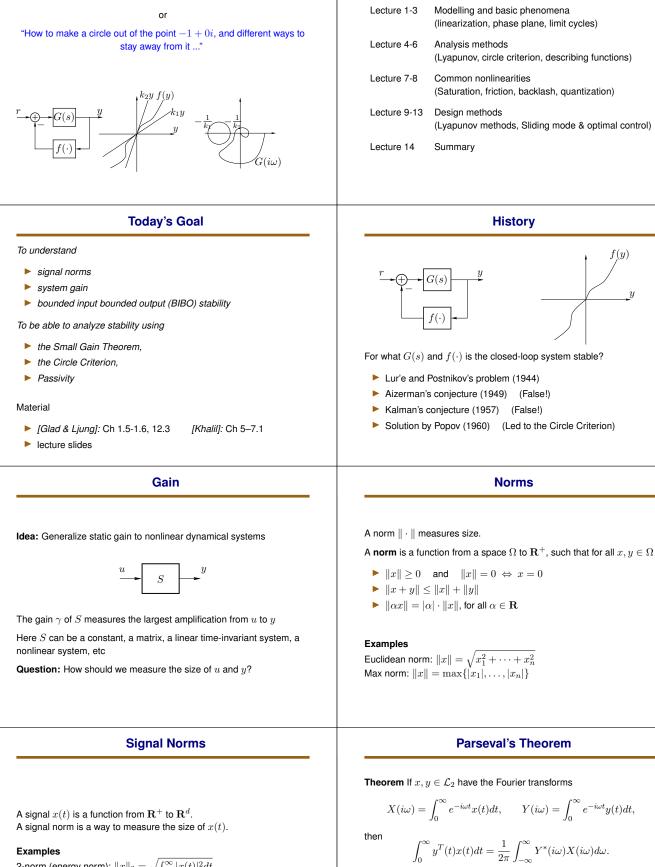
Lecture 5 — Input-output stability

Course Outline



2-norm (energy norm): $\|x\|_2=\sqrt{\int_0^\infty |x(t)|^2 dt}$ sup-norm: $\|x\|_\infty=\sup_{t\in {\bf R}^+} |x(t)|$

The space of signals with $||x||_2 < \infty$ is denoted \mathcal{L}_2 .

 $||x||_2 < \infty$ corresponds to bounded energy.

 $||x||_{2}^{2} = \int_{0}^{\infty} |x(t)|^{2} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(i\omega)|^{2} d\omega.$

In particular

S

A system S is a map between two signal spaces: $\boldsymbol{y}=S(\boldsymbol{u}).$

Example—Gain of a Stable Linear System

 $\text{ The gain of } S \text{ is defined as } \quad \gamma(S) = \sup_{u \in \mathcal{L}_2} \frac{\|y\|_2}{\|u\|_2} = \sup_{u \in \mathcal{L}_2} \frac{\|S(u)\|_2}{\|u\|_2}$

Example The gain of a static relation $y(t) = \alpha u(t)$ is

2 minute exercise: Show that $\gamma(S_1S_2) \leq \gamma(S_1)\gamma(S_2)$.

 S_2

$$\gamma(\alpha) = \sup_{u \in \mathcal{L}_2} \frac{\|\alpha u\|_2}{\|u\|_2} = \sup_{u \in \mathcal{L}_2} \frac{|\alpha| \|u\|_2}{\|u\|_2} = |\alpha|$$

 S_1

BIBO Stability

S is bounded-input bounded-output (BIBO) stable if $\gamma(S)<\infty.$

Example: If $\dot{x} = Ax$ is asymptotically stable then

 $G(s) = C(sI - A)^{-1}B + D$ is BIBO stable.

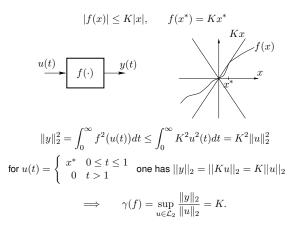
 $\gamma(S) = \sup_{u \in \mathcal{L}_2} \frac{\|y\|_2}{\|u\|_2}$

Proof: Assume $|G(i\omega)| \leq K$ for $\omega \in (0,\infty).$ Parseval's theorem gives

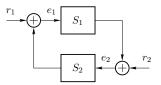
$$\begin{split} \|y\|_2^2 &= \frac{1}{2\pi} \int_{-\infty}^{\infty} |Y(i\omega)|^2 d\omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 \|u\|_2^2 \end{split}$$

This proves that $\gamma(G) \leq K.$ See [Khalil, Appendix C.10] for a proof of the equality.

Example—Gain of a Static Nonlinearity



The Small Gain Theorem



Theorem Assume $S_1 \mbox{ and } S_2$ are BIBO stable. If

 $\gamma(S_1)\gamma(S_2) < 1$

then the closed-loop map from (r_1, r_2) to (e_1, e_2) is BIBO stable.

Linear System with Static Nonlinear Feedback (1)

V.

Define $\|y\|_T = \sqrt{\int_0^T |y(t)|^2 dt}$. Then $\|\mathcal{S}(y)\|_T \le \|\mathcal{S}\| \cdot \|y\|_T$.

$$\begin{aligned} e_1 &= r_1 + \mathcal{S}_2(r_2 + \mathcal{S}_1(e_1)) \\ \|e_1\|_T &\leq \|r_1\|_T + \|\mathcal{S}_2\| \left(\|r_2\|_T + \|\mathcal{S}_1\| \cdot \|e_1\|_T \right) \\ \|e_1\|_T &\leq \frac{\|r_1\|_T + \|\mathcal{S}_2\| \cdot \|r_2\|_T}{1 - \|\mathcal{S}_1\| \cdot \|\mathcal{S}_2\|} \end{aligned}$$

Proof

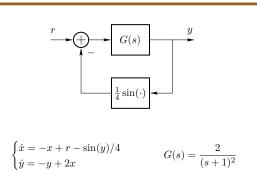
This shows bounded gain from (r_1, r_2) to e_1 . The gain to e_2 is bounded in the same way.

Definition

 $\gamma(G) = 2 \text{ and } \gamma(f) \leq K.$

The small gain theorem gives that $K \in [0, 1/2)$ implies BIBO stability.

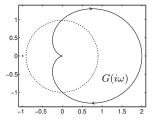
Example



The closed loop system is stable by the small gain theorem.

The Small Gain Theorem can be Conservative

Let f(y) = Ky for the previous system.



The Nyquist Theorem proves stability when $K \in [0, \infty)$. The Small Gain Theorem proves stability when $K \in [0, 1/2)$.

Other cases

G: stable system

- ▶ $0 < k_1 < k_2$: Stay outside circle
- $0 = k_1 < k_2$: Stay to the right of the line Re $s = -1/k_2$
- $k_1 < 0 < k_2$: Stay inside the circle

Other cases: Multiply f and G with -1.

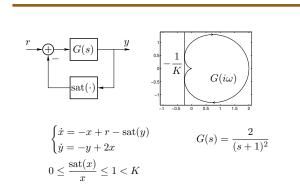
G: Unstable system

To be able to guarantee stability, $k_1 \mbox{ and } k_2 \mbox{ must have same sign}$ (otherwise unstable for k=0)

- $\blacktriangleright \ 0 < k_1 < k_2$: Encircle the circle p times counter-clockwise (if ω increasing)
- k₁ < k₂ < 0: Encircle the circle p times counter-clockwise (if ω increasing)

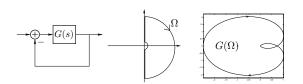
where p=number of open loop unstable poles

Example



The closed loop system is BIBO stable by the circle criterion.

The Nyquist Theorem



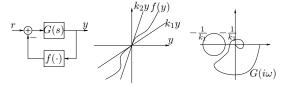
Theorem

If G(s) is stable, then the closed loop system $[1 + G(s)]^{-1}$ is stable if and only if the Nyquist curve does not encircle -1

The difference between the number of unstable poles in $[1+G(s)]^{-1}$ and the number of unstable poles in G(s) is equal to the number of times the point -1 is encircled by the Nyquist plot in the clockwise direction.

The Circle Criterion

Case 1:
$$0 < k_1 < k_2 < \infty$$

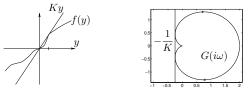


Theorem Consider a feedback loop with y = Gu and u = -f(y) + r. Assume G(s) is stable and that

$0 < k_1 \le \frac{f(y)}{y} \le k_2.$

If the Nyquist curve of G(s) does not intersect or encircle the circle defined by the points $-1/k_1$ and $-1/k_2$, then the closed-loop system is BIBO stable from r to y.

Linear System with Static Nonlinear Feedback (2)

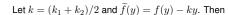


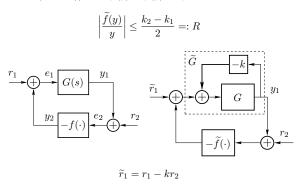
The "circle" is defined by $-1/k_1 = -\infty$ and $-1/k_2 = -1/K$.

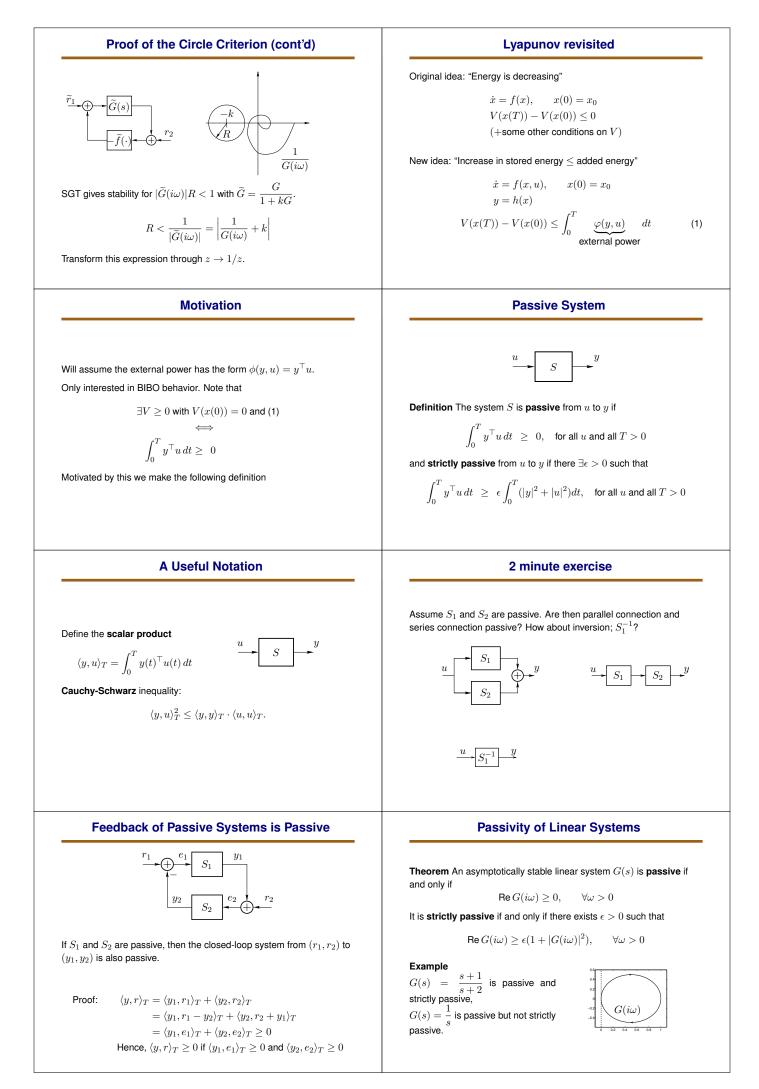
$\min \operatorname{Re} G(i\omega) = -1/4$

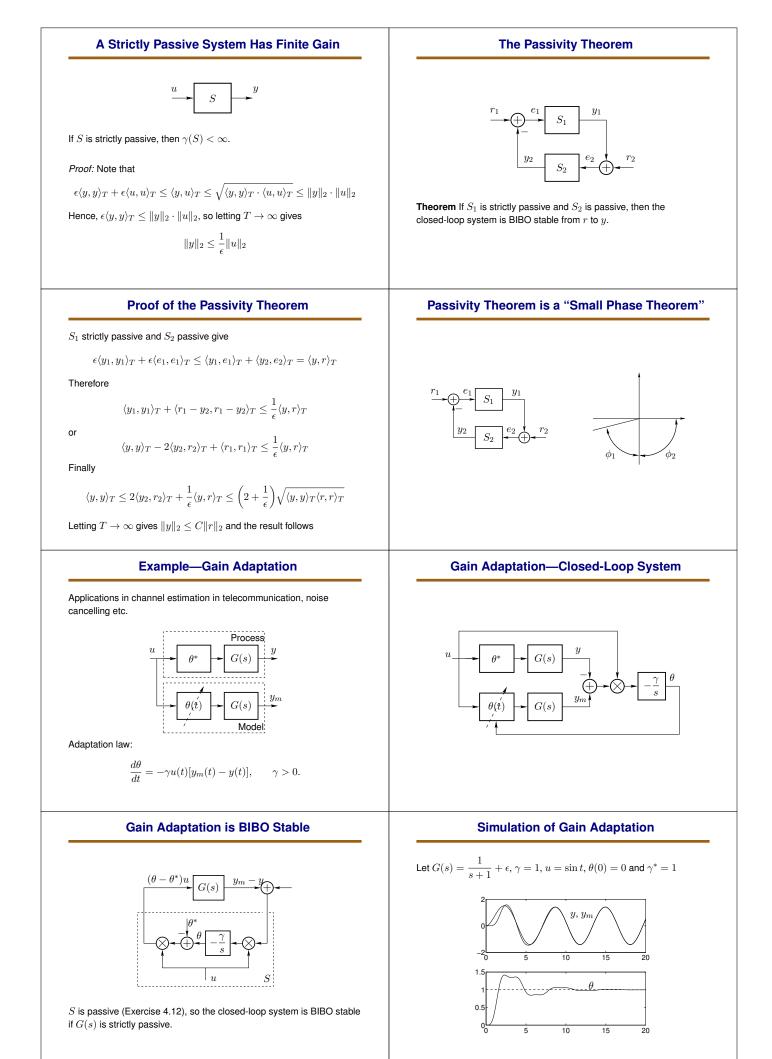
so the Circle Criterion gives that if $K \in [0,4)$ the system is BIBO stable.

Proof of the Circle Criterion









Storage Function

Consider the nonlinear control system

$$\dot{x} = f(x, u), \qquad y = h(x)$$

A storage function is a C^1 function $V : \mathbb{R}^n \to \mathbb{R}$ such that

 $\blacktriangleright V(0) = 0 \text{ and } V(x) \ge 0, \quad \forall x \neq 0$

$$\blacktriangleright \dot{V}(x) \le u^T y, \quad \forall x, u$$

Remark:

 $\blacktriangleright \ V(T)$ represents the stored energy in the system

$$\blacktriangleright \underbrace{V(x(T))}_{\text{stored energy at }t = T} \leq \underbrace{\int_{0}^{T} y(t)u(t)dt}_{\text{absorbed energy}} + \underbrace{V(x(0))}_{\text{stored energy at }t = 0}, \forall T > 0$$

Lyapunov vs. Passivity

Storage function is a generalization of Lyapunov function

Lyapunov idea: "Energy is decreasing"

 $\dot{V} \leq 0$

Passivity idea: "Increase in stored energy \leq Added energy"

 $\dot{V} \leq u^T y$

Next Lecture

Describing functions (analysis of oscillations)

Storage Function and Passivity

Lemma: If there exists a storage function \boldsymbol{V} for a system

$$\dot{x} = f(x, u), \qquad y = h(x)$$

with x(0) = 0, then the system is passive.

Proof: For all
$$T > 0$$
,
 $\langle y, u \rangle_T = \int_0^T y(t)u(t)dt \ge V(x(T)) - V(x(0)) = V(x(T)) \ge 0$

Example KYP Lemma

Consider an asymptotically stable linear system

$$\dot{x} = Ax + Bu, \ y = Cx$$

Assume there exists positive definite symmetric matrices $P,\,Q$ such that

$$A^TP + PA = -Q$$
, and $B^TP = C$

Consider $V = 0.5x^T P x$. Then

$$\dot{V} = 0.5(\dot{x}^T P x + x^T P \dot{x}) = 0.5x^T (A^T P + P A)x + u^T B^T P x$$

= $-0.5x^T Q x + u^T y < u^T y, \ x \neq 0$ (2)

and hence the system is strictly passive. This fact is part of the Kalman-Yakubovich-Popov lemma.