
Department of

AUTOMATIC CONTROL

Nonlinear Control and Servo Systems (FRTN05)

Exam - March 12, 2014, 8 am – 1 pm

Points and grades

All answers must include a clear motivation. The total number of points is 25. The
maximum number of points is specified for each subproblem. Most subproblems can
be solved independently of each other.

Preliminary grades:

3: 12− 16.5 points

4: 17− 21.5 points

5: 22− 25 points

Accepted aid

All course material, except for exercises and solutions to old exams, may be used as
well as standard mathematical tables and authorized “Formelsamling i reglerteknik”/’“Collection
of Formulae”. Pocket memoryless calculator.

Note!

In many cases the sub-problems can be solved independently of each other.

Good Luck!
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1. Consider the dynamical system

ÿ − 2 cos(ẏ) = −3y + 1

ż − 2 sin(z) = 0

a. Write it in state-space form. (1 p)

b. Verify that y = 1, z = 0 is an equilibrium, and classify it. (1 p)

Solution

a. We can choose the following states x1 = y, x2 = ẏ, x3 = z. Then, the dynamical
system satisfies

ẋ1 = x2

ẋ2 = 2cos(x2)− 3x1 + 1

ẋ3 = 2 sin(x3)

(1)

b. When y = 1, ÿ = ẏ = 0, and ż = z = 0, one has that

ÿ − 2 cos(ẏ) = 0− 2 cos(0) = −2 = −3y + 1

ż − 2 sin(z) = 0− 2 sin(0) = 0
,

so that the differential equations are satisfied. In order to classify the equilib-
rium, we linearize (1) around x∗ = (1, 0, 0). If f(x) = (f1(x), f2(x), f3(x))

T ,
where

f1(x) = x2 , f2(x) = 2 cos(x2)− 3x1 + 1 , f3(x) = 2 sin(x3) ,

then its Jacobian matrix ∂f
∂x

satisfies

∂f

∂x
(x∗) =













∂f1
∂x1

(x∗) ∂f1
∂x2

(x∗) ∂f1
∂x3

(x∗)

∂f2
∂x1

(x∗) ∂f2
∂x2

(x∗) ∂f2
∂x3

(x∗)

∂f3
∂x1

(x∗) ∂f3
∂x2

(x∗) ∂f3
∂x3

(x∗)













=













0 1 0

−3 −2 sin(0) 0

0 0 2













=













0 1 0

−3 0 0

0 0 2













,

whose eigenvalues are 3i, −3i, and 2. Hence, the equilibrium is unstable since
the Jacobian matrix has one eigenvalue with positive real part.
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2. Consider the non-linear controlled system

ẋ1 = −x2 − x31 + u1

ẋ2 = x51 + u2 .
(2)

a. Use exact feedback linearization to design a control law u1(x1, x2), u2(x1, x2)
making the origin (0, 0) a globally asymptotically stable equilibrium for (2).

(1 p)

b. Use the Lyapunov function candidate V (x1, x2) =
1
2(x1 − x∗1)

2 + 1
2(x2 − x∗2)

2,
where you are free to choose the parameters x∗1 and x∗2, in order to design a
feedback control law u1(x1, x2) u2(x1, x2) making the point (2, 1) a globally
asymptotically stable equilibrium for the controlled dynamical system (2).

(1 p)

Now, consider the uncontrolled system, i.e., the case where u1 = u2 = 0.

c. What conclusions does the linearisation method allow you to draw about the
local stability properties of the equilibrium (0, 0) for the uncontrolled system?

(1 p)

d. Show that (0, 0) is a globally asymptotically stable equilibrium for the uncon-
trolled system using the following Lyapunov function candidate

V (x1, x2) =
x61
6

+ α
x22
2

where you need to choose a proper value of the parameter α. (2 p)
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Solution

a. By cancelling all non-linearities with

u1(x1, x2) = x31 + x2 − k1x1, k1 > 0

u2(x1, x2) = −x51 − k2x2, k2 > 0

we receive the linear asymptotically stable system

ẋ1 = −k1x1

ẋ2 = −k2x2

b. We use the Lyapunov-function V (x1, x2) =
(x1 − 2)2 + (x2 − 1)2

2
.

V̇ (x1, x2) = (x1 − 2)(−x31 − x2 + u1) + (x2 − 1)(x51 + u2)

= −(x2 − 2)2 − (x1 − 1)2

for u1 = x31 + x2 − (x1 − 1) and u2 = −x51 − (x2 − 2). Then it holds, that

1. ∀(x1, x2) 6= (1, 2) : V (x1, x2) > 0

2. V (1, 2) = 0

3. ∀(x1, x2) 6= (1, 2) : V̇ (x1, x2) < 0

4. V (x1, x2) → ∞, ‖(x1, x2)‖2 → ∞

c. The Jacobian in (0, 0) is given by

(

0 −1

0 0

)

and has therefore all its eigenvalues in 0. Hence, we cannot make any conclusion
about its stability.

d.

V̇ = x51ẋ1 + αx2ẋ2

= −x81 + x51(αx2 − x2)

Hence, for α = 1 it follows that V̇ = −x81 ≤ 0 and therefore

1. ∀(x, y) 6= (0, 0) : V (x1, x2) > 0

2. V (0, 0) = 0

3. ∀(x1, x2) : V̇ (x1, x2) ≤ 0

4. V (x1, x2) → ∞, ‖(x1, x2)‖2 → ∞
The set of all points, such that V̇ = 0 is obviously given byM := {(x1, x2) : x =
0}. For (x1, x2) ∈ M \ {(0, 0)} it follows by the system dynamics, that ẋ1 6= 0.
Hence, {(0, 0)} is the largest invariant subset of M . By LaSalle’s theorem and
1. - 4. we can conclude global asymptotic stability of (0, 0).
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3. The following dynamical system, known as the Lotka-Volterra model, is used
to describe the dynamics of two populations of predators and preys:

ẋ = x(α− βy)

ẏ = −y(γ − δx),
(3)

where the two states x(t) and y(t) stand for the numbers of preys and predators,
respectively, while α, β, γ, and δ are positive scalar parameters.

a. Determine and classify (stable/unstable node, focus, saddle, or center point)
all equilibria of (3). (2 p)

b. Show that the function

V (x, y) = −δx+ γ log(x)− βy + α log(y)

is constant along trajectories of (3). (1 p)

c. Use the previous two points to determine the type of stability, or the instability,
of the equilibria of the dynamical system (3). (1 p)

Solution

a. There are two equilibria: (x10, y
1
0) = (0, 0) and (x20, y

2
0) =

(

γ

δ
,
α

β

)

.

The Jacobian in (xi0, y
i
0) can be derived as

J(xi0, y
i
0) =

(

α− βyi0 −βxi0
δyi0 δxi0 − γ

)

, i = 1, 2

which gives

J(x10, y
1
0) =

(

α 0

0 −γ

)

and J(x20, y
2
0) =

(

0 −βγ
δ

−αδ
β

0

)

Hence, (x10, y
1
0) is a saddle and (x20, y

2
0) is a center.

b. We have

V̇ = −δẋ+ γ
ẋ

x
− βẏ + α

ẏ

y

= −δx(α − βy) + γ(α − βy) + βy(γ − δx)− α(γ − δx)

= 0

c. Since (0, 0) is a saddle point, it follows the point is unstable. The point
(

γ
δ
, α
β

)

lies due to our assumptions strictly within the non-negative orthant. Hence,

by the result in b. it follows, that V (x, y) exists in neighbourhood of
(

γ
δ
, α
β

)

and is constant along trajectories. Moreover, the level sets of V enclose
(

γ
δ
, α
β

)

.

Consequently, the system is locally stable, but not asymptotically stable.
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To see, that V encloses
(

γ
δ
, α
β

)

consider W = −V , which is also constant

along trajectories. Then ∇W =

(

δ − γ
x

β − α
y

)

= 0 if and only if (x, y) = (x20, y
2
0).

Furthermore, Hess(x20, y
2
0) =

(

δ2

γ
0

0 β2

α

)

> 0, which shows, that (x20, y
2
0) is a

minimum of W .
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Figure 1 Candidate describing functions of Problem 4.

4.

a. The graphs of three different functions N1(A), N2(A), N3(A) are shown in Fig-
ure 1. Determine which graph corresponds to the static non-linearity whose
graph is shown in Figure 2. Motivate your answer. (1 p)

b. Derive an explicit expression for the describing function of the static non-
linearity whose graph is shown in Figure 2. (2 p)

c. Let the system in Figure 3 be given with G(s) =
10

(s+ 1)(s2 + s+ 1)
and f

as shown in Figure 2. The Nyquist plot of G(s) is shown in Figure 4. Use the
describing function method to predict the approximated frequency, amplitude
and stability of all possible limit cycles for the output y. You are allowed to
approximate the amplitude with the help of Figure 1. (2 p)
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Figure 2 Non-linearity in Problem 4.
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Figure 3 The system in Problem 4.c.
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Figure 4 The Nyquist plot of G(s) = 10
(s+1)(s+s2+1)

.
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Solution

a. The right answer is describing function N1(A), because for small amplitudes A
we get a liner behaviour, which implies, that N(A) is constant. After that the
describing function needs to decrease due to the zero-values of f .

b.

f(A sin(φ)) =

{

A sin(φ) φ ∈ [0, φ0) ∪ (π − φ0, π + φ0) ∪ (2π − φ0, 2π]

0 else

where φ0 = arcsin( 1
A
). Since f is odd, it follows, that a1 = 0. Let us now

determine

b1(A) =
1

π

∫ 2π

0
f(A sin(φ)) sin(φ)dφ

. If A ≤ 1 then f(A sin(φ)) = A sin(φ). In this case b1(A) = A. Otherwise,

b1(A) =
4A

π

∫ φ0

0
sin(φ)2dφ =

2

π

(

Aφ0 −
√

1− 1

A2

)

Hence, the describing function becomes

N(A) =
b1(A)

A
=











1 A ≤ 1

2

π

(

φ0 −
√

1

A2
− 1

A4

)

A > 1

c. Since G(s) =
10

(s+ 1)(s2 + s+ 1)
it follows, that

G(iω) =
10

(iω + 1)(−ω2 + iω + 1)

= 10

( −2ω2 + 1

|(iω + 1)(−ω2 + iω + 1)|2 + i
ω3 − 2ω

|(iω + 1)(−ω2 + iω + 1)|2
)

Hence, G(iω) intersects the real axis if and only if ω = 0 or ω =
√
2. However,

G(0) > 0 and therefore the frequency of a possible limit cycle can only be

ω =
√
2, which gives G(iω) = 10

−3

|(i
√
2 + 1)(i

√
2− 1)|2

= −10

3
.

Therefore, it is necessary that N(A) = 3
10 and we read of from Figure 1, that

the amplitude should be A ≈ 1.2. It is easy to see, that the limit cycle is stable.
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Figure 5 Nyquist plot for the linear system with transfer function G(s) =
3.4s

1 + s+ s2
.

5. The Nyquist plot of the linear system with transfer function G(s) =
3.4s

1 + s+ s2
is shown in Figure 5. This system is fed back with a SISO system u = S(y),
according to the block diagram below:

−

r y
G(s)

S

For which of the following three choices of the feedback system S

1 S is a static nonlinearity u(t) = f(y(t)) where f(y) = 1
2 sin(y) + y; (see

Figure 6)

2 S is linear system with transfer function GS(s) =
s

4s+ 4
;

3 S is a static nonlinearity u(t) = f(y(t)) where f is odd and has a graph
as in Figure 7;

can one determine stability of the closed-loop system using

a. the Small Gain Theorem? Please, specify the estimated gains. (2 p)

b. the Circle Criterion? Please, specify the estimated sector conditions for the
non-linearities. (2 p)

10



Nonlinear Control and Servo Systems, March 12, 2014
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Figure 6 Graph of the static nonlinearity f(y) = 1
2
sin(y) + y in Problem 5.
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Figure 7 Graph of the static nonlinearity 3 in Problem 5.

Solution

a. The gain of a linear system with transfer functionG(s) is given by supω>0 |G(iω)|.
In the case of the forward system in the problem, we easily get that γG < 4
by observing that, in Figure 5, there is a circle centered in 0 of radius r < 4
containing the Nyquist plot of G. Similarly, one easily gets a lower bound on
γG, e.g., γG ≥ 3. Then

3 ≤ γG ≤ r < 4 .

Alternatively (and much less straightforwardly), one could have studied the
real function 3.4ω√

(1−ω2)2+ω2
in order to find its maximum value.
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1 Recall that the gain of a static nonlinearity u = f(y) is given by supy 6=0
|f(y)|
|y| .

One has that | sin(y)| ≤ |y| so that

|f(y)| ≤ |1
2
sin(y) + y| ≤ |1

2
sin(y)|+ |y| ≤ 3/2|y| ,

which implies that γS ≤ 3/2. In fact,

lim
y→0

|f(y)|
|y| = lim

y→0

1
2 sin(y)

y
+ 1 =

1

2
cos(1) + 1 = 3/2 ,

so that γS = 3/2. Since
γSγG ≥ 9/2 > 1 ,

the Small Gain Theorem DOES NOT allow one to prove stability of the
feedback interconnection.

2 As discussed above, the gain of the linear system S with transfer function
GS(s) is given by

γS = sup
ω>0

|GS(iω)| = sup
ω>0

ω

4
√
1 + ω2

.

Now, since ω ≤
√
1 + ω2 for every ω, one gets that γS ≤ 1/4. (In fact,

one has that γS = 1/4 as can be checked by taking the limit as ω → +∞.
However, this is not needed here.) Then, one has that

γSγG ≤ 1

4
γG < 1 ,

so that the Small Gain Theorem ALLOWS one to prove stability of the
feedback interconnection.

3 As discussed in point a.1 above, the gain of the static nonlinearity u =

f(y) is given by supy 6=0
|f(y)|
|y| , which, for f as in Figure 7, equals the slope

of the ramp that can be easily checked to be 0.75 = 3/4. Then,

γSγG ≥ 9/4 > 1 ,

so that the Small Gain Theorem DOES NOT allow one to prove stability
of the feedback interconnection.

b. 1 Arguing as in point a.1, one gets that |f(u)| ≤ |12 sin(u)|+ |u| ≤ 3
2 |u|. (As

Figure 6 suggest, this is thigh since f ′(0) = 3/2.) On the other hand, one
can get a lower bound on |f(u)|/|u|, e.g., by noting that, since | sinu| ≤ |u|,
one has |f(u)| ≥ |u| − 1

2 | sinu| ≥ 1
2 |u|. This gives sector conditions

γ1|y| ≤ |f(y)| ≤ γ2|y| , γ1 =
1

2
, γ2 =

3

2
.

(One could have found a tighter value for γ1, but this is enough to serve
the purpose). Since the circle with diameter coinciding with the segment
from −1/γ1 = −2 to −1/γ2 = −2/3 is outside the Nyquist plot of G(s),
one gets that, in this case, the Circle Criterium ALLOWS one to prove
stability of the feedback interconnection.
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2 In this case the system S is not static, so that the Circle Criterium DOES
NOT ALLOW one to prove stability of the feedback interconnection.

3 Arguing as in point a.3 gives sector conditions

γ1|y| ≤ |f(y)| ≤ γ2|y| , γ1 = 0 , γ2 = 0.75 .

(In this case γ1 and γ2 are tight, though this is irrelevant for our purpose.)
Since the Nyquist plot lies coupletely on the righthand side of the line
{z : ℜ(z) = −1/γ2 = −4/3} in the complex plane, one gets that the Circle
Criterium ALLOWS one to prove stability of the feedback interconnection.
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6. Consider the following simplified model for an economy:

ẋ1 = −2x2 − u

ẋ2 = −3x2 + x1 + u ,

where x1 stands for the inflation rate, x2 for the unemployment rate, and
u for the interest rate. Assume that, given the current state x1(0) = 0.008,
x2(0) = 0.12, the central bank will set the interest rate u(t) during the time
interval 0 ≤ t ≤ 1 so as to minimize the cost

∫ 1

0
((1− α)x1(t) + αx2(t)) dt ,

under the constraint that

0 ≤ u ≤ umax , 0 ≤ t ≤ 1 ,

where 0 < α < 1 and umax > 0 are fixed parameters.

a. Write down the Hamiltonian for the optimal control problem above; (1 p)

b. Write down the co-state equations and their relative final time conditions;
(1.5 p)

c. Solve the equations in point b. (1 p)

d. Now, assuming that an optimal control u(t) exists for 0 ≤ t ≤ 1, determine it
for the following values of α (1.5 p)

1 α = 0.01;

2 α = 0.2;

3 α = 0.5.

(Hint: you may find it convenient to look at the graphs of the functions λ1(t)−
λ2(t) drawn in Figure 8.)

Solution

The optimal control problem can be rewritten in the standard form as

min

∫ tf

0
J (x(t), u(t)) dt+Φ(x(tf ))

ẋ = f(x, u) , x1(0) = x01 , x2(0) = x02
u(t) ∈ U ,

with

J(x, u) = (1− α)x1 + αx2 , Φ(x) = 0 , tf = 1 , U = [0, umax] ,

f1(x, u) = −2x2−u , f2(x, u) = −3x2+x1+u , x01 = 0.008 , x02 = 0.12 .

Since there is no final state constraint, and the the final time is given, we can
use the first formulation of the maximum principle.
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a. The Hamiltonian is given by

H(x1, x2, u, λ1, λ2) = J(x1, x2, u) + λ1
∂

∂x1
f1(x1, x2, u) + λ2

∂
∂x2

f2(x1, x2, u)

= (1− α)x1 + αx2 + λ1(−2x2 − u) + λ2(−3x2 + x1 + u)

= (λ2 + 1− α)x1 + (−2λ1 − 3λ2 + α)x2 + (λ2 − λ1)u

b. The co-state equations are given by

λ̇1 = − ∂

∂x1
H(x1, x2, u, λ1, λ2) = −λ2 + α− 1 ,

λ̇2 = − ∂

∂x2
H(x1, x2, u, λ1, λ2) = 2λ1 + 3λ2 − α ,

with final time conditions

λ1(1) =
∂

∂x1
Φ(x(1)) = 0 , λ2(1) =

∂

∂x2
Φ(x(1)) = 0 .

c. By combining the co-state equations one gets that

λ̇1 + λ̇2 = 2(λ1 + λ2)− 1 , λ1(1) + λ2(1) = 0 ,

so that

λ1(t) + λ2(t) =
1

2
− 1

2
e2(t−1) .

Similarly,

2λ̇1 + λ̇2 = 2λ1 + λ2 + α− 2 , 2λ1(1) + λ2(1) = 0 ,

so that
2λ1(t) + λ2(t) = (2− α)− (2− α)e(t−1) .

Hence, the co-state solutions are

λ1(t) = −α+
3

2
− (2− α)et−1 +

1

2
e2(t−1) , 0 ≤ t ≤ 1 ,

λ2(t) = −1 + α+ (2− α)et−1 − e2(t−1) , 0 ≤ t ≤ 1 .

ALT: Observe, that the co-state equations form a linear system λ̇ = Aλ+Bu

with e.g. A =

(

0 −1

2 3

)

, B =

(

α− 1

−α

)

and u = 1. The solution to the linear

system is given by

λ(t) = eAtλ(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ

In order to solve this differential equation, one can use the collection of formula
and notice, that the Laplace transform of eAt and

∫ t

0 e
A(t−τ)Bu(τ)dτ is given

by

(sI −A)−1 =
1

(s − 1)(s − 2)

(

s− 3 −1

2 s

)
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and

(sI −A)−1B
1

s
=

1

s(s− 1)(s − 2)

(

s(α− 1)− 2α+ 3

−sα+ 2α − 2

)

Again, with the help of the collection of formula we can inverse Laplace trans-
form them and get

eAt =

(

2et − e2t et − e2t

2e2t − 2et 2e2t − et

)

∫ t

0
eA(t−τ)Bu(τ)dτ =

( 1
2(e

t − 1)(2α + et − 3)

−(et − 1)(α + et − 1)

)

Hence, for t = 1, it follows, that

0 = λ(1) =

(

2e− e2 e− e2

2e2 − 2e 2e2 − e

)

λ(0) +

( 1
2(e− 1)(2α + e− 3)

−(e− 1)(α + e− 1)

)

which gives, that

λ1(0) = 0.5e−2 + e−1(α− 2)− α+ 3/2

and
λ2(0) = −e−2 + e−1(2− α) + α− 1

Plugging it in, gives the same result as before.

d. Observe that the only term of the Hamiltonian that depends on u is (λ2−λ1)u =
−(λ1 − λ2)u. It follows from the previous point that

λ1(t)− λ2(t) =
3

2
e2(t−1) − 2α+

5

2
− 2(2 − α)et−1 , 0 ≤ t ≤ 1 .

Using the plots in Figure 8,1 one gets that

1 For α = 0.01, one has that λ1(t) − λ2(t) < 0 for all 0 ≤ t < 1, so that
H(x1, x2, u, λ1, λ2) is minimized by u(t) = 0 for all t ∈ [0, 1].

2 For α = 0.2, one has that there exists t∗ ∈ (0, 1) such that λ1(t)−λ2(t) > 0
for all 0 ≤ t < t∗, and λ2(t) − λ1(t) < 0 for all t∗ < t < 1. Then,
H(x1, x2, u, λ1, λ2) is minimized by u(t) = umax for 0 ≤ t < t∗, and by
u(t) = 0 for all t∗ < t ≤ 1.

3 For α = 0.5, one has that λ1(t) − λ2(t) > 0 for all 0 ≤ t < 1, so that
H(x1, x2, u, λ1, λ2) is minimized by u(t) = umax for all t ∈ [0, 1].

1Note: because of a misprint, in the exam the plots in Figure 8 where incorrectly referred to as
the ones of λ2(t)−λ1(t) instead of λ1(t)−λ2(t). Correctly motivated solutions consistent with that
interpretation (that correspond to switching the roles of 0 and umax in the solution above) will of
course be considered CORRECT.
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Figure 8 Graph of the function λ1(t)− λ2(t) for α = 0.01, α = 0.2, and α = 0.5.
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