
FRTN10 Exercise 3. Specifications and Disturbance

Models

3.1 A feedback system is shown in Figure 3.1, in which a first-order process if

controlled by an I controller.
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Figure 3.1 System in Problem 3.1.

a. Verify that the closed-loop system is stable.

b. Sketch the Bode amplitude diagrams of the “Gang of Four” for the feedback

system:

PC

1+ PC
= T,

P

1+ PC
= P S,

C

1+ PC
= C S,

1

1+ PC
= S

Based on the diagrams, answer the following questions:

• Up to approximately what frequency can the process output track the

reference value?

• Can the feedback system reject a constant input load disturbance?

• What is the maximum amplification from measurement noise to the

control signal?

c. Calculate how much the process output z will vary if the disturbance v is a

sinusoidal with amplitude 1 and frequency 0.5 rad/s.

d. Extend the block diagram to explicitly model that v is a sinusoidal disturbance

with frequency 0.5 rad/s. (The exact amplitude and phase of the disturbance

is not important here.)

3.2 A continuous-time stochastic process y(t) has the power spectrum Φy(ω). The

process can be represented by a linear filter G(s) that has unit-intensity white

noise v as input. Determine the linear filter when

a.

Φy(ω) =
a2

ω2 + a2
, a > 0

b.

Φy(ω) =
a2b2

(ω2 + a2)(ω2 + b2) , a, b > 0
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3.3 A linear system with two inputs and one output has the state-space description

ẋ =
[−5 −3

2 0

]

x+
[

2 0

0 2

]

u

y = [ 0 3 ] x

Assuming that u1 and u2 are independent, zero-mean, unit intensity white

noise processes, calculate the stationary variance of y.

3.4 Consider a missile travelling in the air. It is propelled forward by a jet force u

along a horizontal path. The coordinate along the path is z. We assume that

there is no gravitational force. The aerodynamic friction force is described by

a simple model as

f = k1 ż+ v,

where v are random variations due to wind and pressure changes. Combining

this with Newton’s second law, mz̈ = u− f , where m is the mass of the missile,

gives the input-output relation

z̈+ k1

m
ż = 1

m
(u− v).

a. Express the input-output relation in state-space form.

b. The disturbance v has been determined to have the spectral density

Φv(ω) = k0

1

ω2 + a2
, k0, a > 0

Expand your state-space description so that the disturbance input can be

expressed as white noise.

3.5 (*) This problem builds on Problem 3.4.

a. Assume that the position measurement is distorted by an additive error n(t),

y(t) = z(t) + n(t)

Write down the state-space equations for the system, assuming that n(t) is

white noise with intensity 0.1, i.e. Φn(ω) = 0.1.

b. Solve the same problem, this time with

Φn(ω) = 0.1
ω2

ω2 + b2
, b > 0

c. Solve the problem with

Φn(ω) = 0.1
1

ω2 + b2
, b > 0
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3.6 (*) Consider an electric motor with the transfer function

G(s) = 1

s(s+ 1)

from input current to output angle.

There are two different disturbance scenarios:

(i) Y (s) = G(s)(U(s) + W(s))
(ii) Y (s) = G(s)U(s) + W(s)

In both cases, ẇ(t) = v(t), where v(t) is a unit disturbance, e.g., an impulse.

a. Draw block diagrams of the two cases.

b. Convert both cases into state-space form.

c. Give a physical interpretation of w(t) in both cases.
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Solutions to Exercise 3. Specifications and Disturbance

Models

3.1 a. The closed-loop transfer function from r to y is given by

T = 1

(s+ 1)2

with two LHP poles in −1.

b. The other three closed-loop transfer functions are

P S = s

(s+ 1)2 , C S = s+ 2

(s+ 1)2 , S = s(s+ 2)
(s+ 1)2

The four Bode amplitude diagrams are plotted below.
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• From the T plot, we see that z can track r up to approx. ω = 1 rad/s.

• Yes, from the P S plot, we see that the gain from d to z approaches 0

when ω → 0.

• From the C S plot, we see that the maximum gain from n to u is 2.

c. The gain from n to z at ω = 0.5 rad/s is given by

pS(i0.5)p = 0.5
√

0.52 + 22

0.52 + 12
= 0.8246

The output z will hence be a sinusoidal with the amplitude 0.8246.
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d. The sinusoidal signal can be generated by a system with poles in ±0.5i, e.g.,
1

s2 + 0.25
, see below.
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3.2 Φy(ω) is an even, scalar, non-negative function. Thus we can factor it into

Φy(ω) = G(iω)Φv(ω)G(−iω)

where G(s) has its poles and zeroes in the left half-plane and Φv(ω) = 1

(white noise).

a.

Φy(ω) =
a2

ω2 + a2
Φe(ω) =

a

iω + a
·

a

−iω + a

So the linear filter is

G(s) = a

s+ a

b. In the same way, we get

Φy(ω) =
a2b2

(ω2 + a2)(ω2 + b2)Φe(ω)

= ab

(iω + a)(iω + b) ·
ab

(−iω + a)(−iω + b)

[ G(s) = ab

(s+ a)(s+ b)

3.3 Let Πx =
[

π11 π12

π12 π22

]

be the stationary state covariance E xxT . Since the

system is stable (the A-matrix has eigenvalues λ1 = −3, λ2 = −2), Πx is

given by the Lyapunov equation

AΠx + Πx AT + BRBT = 0

[−5 −3

2 0

] [

π11 π12

π12 π22

]

+
[

π11 π12

π12 π22

] [−5 2

−3 0

]

+
[

4 0

0 4

]

=
[

0 0

0 0

]
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with the solution

Πx =
[

1 −1

−1 7
3

]

The output has the variance

E y2 = E (Cx)(Cx)T = C E(xxT)CT = CΠxCT = 21

3.4 a. To make a state-space description, we let, e.g., x1 = z, x2 = ż =[

ẋ1 = x2,

ẋ2 =
1

m
(u− k1 x2 − v).

In matrix form:

ẋ =
(

0 1

0 − k1

m

)

x+
(

0
1
m

)

u+
(

0

− 1
m

)

v,

z = ( 1 0 ) x.

b. We want to find a filter H such that

Φv(ω) = pH(iω)p2Φe(ω)

Thus H(s) =
√

k0

s+a
, which is equivalent to v̇+ av =

√
k0 e.

Adding a new state x3 = v to the state-space description, gives

ẋ3 = −ax3 +
√

k0e

and

ẋ =






0 1 0

0 − k1

m
− 1

m

0 0 −a




 x+






0
1
m

0




 u+






0

0√
k0




 e

z = ( 1 0 0 ) x, Φe(ω) = 1

3.5 a. With {A, B, C, N} according to the solution of Problem 3.4, we have

ẋ = Ax+ Bu+ Ne

y = Cx+ n

where n has spectral density Φn = 0.1.

b. A noise signal with the specified spectral density is given by the output of

a linear system with white noise input that has spectral density Φwn
= 0.1.

The transfer function of the system is

Gn(s) =
s

s+ b
= s+ b− b

s+ b
= 1− b

s+ b
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In state-space form this can be expressed as

ẋ4 = −bx4 + bwn

n = −x4 + wn

Combining the noise model with our original system gives the expanded

state-space description:

ẋ =
(

A 0

0 −b

)

x+
(

B

0

)

u+
(

N 0

0 b

)(

e

wn

)

y =
(

C −1
)

x+ wn, Φωn
= 0.1

Note that the disturbance can be described using a transfer function and

white noise of any spectral density. For instance, it is often convenient to

assume white noise with a spectral density of 1. In this case, the transfer

function of the system would be

Gn(s) =
√

0.1s

s+ b

The expanded state space description would then need to be adjusted to

account for this.

c. Now, the transfer function of the noise model is Gn(s) = 1
s+b

. In state-space

form, this is

ẋ4 + bx4 = wn.

The expanded system becomes

ẋ =
(

A 0

0 −b

)

x+
(

B

0

)

u+
(

N 0

0 1

)(

e

wn

)

y = (C 1 ) x, Φωn
= 0.1

As in subproblem b, the disturbance can be described using a transfer function

and white noise of any spectral density. Assuming white noise with a spectral

density of 1, the transfer function of the system would be

Gn(s) =
√

0.1

s+ b

3.6 a. (i)

1

s(s+ 1)
+

1

s

u

v

w

y
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(ii)

1

s(s+ 1)
+

1

s

u

v

w

y

v(t) is a unit disturbance

b. (i)

ẋ =

A
︷ ︸︸ ︷




0 1 0

0 −1 1

0 0 0




 x+

B
︷ ︸︸ ︷




0

1

0




 u+






0

0

1




 v

y = ( 1 0 0 )
︸ ︷︷ ︸

C

x.

(ii)

ẋ =

A
︷ ︸︸ ︷




0 1 0

0 −1 0

0 0 0




 x+

B
︷ ︸︸ ︷




0

1

0




 u+






0

0

1




 v

y = ( 1 0 1 )
︸ ︷︷ ︸

C

x.

c. (i) w(t) could be an offset current on the input to the motor, and/or a step

disturbance in the load.

(ii) In this case w(t) could be a measurement disturbance, i.e., an additive

error (constant) in the angle measurement. It could also be interpreted as

a load disturbance on the process output. A controller could remove the

effect from a load disturbance on the process output, but not a constant

measurement disturbance, so the interpretation makes a difference.

8


	Specifications and Disturbance Models
	Specifications and Disturbance Models

