Lecture 10 — Optimal Control

> Introduction

> Static Optimization with Constraints
» The Maximum Principle

» Examples

Material

> Lecture slides
> References to Glad & Ljung, part of Chapter 18

» D. Liberzon, Calculus of Variations and Optimal Control Theory:
A concise Introduction, Princeton University Press, 2010 (linked
from course webpage)

Goal for Lecture 10-11

To be able to

> solve simple optimal control problems by hand
» formulate advanced problems for numerical solution

using the maximum principle

Optimal Control Problems

Idea: Formulate the design problem as optimization problem

+ Gives systematic design procedure

+ Can use on nonlinear models

+ Can capture limitations etc as constraints
Hard to find suitable criterium?!

— Can be hard to find the optimal controller

The beginning

» John Bernoulli: The brachistochrone problem 1696

Let a particle slide along a frictionless curve. Find the curve that
takes the particle from A to B in shortest time

g 2
Solutions will often be of “bang-bang” character if control signal is
- . B
bounded. (Compare to lecture on sliding mode controllers.) Y
Optimal Control
» The space race (Sputnik 1957)
Lo g(1—y), do _ usin®, W eosd > Putting satellites in orbit
2 ds ds . ) .
] ) ) o > Trajectory planning for interplanetary travel
Find y(z), with y(0) = 1 and y(1) = 0 given, that minimizes > Reentry into atmosphere
/ W » Minimum time problems
ng » Pontryagin’s maximum principle, 1956
» Dynamic programming, Bellman 1957
> Vitalization of a classical field

» Solved by John and James Bernoulli, Newton, I'Hospital
> Euler: Isoperimetric problems

» Example: The largest area covered by a curve of given length is a
circle [see also Dido/cow-skin/Carthage].

An example: Goddard’s Rocket Problem (1910)

How to send a rocket as high up in the air as possible?
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where u = motor force, D(v, h) = air resistance, m = mass.
Constraints
0 < u < umag, WL(tf) > my

Criterium
Maximize h(ty), ts given

Goddard’s Problem

Can you guess the solution when D(v, h) = 0?

Much harder when D(v, h) # 0
Can be optimal to have low v when air resistance is high. Burn fuel at

higher level.

Took about 50 years before a complete solution was found.

Read more about Goddard at http://www.nasa.gov/centers/goddard/




Optimal Control Problem. Constituents

Outline

Control signal u(t),0 <t < ty

Criterium h(t ).

Differential equations relating A(t) and u
Constraints on u

Constraints on z(0) and z(ts)

t can be fixed or a free variable

o Introduction
e Static Optimization with Constraints
o The Maximum Principle

o Examples

Preliminary: Static Optimization

Minimize g1 (z,u) over x € R" and u € R™ s.t. go(z,u) = 0.
(Assume go(z,u) =0 = 0go(z,u)/dx non-singular)

Lagrangian: L(z,u,\) = g1(z,u) + A ga(z,u)

Local minima of g1 (, u) constrained on ga(x, u) = 0 can be mapped
into critical points of £(z, u, \)

Necessary conditions for local minimum

oL oL oL
5—0 %—0 (5—572(30,71,)—0)

Sufficient condition for local minimum

Example - static optimization

Minimize
2, .2
g1(z1,22) = 27 + 25

with the constraint that

ga(z1,29) =21 22 —1=0

0L
—5 >0
Ou?
Level curves for constant g; and the constraint g2 = 0, repectively.
Outline Problem Formulation (1)

o Introduction
o Static Optimization with Constraints
e The Maximum Principle

o Examples

Trajectory cost Final cost

tf ——— ——

Minimize / L), ut) dt + p(a(ty)
0

where
2(t) € R, u(t) €U C R™
&(t) = f(z(t),u(®),  =(0) =m0
0<t<ty, ty given

Here we have a fixed end-time ¢ . This will be relaxed later on.

The Maximum Principle

Introduce the Hamiltonian
H(z,u,\) = L(z,u) + AT(¢) f (2, u).

and notation

HzfaHf(aH oH >

0 \Oxy Oxp T

Theorem 18.2 of Glad/Ljung
Assume that (1) has a solution {v*(t), z*(¢)}. Then

Eéi[l}H(x*(t),u, A(t)) = H(z*(t),u"(t), A(t)), 0<t<ty,

where \(t) solves the adjoint equation

% = —H (2"(8),u*(£), (1), with A(ty) = ¢y («" (1))

Remarks

Idea: note that every change of u(t) from the suggested optimal w*(t)
must lead to larger value of the criterium.

Should be called “minimum principle”

A(t) are called the adjoint variables or co-state variables




Proof Sketch

Optimal Control Problem

min J = min {W(tf)) + /t:f Lz, ) dt}

subject to
&= f(z,u), a(to) =m0

H(w,u,\) = L(z,u) + AT f(x, u) gives
J = $la(ts)) + /t:f (L(z,u) + AT (f — 2)) dt
= oGale) - Va] T+ [ (4 M) a

The second equality is obtained using "integration by parts”.

Proof Sketch Cont’d

Variation of J:

t c )
- K@_AT) M] +/f [(d—H-i—)\T) §x+a—H5u} it
ox =ty to Jdx ou

Necessary conditions for local minimum (§./ = 0)

-9

T— _
=3 AT =

At s)T -—
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> )\ specifiedatt =ty and z att =t
» Two Point Boundary Value Problem (TPBV)

. 2
> For sufficiency 24 > 0

oOH
a0

Remarks

The Maximum Principle gives necessary conditions

A pair (u*(-), z*(+)) is called extremal the conditions of the Maximum
Principle are satisfied. Many extremals can exist.

The maximum principle gives all possible candidates.

However, there might not exist a minimum!
Example

Minimize x(1) when &(t) = u(t), (0) = 0 and u(¢) is free

Why doesn’t there exist a minimum?

Outline

o Introduction

o Static Optimization with Constraints

o The Maximum Principle

o Examples

Example—Boat in Stream

Zo min — z1(T)
1 =v(x2) +uy
U(LZ). To = Uy
— 1‘1(0) =0
— 22(0) =0
- 1 uf+ud=1

Speed of water v(z2) in «; direction. Move maximum distance in
x1-direction in fixed time T’

Assume v linear so that v'(z2) = 1

Solution

Hamiltonian:

H=0+Xf= Pq >\2] {fl} = AM(v(22) +u1) + Aaug

Adjoint equation:
M| _ [-oH/0x | _ 0
Xo| | —0H/Oz2| |-V (z2)M
with boundary conditions

{Alcrq 4,{0¢/ax1u:w*uﬂ} B

AZ(T) 8¢/ax2‘x:z*(tf) B

This gives M (t) = =1, Xo(t)=t—T

-[4)
o]

Solution

Optimality: Control signal should solve

min ) )\1(1}(1‘2) + ul) + Aauo

21 02—
uituz=

Minimize Aju; + Agug so that (u1, ug) has length 1

u(t) = -y = 22
VRO + 240 N0+ 2300
w(®) = 1 Tt

e YT maoe

See fig 18.1 for plots

Remark: It can be shown that this optimal control problem has a minimum. Hence it
must be the one we found, since this was the only solution to MP

5 min exercise

Solve the optimal control problem

1
min/ utdt + (1)
0

T=—-x+u

z(0) =0




5 min exercise - solution

Compare with standard formulation:

trp=1 L=u* p=u fl@)=—z+u
Need to introduce one adjoint state
Hamiltonian:

H=L+)\T f=u4+ X~z +u)

Adjoint equation:

A OH L

it~ o N = A9=0e

_9 _ _ 1
At) =52 =1 — At =e

At optimality:

0= 91 _ 41
ou

= u(t) = f/*)\(t)/4 = \3/76@71)/4

Goddard’s Rocket Problem revisited

How to send a rocket as high up in the air as possible?

i (v) h

— | h]= mv

dt

m —Yu ‘ k
h

(v(0), R(0),m(0)) = (0,0,mp), g,y >0
u motor force, D = D(v, h) air resistance
Constraints: 0 < u < Upaz and m(ty) = my (empty)

Optimization criterion: maxt, ,, h(ty)

Problem Formulation (2)

t
min [ La(t).u(e) di+ o(ts.a(ty)
w:[0,tf]=U

#(t) = f(a(t),u), =(0)==z0
Y(tp,x(ty)) =0

Note the differences compared to standard form:

> t; free variable (i.e., not specified a priori)
» 7 end constraints

(i, (1))
(ty,x(ty)) = : =0
W (tr, 2(tr))
> time varying final penalty, ¢(ts, z(ty))

The Maximum Principle will be generalized in the next lecture!

Summary

o Introduction

o Static Optimization with Constraints

o Optimization with Dynamic Constraints
o The Maximum Principle

o Examples




