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Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance

@ Controllability/observability, multivariable
poles/zeros

@ Fundamental limitations

@ Multivariable and decentralized control

L9-L11 Controller optimization: analytic approach
L12-L14 Controller optimization: numerical approach
L15 Course review
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Controllability/observability, multivariable poles/zeros

@ Controllability and observability, Gramians
@ Multivariable poles and zeros

© Minimal realizations
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Example: Ball in the Hoop

input w (

output 6
0+cl+kd=0w

Can you reach 0 = n1/4, 6 = 0? Can you stay there?
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Example: Two water tanks

| |

X2
X1
— 1|l
ugl X1 u2\L axp a>1
X1 = —Xx1 +Up yi=Xx1+up
X = —axpy + ug Y2 =axy +up
Canyoureachy; =1,y, =27 Can you stay there?
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Controllability/observability, multivariable poles/zeros

o Controllability and observability
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Controllability - definition

The system
X =Ax+ Bu

is controllable, if for every x; € R" there exists u(t), t € [0, #1],
such that x(#;) = x; can be reached from x(0) = 0.

The collection of vectors x; that can be reached in this way is
called the controllable subspace and is given by the range of
the controllability matrix

C=[B AB ... A"'B|
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Controllability criteria

The following controllability criteria for a system x = Ax + Bu of
order n are equivalent:

(i) rank [B AB ... A™'B|=n
(i) rank [AI - A B|=n forall 1€C
If the system is stable, define the controllability Gramian
W, = / M BB A dt
0

For such systems there is a third equivalent criterion:

(iii) The controllability Gramian is non-singular
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Interpretation of controllability Gramian

Let x(0) = 0 and
wo) = [6(6) ... o)

Then the state will move as
x(7) = e B

Amount of “energy” in the different states:

/ x()xT(t)dt = / e BBT A" dr = W,
0 0

Furthermore, the control energy required to reach a given state
x = x starting from x = 0 satisfies

£|mezﬁm%1

(For proof, see the lecture notes.)
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Computing the controllability Gramian

The controllability Gramian W, = /000 e BBTeA" dt can be
computed by solving the Lyapunov equation

AW, + W.AT + BBT =0
(For proof, see the lecture notes.)

(Matlab: We = lyap(A,B*B’))

(Q: Where have we seen this equation before?)
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Example: Two water tanks

I 1
Uy i uli
X2
X1
| ‘l‘
uz X1 up axp
X = —x1+u X = —axpy + ug

o -t -t 1T
Controllability Gramian: W, = / [:_a,] [:_a,} dt =
0

[
; arl]
a+1 2a

W, close to singular when a ~ 1.
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Example cont’d

Matlab:
>>a=1.25; A=1[-10; 0 -1*%xa]; B = [1; 1];

>>CM = [B A*B], rank(CM)
CM =
1.0000 -1.0000
1.0000 -1.2500
ans =
2
>> Wc = lyap(A,B*B")
We =
0.5000 0.4444
0.4444 0.4000

>> invWc = inv(Wc) 1
invie = Plot of [xl x2] W, % =1
162.0  -180.0 corresponds to the states we can reach by

-180.0 202.5 /000 |u(t)|2dt -1
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Observability - definition

The system

x(t) = Ax(¢)

y(1) = Cx(1)
is observable, if the initial state x(0) = xy € R” can be uniquely
determined by the output y(z), t € [0, #;].

The collection of vectors xy that cannot be distinguished from
x = 0 is called the unobservable subspace and is given by the
nullspace of the observability matrix

C
CA
0=
CAn—l
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Observability criteria

The following observability criteria for a system x(t) = Ax(¢),
y(t) = Cx(t) of order n are equivalent:

C
CA

(i) rank . =n
_CAn_l
(Al - A

(ii) rank C

] =n forall 1eC
If the system is stable, define the observability Gramian
W, = / A CTCe™ dr

0

For such systems there is a third equivalent statement:

(iii) The observability Gramian is non-singular
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Interpretation of observability Gramian

Let x(0) = xp. Then the state will move as
x(1) = e xg

Amount of energy in the output y = Cx:

|y(t)|?dt = x()CTCx(t)dt = x! A1 CTCeM g X0
0
0 0 0

Wo

The observability Gramian measures how easy it is to distinguish
an initial state from zero by observing the output.
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Computing the observability Gramian

The observability Gramian W,, = /0°0 eA"1CT CeAldt can be
computed by solving the Lyapunov equation

ATW, +W,A+CTC=0

(Matlab: Wo = lyap(A’,C’*C))
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Mini-problem

Two water tanks:

X1 =—x1 Y1 =X

Xo = —axp Y2 =axp

Is the water tank system with a = 1 observable?

What if only y; is available?

Automatic Control LTH, 2019 Lecture 6 FRTN10 Multivariable Control



Controllability/observability, multivariable poles/zeros

9 Multivariable poles and zeros
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Poles and zeros

X =Ax+ Bu
y=Cx+ Du

Y(s) = [C(sI - A)"'B+ D] U(s)

G(s)

For scalar systems,

@ the points p € C where G(p) = o are called poles
@ the points z € C where G(z) = 0 are called zeros
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Poles and zeros

For multivariable systems,

@ the points p € C where any G;;(p) = oo are called poles

@ the points z € C where G(z) loses rank are called
(transmission/multivariable) zeros
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Poles and zeros

For multivariable systems,

@ the points p € C where any G;;(p) = oo are called poles

@ the points z € C where G(z) loses rank are called
(transmission/multivariable) zeros

Example:

2 3

s+1 s+2

Gls) = [ 1 1 ]
s+1

St s+l

Poles: =2 and —1 (but what about their multiplicity?)

Zeros: 1 (but how to find them?)
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Pole and zero polynomials

@ The pole polynomial is the least common denominator of
all minors* of G(s).

@ The zero polynomial is the greatest common divisor of the
maximal minors of G(s), normalized to the have the pole
polynomial as denominator.

The poles of G are the roots of the pole polynomial.

The zeros of G are the roots of the zero polynomial.

* A minor of a matrix A is the determinant of some square submatrix,
obtained by removing zero or more of A’s rows and columns
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2 3

s+l s+2
Gis)=1|, 1

S+1 s+l
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Poles and zeros - example

2 3

s+1 s+2
Gis)=1|, 1

s+1 s+1

2 3 1 1 2 3 —(s-1)

Poles: Minors: =55, <355, =7 57 P A Cray s Rk yerpwn:y

The least common denominator is (s + 1)*(s + 2), giving the poles
—2 (with multiplicity 1) and —1 (with multiplicity 2)
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Poles and zeros - example

2 3
s+1 s+2
G(S) — S S
1 1
s+1 s+1
2 3 1 1 2 3 —(s-1)

Poles: Minors: =55, <355, =7 57 P A Cray s Rk yerpwn:y

The least common denominator is (s + 1)*(s + 2), giving the poles
—2 (with multiplicity 1) and —1 (with multiplicity 2)

—(s=1)
(s+1)2(s+2)

The greatest common divisor is s — 1, giving the (transmission)
zero 1 (with multiplicity 1)

Zeros: Maximal (2 x 2) minor: (already normalized)

(Matlab: tzero(G))
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Interpretation of poles and zeros

Poles:

@ A pole p is associated with the state response x(z) = xge”’

@ A pole pis an eigenvalue of A
Zeros:

@ A zero z means that an input u(t) = upe® is blocked
@ For a multivariable system, blocking occurs only in a certain
input direction

@ A zero describes how inputs and outputs couple to states

ugy
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Example: Ball in the Hoop

input w(

output 6
0+cO+ko=0w

The transfer function from w to 0 is m The zeroins =0
makes it impossible to control the stationary position of the ball.

@ Zeros are not affected by feedback!

Automatic Control LTH, 2019 Lecture 6 FRTN10 Multivariable Control



Example: Two water tanks

o) o)

X2
X1
| ‘l‘
us X1 up 2)62
X1 = —Xx1 +up V1 =x1+ U
Xo = =2x +up Y2 =2x0 + up

G(s) = [% 1] det G(s) = ———
= 1 (s+1)(s+2)

This system also has a zero in the origin! At stationarity y; = y;.
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Plot singular values of G(iw) vs frequency

Singular Values

» s=tf('s’)
» G=[1/(s+1) 1; 2/(s+2) 1]
» sigma(G); plot singular values

% Alt. for a certain frequency:

Singular Values (abs)

»w=1;
» A = evalfr(G,i*w);
» [U,5,V] = svd(A)

107

107* 107 10° 10' 10°
Frequency (rad/sec)

1
— 1
The largest singular value of G(iw) = [‘“’2“ 1] is fairly constant.

iw+2
This is due to the second input. The ﬁrsl,(tuinput makes it possible

to control the difference between the two tanks, but mainly near
w = 1 where the dynamics make a difference.
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Controllability/observability, multivariable poles/zeros

e Minimal realizations
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Minimal realization - definition

Given G(s), any state-space model (A, B, C, D) that is both
controllable and observable and has the same input-output
behavior as G(s) is called a minimal realization.

A transfer function with n poles (counting multiplicity) has a
minimal realization of order n.
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Realization in diagonal (modal) form

Consider a transfer function with partial fraction expansion

G(s)

This has the realization

pil
x(t) =
0
y(t) = [C

The rank of the matrix C;B; determines the necessary number of

n

_ Z%w

-1 S P
0 B
x(t) + u(t)
pnl B,

Cn] x(t) + Du(t)

rows in B;, columns in C;, and the multiplicity of the pole p;.

Automatic Control LTH, 2019
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Realization of multivariable system - example 1

To find a minimal realization for the system

2 3

s+1  s+2
G(s) = | X

s+l s+1

with poles in =2 and —1 (double), write the transfer matrix as

(e.g.)
i o o e o

giving the realization

-1 0 O 1 0
x=10 -1 O|x+1]0 1]|u
o 0 =2 0 1
(2 0 3
Y111 o]
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Realization of multivariable system - example 2

To find state space-realization for the system

1 2
G(S) — s-gl (s+1)l(s+3)
(s+2)(s+4) s+2
write the transfer matrix as
1 0 1 0
n e [0] [1 1] H [3 1] 0 [0 -1] 1 [-3 0]
s+1 s+1 s+3 + +
- s =3 ] s+1 s+2 s+3 s+4
This gives the realization
-1 0 0 0 1 1
. |0 =2 0 0 + 3 1
*E o -3 o|* "o -1|*
0 0 0 -4 -3 0
{10 10
YZlo 1 o 1]f
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Lecture 6 - summary

@ Gramians give quantitative answers to how controllable or
observable a system is in different state directions

@ Warning: They do not reveal some important
frequency-domain information (see next lecture)
@ A multivariable zero blocks input signals in a certain
direction

@ A zero in the origin makes it impossible to control the system
in stationarity

@ A minimal state-space realization describes the controllable
and observable subspace of a system
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