8) +n(?)

Write down the state-space equations for the system, assuming that n(t) is
white noise with intensity 0.1, i.e. ®,(w) = 0.1.

b. Solve the same problem, this time with

w2
P, =01—5——, b>0
(@) w? + b2 >
c. Solve the problem with
B(@) = 01— >0
" w4+
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3.6 (*) Consider an electric motor with the transfer function

1
s(s+1)

G(s) =

from input current to output angle.

There are two different disturbance scenarios:

@ Y(s) =G(s)(U(s) + W(s))
(ii) Y (s) = G(s)U(s) + W(s)

In both cases, w(¢) = v(t), where v(¢) is a unit disturbance, e.g., an impulse.
a. Draw block diagrams of the two cases.
b. Convert both cases into state-space form.

c. Give a physical interpretation of w(t) in both cases.
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Solutions to Exercise 3. Specifications and Disturbance

Models

3.1 a. The closed-loop transfer function from r to y is given by

1
T=_ "~
(s +1)2

with two LHP poles in —1.
b. The other three closed-loop transfer functions are

s s+2
PS=—— =
(s+ 1% (s+1)%

_s(s+2)
(s +1)2

The four Bode amplitude diagrams are plotted below.
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e From the T plot, we see that z can track r up to approx. w = 1 rad/s.
¢ Yes, from the PS plot, we see that the gain from d to z approaches 0

when w — 0.

¢ From the CS plot, we see that the maximum gain from n to u is 2.

c. The gain from n to z at w = 0.5 rad/s is given by

0.5v/0.52 + 22

SG05) = =55 72

The output z will hence be a sinusoidal with the

0.8246

amplitude 0.8246.
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d. The sinusoidal signal can be generated by a system with poles in +0.5i, e.g.,

1
m, see below.
lw
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3.2 ®,(w) is an even, scalar, non-negative function. Thus we can factor it into

¢, (w) = G(iw) Py (w)G(—iw)

where G(s) has its poles and zeroes in the left half-plane and &,(w) = 1
(white noise).

a.
2
a a a
P = P = .
y(@) w? + a? (w) iw+a —iw+a
So the linear filter is a
G(s) =
s+a
b. In the same way, we get
272
a“b
P = P
@) = a5 )
ab ab

" (iw+a)iw+Dd) (—iw+ a)(—iw + b)

ab

= =y

11 12 . . T
3.3 Let II, = be the stationary state covariance E xx*. Since the
12 T22

system is stable (the A-matrix has eigenvalues A; = —3, Ao = —2), II, is
given by the Lyapunov equation

ATl + T1,AT + BRBT =0

[—5 —3] |:7T11 7T12:|+|:7T11 7T12:| [—5 2]+[4 0]_[0 0]
2 0 Jr12  J022 Jr12  J122 -3 0 0 4 B 0 o0
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3.4

3.5

with the solution

The output has the variance

Ey? =E(Cx)(Cx)T = CE(x«T) T = c11,CT =21

. To make a state-space description, we let, e.g., x1 =2, x9 =2 —

X1 = X9,

1
o = —(u — k1xg — v).
X9 - (u 1X2 — V)

) 0 1 0 0
X = 0 Ry X+ 1 u—+ 1 v,
m m m

z=(1 0)x«

In matrix form:

. We want to find a filter H such that

&y (w) = [H(iw)]* e(w)

Thus H(s) = ko which is equivalent to o + av = /% e.

s+a’

Adding a new state xg = v to the state-space description, gives

X3 = —axs + v/ kge

and
0 1 0 0 0
g=0 =& _Lfyq Loyt | 0 |e
0 0 —a 0 Vko

z=(1 0 0)x, P (w)=1

. With {A, B, C, N} according to the solution of Problem [3.4] we have

% = Ax+ Bu + Ne
y=Cx+n

where n has spectral density ¢, = 0.1.

. A noise signal with the specified spectral density is given by the output of

a linear system with white noise input that has spectral density ¢,, = 0.1.
The transfer function of the system is

s s+b—b b

G e iy S ey
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In state-space form this can be expressed as

X4 = —bx4 + bw,

n=—x4+w,

Combining the noise model with our original system gives the expanded
state-space description:

=0 5822

y=( Cc -1 )x+wn, ®,, =0.1
Note that the disturbance can be described using a transfer function and
white noise of any spectral density. For instance, it is often convenient to
assume white noise with a spectral density of 1. In this case, the transfer
function of the system would be

v/0.1s
s+b

Gu(s) =

The expanded state space description would then need to be adjusted to
account for this.

c. Now, the transfer function of the noise model is G,(s) = ﬁ' In state-space
form, this is

X4 + bxy = wy,.

The expanded system becomes

e= (8 0o (2)ur (T ()

y=(C 1)x, ¢, =01

As in subproblem b, the disturbance can be described using a transfer function
and white noise of any spectral density. Assuming white noise with a spectral
density of 1, the transfer function of the system would be

V0.1

Gnls) = s+b

3.6 a. (i)

s(s+1)

v
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(ii)
;U
1
S
w
u 1 + Y
~156+D =) -
v(t) is a unit disturbance
b. (i)
A B
—— —~
0 1 0 0
=10 -1 1 |x+|1]u+ v
0 1
y=(1 0 0)«x
—_——
(&}
(ii)
A B
0 1 O 0 0
x=]10 -1 Ofx+|1]Ju+]0]v
0O 0 O 0 1

y=(1 0 1)«
—————
c

c. (i) w(¢) could be an offset current on the input to the motor, and/or a step
disturbance in the load.

(ii) In this case w(t) could be a measurement disturbance, i.e., an additive
error (constant) in the angle measurement. It could also be interpreted as
a load disturbance on the process output. A controller could remove the
effect from a load disturbance on the process output, but not a constant
measurement disturbance, so the interpretation makes a difference.
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