Lecture 7: Anti-windup and friction compensation

- ► Compensation for saturations (anti-windup)
- ▶ Friction models
- ▶ Friction compensation

Material

► Lecture slides

Course Outline

Lecture 1-3 Modelling and basic phenomena (linearization, phase plane, limit cycles)

Lecture 2-6 Analysis methods

(Lyapunov, circle criterion, describing functions)

Lecture 7-8 Common nonlinearities

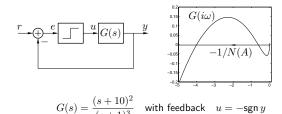
(Saturation friction backlash quantization)

(Saturation, friction, backlash, quantization)

Lecture 9-13 Design methods (Lyapunov methods, Sliding mode & optimal control)

Lecture 14 Summary

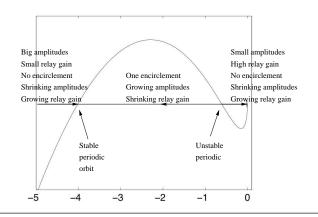
Last lecture: Stable periodic solution



gives one stable and one unstable limit cycle. The left most intersection corresponds to the stable one.

Periodic Solutions in Relay System

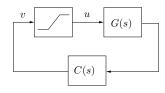
The relay gain N(A) is higher for small A:



Today's Goal

- ▶ To be able to design and analyze antiwindup schemes for
 - ▶ PIF
 - state-space systems
 - ▶ and Kalman filters (observers)
- ► To understand common models of friction
- ► To design and analyze friction compensation schemes

Windup - The Problem



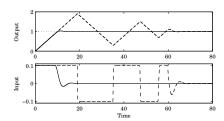
The feedback path is broken when \boldsymbol{u} saturates

The controller C(s) is a dynamic system

Problems when controller is unstable (or stable but not AS)

Example: I-part in PID-controller

Example-Windup in PID Controller



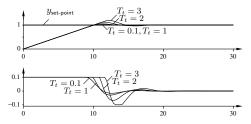
Dashed line: ordinary PID-controller Solid line: PID-controller with anti-windup

Anti-windup for PID-Controller ("Tracking")

Anti-windup (a) with actuator output available and (b) without



Choice of Tracking Time T_t

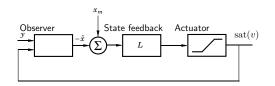


With very small T_t (large gain $1/T_t$), spurious errors can saturate the output, which leads to accidental reset of the integrator. Too large T_t gives too slow reaction (little effect).

The tracking time T_t is the design parameter of the anti-windup.

Common choices: $T_t = T_i$ or $T_t = \sqrt{T_i T_d}$.

State feedback with Observer



$$\dot{\hat{x}} = A\hat{x} + B \operatorname{sat}(v) + K(y - C\hat{x})$$

$$v = L(x_m - \hat{x})$$

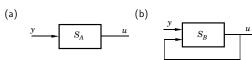
 \hat{x} is estimate of process state, x_m desired (model) state. Need model of saturation if $\mathrm{sat}(v)$ is not measurable

Antiwindup - General State-Space Controller

State-space controller:

$$\dot{x}_c(t) = Fx_c(t) + Gy(t)
u(t) = Cx_c(t) + Dy(t)$$

Windup possible if F is unstable and u saturates.



Idea:

Rewrite representation of control law from (a) to (b) such that:

- (a) and (b) have same input-output relation
- (b) behaves better when feedback loop is broken, if S_{B} stable

Antiwindup - General State-Space Controller

Mimic the observer-based controller:

$$\dot{x}_c = Fx_c + Gy + K \underbrace{\left(u - Cx_c - Dy\right)}_{=0}$$

$$= (F - KC)x_c + (G - KD)y + Ku$$

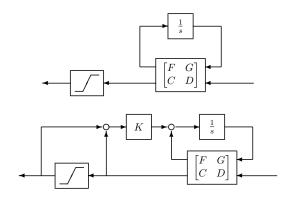
$$= F_0x_c + G_0y + Ku$$

Design so that $F_0 = F - KC$ has desired stable eigenvalues

Then use controller

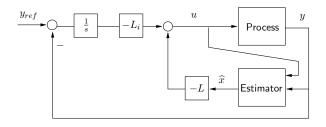
$$\begin{array}{rcl} \dot{x}_c & = & F_0 x_c + G_0 y + K u \\ u & = & \mathsf{sat} \; (C x_c + D y) \end{array}$$

State-space controller without and with anti-windup:



5 Minute Exercise

How would you do antiwindup for the following state-feedback controller with observer and integral action ?



Saturation

Optimal control theory (later)

Multi-loop Anti-windup (Cascaded systems):

Difficult problem, several suggested solutions

Turn off integrator in outer loop when inner loop saturates

Friction

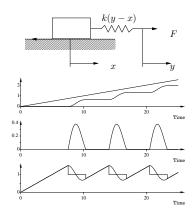
Present almost everywhere

- ► Often bad
 - ▶ Friction in valves and mechanical constructions
- Sometimes good
 - ► Friction in brakes
- ► Sometimes too small
 - ► Earthquakes

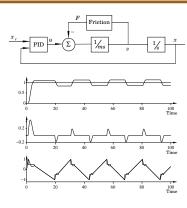
Problems

- ► How to model friction
- ▶ How to compensate for friction

Stick-slip Motion



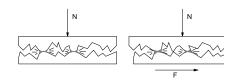
Position Control of Servo with Friction - Hunting

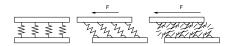


3 Minute Exercise

What are the signals in the previous plots? What model of friction has been used in the simulation?

Friction

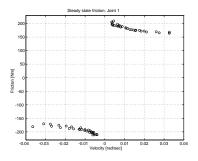




Sticking Friction Sticking Boundary lubrication Mixed lubrication Full fluid lubrication Velocity

Stribeck Effect

For low velocity: friction increases with decreasing velocity Stribeck (1902)



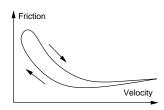
Frictional Lag

 $\label{eq:Dynamics} \mbox{Dynamics are important also outside sticking regime}$

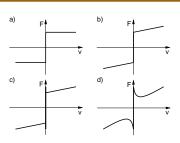
Hess and Soom (1990)

Experiment with unidirectional motion $v(t) = v_0 + a \sin(\omega t)$

Hysteresis effect!



Classical Friction Models



c)
$$F(t) = \left\{ \begin{array}{ll} F_c \ \text{sign} \ v(t) + F_v v(t) & v(t) \neq 0 \\ \max(\min(F_e(t), F_s), -F_s) & v(t) = 0 \end{array} \right.$$

$$F_e(t) = \text{ external applied force }, F_c, F_v, F_s \text{ constants}$$

Advanced Friction Models

See PhD-thesis by Henrik Olsson

- ► Karnopp model
- ► Armstrong's seven parameter model
- ▶ Dahl model
- ► Bristle model
- ► Reset integrator model
- ▶ Bliman and Sorine
- ► LuGre model (Lund-Grenoble)

Demands on a model

To be useful for control the model should be

- sufficiently accurate,
- ▶ suitable for simulation,
- ► simple, few parameters to determine.
- physical interpretations, insight

Pick the simplest model that does the job! If no stiction occurs the $v=0\mbox{-}\mathrm{models}$ are not needed.

Friction Compensation

- ► Lubrication
- ▶ Integral action (beware!)
- ► Dither
- ► Non-model based control
- ► Model based friction compensation
- ► Adaptive friction compensation

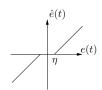
Integral Action

- The integral action compensates for any external disturbance
- ullet Good if friction force changes slowly ($v \approx {
 m constant}$).
- \bullet To get fast action when friction changes one must use much integral action (small $T_i)$
- Gives phase lag, may cause stability problems etc

Deadzone - Modified Integral Action

Modify integral part to $I = \frac{K}{T_i} \int_0^t \hat{e}(t) d\tau$

$$\text{where input to integrator } \hat{e} = \left\{ \begin{array}{ll} e(t) - \eta & e(t) > \eta \\ 0 & |e(t)| < \eta \\ e(t) + \eta & e(t) < -\eta \end{array} \right.$$

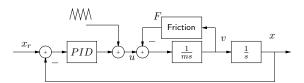


Advantage: Avoid that small static error introduces limit cycle

Disadvantage: Must accept small error (will not go to zero)

Mechanical Vibrator-Dither

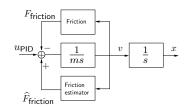
Avoids sticking at v=0 where there usually is high friction by adding high-frequency mechanical vibration (dither) $\,$



Cf., mechanical maze puzzle (labyrintspel)

Adaptive Friction Compensation

Coulomb Friction $F = a \operatorname{sgn}(v)$



 ${\sf Assumption:} \ v \ {\sf measurable.}$

Friction estimator:

$$\begin{array}{ccc} \dot{z} & = & ku_{\rm PID}\,{\rm sgn}(v) \\ & \widehat{a} & = & z - km|v| \\ \widehat{F}_{\rm friction} & = & \widehat{a}\,{\rm sgn}(v) \end{array}$$

Result: $e=a-\widehat{a}\to 0$ as $t\to \infty$,

since

$$\begin{split} \frac{de}{dt} &= \frac{d\hat{a}}{dt} = \frac{dz}{dt} - km\frac{d}{dt}|v| \\ &= ku_{\text{PID}}\operatorname{sgn}(v) - km\dot{v}\operatorname{sgn}(v) \\ &= k\operatorname{sgn}(v)(u_{\text{PID}} - m\dot{v}) \\ &= -k\operatorname{sgn}(v)(F - \hat{F}) \\ &= -k(a - \hat{a}) \\ &= -ke \end{split}$$

Remark: Careful with $\frac{d}{dt}|v|$ at v=0.

Velocity control with a) P-controller b) PI-controller c) P + Coulomb estimation Next Lecture Next Lecture Next Lecture

Tore Hägglund, Innovation Cup winner + patent 1997