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Course Outline

L1–L5 Specifications, models and loop-shaping by hand

L6–L8 Limitations on achievable performance

6 Controllability/observability, multivariable

poles/zeros

7 Fundamental limitations

8 Multivariable and decentralized control

L9–L11 Controller optimization: analytic approach

L12–L14 Controller optimization: numerical approach

L15 Course review
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L7: Fundamental Limitations

1 Bode’s Relation

2 Limitations from RHP poles/zeros and delays

Insights and rules of thumb from loop shaping

Example: Rear-wheel steering bike

Hard proofs using the Maximum Modulus Principle

3 Bode’s Integral
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Limitations in control design

Some things we already know:

Model uncertainty, measurement noise, and control signal

limitations give upper limits on the achievable bandwidth

S + T = 1, which implies

|S(iω)| + |T (iω)| ≥ 1
�
�|S(iω)| − |T (iω)|

�
� ≤ 1

Some modes may be impossible to control or observe due to

lack of controllability or observability

A zero in the origin makes it impossible to control the process

in stationarity
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Limitations in control design

Some fundamental limitations of linear control systems exist,

regardless of the controller design:

Bode’s Relation: amplitude and phase are coupled

Limitations from non-minimum-phase elements:

unstable poles

right-half-plane (RHP) zeros

time delays

Bode’s Integral: |S(iω)| cannot be made small everywhere
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Recall: Loop shaping

The magnitude of the loop transfer function L = PC should be

made large at low frequencies and small at high frequencies:
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How quickly can we make the transition from high to low gain and

still retain a good phase margin?
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Amplitude and phase are coupled

LHP (stable) pole LHP (“stable”) zero
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If G(s) is minimum phase (no RHP poles/zeros or time delays) then

arg G(iω) ≈
π

2

d log |G(iω)|

d logω
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Bode’s Relation

If G(s) is minimum phase, then

arg G(iω) =
2ω

π

∫ ∞

0

log |G(iν)| − log |G(iω)|

ν2 − ω2
dν

=

1

π

∫ ∞

0

d log |G(iν)|

d log ν
log

�
�
�

ν + ω

ν − ω

�
�
�

︸       ︷︷       ︸

weighting function

d log ν ≈
π

2

d log |G(iω)|

d logω
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Consequence for phase margin

For minimum-phase systems, to have a phase margin between

30◦ and 60◦, the slope of the amplitude curve should be between

approx. − 5
3
and − 4

3
at the cross-over frequency.
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Non-minimum-phase systems

A transfer function G(s) can always be factored as

G(s) = Gmp(s)Gnmp(s)

such that

Gmp(s) only contains minimum-phase elements

Gnmp(s) contains non-minimum-phase elements and has

unit magnitude: |Gnmp(iω)| = 1

negative phase: arg Gnmp(iω) < 0
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Non-minimum-phase elements

Pole in the right half-plane at p:

Gnmp(s) =
s + p

s − p

Zero in the right half-plane at z:

Gnmp(s) =
z − s

s + z

Time delay of length L:

Gnmp(s) = e−sL
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Insights and rules of thumb from loop shaping

The minimum-phase part of the system can be shaped to our

liking, to achieve a suitable cross-over frequency ωc and phase

margin ϕm. However,

An RHP pole p decreases the phase by > 90◦ for ω < p. To

retain a reasonable phase margin, we must have ωc > p.

An RHP zero z decreases the phase by > 90◦ for ω > z. To

retain a reasonable phase margin, we must have ωc < z.

A time delay L decreases the phase by ωL. To retain a

reasonable phase margin, we must have ωc <
π/2
L

≈ 1.6
L
.
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Example: Rear-wheel steering bike
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Bike example

A (linearized) torque balance of a normal bike can be written as

J
d2θ

dt2
= mgℓθ +

mV0ℓ

b

(

V0β + a
dβ

dt

)
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Bike example, cont’d

J
d2θ

dt2
= mgℓθ +

mV0ℓ

b

(

V0β + a
dβ

dt

)

where the physical parameters have typical values as follows:

Mass: m = 70 kg

Distance rear-to-center: a = 0.3 m

Height over ground: ℓ = 1.2 m

Distance center-to-front: b = 0.7 m

Moment of inertia: J = 120 kgm2

Speed: V0 = 5 ms−1

Acceleration of gravity: g = 9.81 ms−2

The transfer function from β to θ is

P(s) =
mV0ℓ

b

as + V0

Js2 − mgℓ
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Bike example, cont’d

The system has an unstable pole at

p =

√

mgℓ

J
≈ 2.6

The closed-loop system must be at least as fast as this. Moreover,

the transfer function has a zero at

z = −
V0

a
≈ −3.3V0

For the rear-wheel steering bike we have the same pole but a

minus sign before V0 and the zero will thus be in the RHP!

An unstable pole-zero cancellation occurs for V0 ≈ 0.8 m/s.
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Hard bounds from RHP poles/zeros

The sensitivity function must be 1 at a RHP zero z:

P(z) = 0 ⇒ S(z) =
1

1 + P(z)
︸︷︷︸

0

C(z)
= 1

Similarly, the complementary sensitivity function must be 1 at an

unstable pole p:

P(p) = ∞ ⇒ T(p) =
P(p)C(p)

1 + P(p)C(p)
= 1
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The Maximum Modulus principle

Suppose that all poles of the rational function G(s) have negative

real part. Then

sup
ω∈R

|G(iω)| ≥ |G(s)|

for all s in the right half-plane.
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Hard bounds on specifications on S

Theorem:

Given stable Ws(s) and S(s) = (1 + L(s))−1, the specification

‖WsS‖∞ ≤ 1

can be met only if |Ws(z)| ≤ 1 for every RHP zero z of L(s).

Proof:

‖WsS‖∞ = sup
ω∈R

|Ws(iω)S(iω)| ≥ |Ws(s)S(s)|

for all s in RHP. For s = z, the right hand side becomes |Ws(z)|,

which in turn gives the necessary condition above.
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Example – hard bound from RHP zero

Assume the sensitivity specification Ws(s) =
s + a

2s
, a > 0.
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If the plant has a RHP zero in z, then ‖WsS‖∞ ≤ 1 is impossible to

fulfill unless

|Ws(z)| =

�
�
�
�

z + a

2z

�
�
�
�
≤ 1 ⇔ a ≤ z

(“Closed loop must be slower than z for reasonable robustness, Ms ≤ 2”)
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Hard bounds on specifications on T

Theorem:

Given stable Wt(s) and T(s) = (1 + L(s))−1L(s), the specification

‖WtT ‖∞ ≤ 1

can be met only if |Wt(p)| ≤ 1 for every RHP pole p of L(s).

(Proof is analogous to the one above)
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Example – hard bound from unstable pole

Assume the compl. sensitivity specification Wt =
s + b

2b
, b > 0
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If the plant has an unstable pole in p, then ‖WtT ‖∞ ≤ 1 is

impossible to fulfill unless

|Wt(p)| =

�
�
�
�

p + b

2b

�
�
�
�
≤ 1 ⇔ b ≥ p

(“Closed loop must be faster than p for reasonable robustness, Mt ≤ 2”)
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RHP zero and unstable pole

For a system with both RHP zero z and unstable pole p it can be

shown that

Ms = sup
ω

|S(iω)| ≥

�
�
�
�

z + p

z − p

�
�
�
�

(See lecture notes for details)

If p ≈ z the sensitivity function must have a high peak for every

controller C.

Example: Bicycle with rear-wheel steering

θ(s)

δ(s)
=

amℓV0

bJ
·
(−s + V0/a)

(s2 − mgℓ/J)
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Bode’s Integral – stable systems

For a stable loop gain L(s) with relative degree ≥ 2 the following

conservation law for the sensitivity function S(s) = (1 + L(s))−1

holds: ∫ ∞

0

log |S(iω)|dω = 0

(Sometimes known as the "waterbed effect")

Automatic Control LTH, 2019 Lecture 7 FRTN10 Multivariable Control



Example

Proportional control of (s2
+ s + 1)−1
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Bode’s Integral – general case

For a loop gain with relative degree ≥ 2 and unstable poles

p1, . . . , pM , the following conservation law for the sensitivity

function holds:

∫ ∞

0

log |S(iω)|dω = π

M∑

i=1

Re(pi)

(There exists a similar condition relating T(s) and RHP zeros, see

the lecture notes.)
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G. Stein: "Conservation of dirt!"

Picture from Gunter Stein’s Bode Lecture (1985) “Respect the unstable”. Reprint

in IEEE Control Systems Magazine, Aug 2003.
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Lecture 7 – summary

Bode’s Relation and Bode’s Integral

Limitations from unstable poles, RHP zeros and time delays

Rules of thumb for achievable ωc

Limitations on specifications on S and T from RHP zeros and

poles: Hard proofs using Maximum Modulus principle

Example: Rear-wheel steering bicyle – pole and zero i RHP
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