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Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance

@ Controllability/observability, multivariable
poles/zeros

@ Fundamental limitations

@ Multivariable and decentralized control

L9-L11 Controller optimization: analytic approach
L12-L14 Controller optimization: numerical approach
L15 Course review
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L7: Fundamental Limitations

o Bode’s Relation

9 Limitations from RHP poles/zeros and delays
@ Insights and rules of thumb from loop shaping
@ Example: Rear-wheel steering bike

@ Hard proofs using the Maximum Modulus Principle

e Bode’s Integral
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Limitations in control design

Some things we already know:
@ Model uncertainty, measurement noise, and control signal
limitations give upper limits on the achievable bandwidth
@ S+ T =1, which implies
[S(iw)| + |T(w)| = 1
[ISGiw)| - IT(iw)]| < 1

@ Some modes may be impossible to control or observe due to
lack of controllability or observability

@ A zero in the origin makes it impossible to control the process
in stationarity
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Limitations in control design

Some fundamental limitations of linear control systems exist,
regardless of the controller design:
@ Bode’s Relation: amplitude and phase are coupled

@ Limitations from non-minimum-phase elements:

@ unstable poles
@ right-half-plane (RHP) zeros
@ time delays

@ Bode’s Integral: |S(iw)| cannot be made small everywhere
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L7: Fundamental Limitations

0 Bode’s Relation

Automatic Control LTH, 2019 Lecture 7 FRTN10 Multivariable Control



Recall: Loop shaping

The magnitude of the loop transfer function L = PC should be
made large at low frequencies and small at high frequencies:

x
° |Pliw)Ciw)|

Robustness

wo wi

X Fréuency '

Disturbance rejection

How quickly can we make the transition from high to low gain and
still retain a good phase margin?
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Amplitude and phase are coupled

LHP (“stable”) zero

Bode Diagram

LHP (stable) pole

Bode Diagram
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If G(s) is minimum phase (no RHP poles/zeros or time delays) then

mdlog|G(iw)|

arg Gliw) ~ 2 d logw
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Bode’s Relation

If G(s) is minimum phase, then
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Consequence for phase margin

For minimum-phase systems, to have a phase margin between
30° and 60°, the slope of the amplitude curve should be between
approx. —% and —% at the cross-over frequency.

Bode Diagram Bode Diagram
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L7: Fundamental Limitations

Q Limitations from RHP poles/zeros and delays
@ Insights and rules of thumb from loop shaping
@ Example: Rear-wheel steering bike

@ Hard proofs using the Maximum Modulus Principle
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Non-minimum-phase systems

A transfer function G(s) can always be factored as
G(S) = Gmp(s) Gnmp(s)
such that

@ G, (s) only contains minimum-phase elements
® Gpmp(s) contains non-minimum-phase elements and has
@ unit magnitude: |Gypp(iw)| = 1

@ negative phase: arg G mp (iw) < 0
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Non-minimum-phase elements

Pole in the right half-plane at p:

s+p
Gnmp(s) =
s=p
Zero in the right half-plane at z:
Z—S
Gnmp(s) = Stz

Time delay of length L:

Gnmp (s) = e_SL
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sights and rules of thumb from loop shaping

The minimum-phase part of the system can be shaped to our
liking, to achieve a suitable cross-over frequency w. and phase
margin ¢,,. However,

@ An RHP pole p decreases the phase by > 90° for w < p. To
retain a reasonable phase margin, we must have w. > p.

@ An RHP zero z decreases the phase by > 90° for w > z. To
retain a reasonable phase margin, we must have w. < z.

@ Atime delay L decreases the phase by wL. To retain a
reasonable phase margin, we must have w. < ”T/z ~ %.
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Bike example
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Bike example, cont’d

Jﬁ =mgth + M (VO,B + ad—ﬂ)
dr? b dt

where the physical parameters have typical values as follows:
Mass: m =70kg
Distance rear-to-center: a=03m
Height over ground: {=12m
Distance center-to-front: b=0.7m
Moment of inertia: J =120 kgm2
Speed: Ww=>5 ms™!
Acceleration of gravity: g =9.81 ms 2

The transfer function from g to 6 is

mWpf as+Vy

p(s) = 200 5TV
(s) b Js*—mgt
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Bike example, cont’d

The system has an unstable pole at

mgft
=4/— =26
P=NTT

The closed-loop system must be at least as fast as this. Moreover,
the transfer function has a zero at

%
z= AN -3.3W
a

For the rear-wheel steering bike we have the same pole but a
minus sign before V;; and the zero will thus be in the RHP!

An unstable pole-zero cancellation occurs for Vy = 0.8 m/s.
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L7: Fundamental Limitations

Q Limitations from RHP poles/zeros and delays
@ Insights and rules of thumb from loop shaping
@ Example: Rear-wheel steering bike

@ Hard proofs using the Maximum Modulus Principle
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Hard bounds from RHP poles/zeros

The sensitivity function must be 1 at a RHP zero z:

1

T+ P C)
——
0

P(z)=0 = S(z) =

Similarly, the complementary sensitivity function must be 1 at an
unstable pole p:

_ _ PO
Pz = IO = T hpce) -

Automatic Control LTH, 2019 Lecture 7 FRTN10 Multivariable Control



The Maximum Modulus principle

Suppose that all poles of the rational function G(s) have negative
real part. Then

sup |G(iw)| 2 |G(s)]

weR

for all s in the right half-plane.
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Hard bounds on specifications on §

THEOREM:

Given stable W(s) and S(s) = (1 + L(s))~!, the specification

[WiSlloo < 1

can be met only if [W(z)| < 1 for every RHP zero z of L(s).
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Hard bounds on specifications on §

THEOREM:

Given stable W(s) and S(s) = (1 + L(s))~!, the specification

[WiSlloo < 1

can be met only if [W(z)| < 1 for every RHP zero z of L(s).

Proof:

Wi Slleo SU%IWs(iw)S(iw)l > [Wi(5)S(s)|

for all s in RHP. For s = z, the right hand side becomes |W(z)
which in turn gives the necessary condition above.
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Example - hard bound from RHP zero

s+ a
Assume the sensitivity specification Wy(s) = —, @ > 0.
S

a

If the plant has a RHP zero in z, then |[|W S|l < 1 is impossible to
fulfill unless
z+a

Wyl = |5

<1 & a<z

(“Closed loop must be slower than z for reasonable robustness, M; < 2”)
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Hard bounds on specifications on T

THEOREM:

Given stable W;(s) and T(s) = (1 + L(s))~' L(s), the specification
||WtT||oo < 1

can be met only if |[W;(p)| < 1 for every RHP pole p of L(s).

(Proof is analogous to the one above)
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Example - hard bound from unstable pole

s+b
Assume the compl. sensitivity specification W; = BT b>0
10’
2
— 1
|
=
107
1072

b

If the plant has an unstable pole in p, then ||W;T || < 1 is
impossible to fulfill unless

W, (p)] = "’”’

2b

<1 & b=p

(“Closed loop must be faster than p for reasonable robustness, M; < 2")
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RHP zero and unstable pole

For a system with both RHP zero z and unstable pole p it can be
shown that
Z+
My = sup |S(iw)| > _p‘
W -

(See lecture notes for details)

If p = z the sensitivity function must have a high peak for every
controller C.

Example: Bicycle with rear-wheel steering

@ _amlVy . (s +W/a)
5(s)  bJ (s> -mgl]J)
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L7: Fundamental Limitations

9 Bode’s Integral
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Bode’s Integral - stable systems

For a stable loop gain L(s) with relative degree > 2 the following
conservation law for the sensitivity function S(s) = (1 + L(s))™!
holds:

/ log |S(iw)|dw =0
0

(Sometimes known as the "waterbed effect")
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Example

Proportional control of (s? + s + 1)7!

Sensitivity Function
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Bode’s Integral - general case

For a loop gain with relative degree > 2 and unstable poles
P1---,Pum. the following conservation law for the sensitivity
function holds:

o M
/0 log |S(iw)ldw = 7 )" Re(p;)
i=1

(There exists a similar condition relating T'(s) and RHP zeros, see
the lecture notes.)
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G. Stein: "Conservation of dirt!"

Serious Design

10
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Figure 3. Sensitivity reduction at low frequency unavoidably
leads to sensitivity increase at higher frequencies.

Picture from Gunter Stein’s Bode Lecture (1985) “Respect the unstable”. Reprint
in I[EEE Control Systems Magazine, Aug 2003.
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Lecture 7 - summary

@ Bode’s Relation and Bode’s Integral

@ Limitations from unstable poles, RHP zeros and time delays
@ Rules of thumb for achievable w,

@ Limitations on specifications on § and T from RHP zeros and
poles: Hard proofs using Maximum Modulus principle

@ Example: Rear-wheel steering bicyle — pole and zero i RHP
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