
Sampling of Linear Systems

Real-Time Systems, Lecture 6

Martina Maggio

4 February 2020

Lund University, Department of Automatic Control

Lecture 6: Sampling of Linear Systems

[IFAC PB Ch. 1, Ch. 2, and Ch. 3 (to pg 23)]

• Effects of Sampling

• Sampling a Continuous-Time State-Space Model

• Difference Equations

• State-Space Models in Discrete Time

1

Textbook

The main text material for this part of the course is:

Wittenmark, Åström, Årzén: IFAC Professional Brief: Computer Control:

An Overview, (Educational Version 2016) (“IFAC PB”)

• Summary of the digital control parts of Åström and Wittenmark:

Computer Controlled Systems (1997)

• Some new material

Chapters 10 and 11 are not part of this course (but can be useful in other

courses, e.g., Predictive Control)

Chapters 7, 13 and 14 partly overlap with RTCS.

2

Sampled Control Theory

Process

u t( )

)

uk

y t(u t( )

yk

SamplerHold

Computer

uk

yk

tt

t

y t( )

t

D-A A-D

• System theory analogous to continuous-time linear systems

• Better control performance can be achieved (compared to

discretization of continuous-time design)

• Problems with aliasing, intersample behaviour

3

Sampling

AD-converter acts as sampler

Regular/periodic sampling:

• Constant sampling interval h

• Sampling instants: tk = kh

4

Hold Devices

Zero-Order Hold (ZOH) almost always used. DA-converter acts as hold

device ⇒ piecewise constant control signals

First-Order Hold (FOH):

• Signal between the conversions is a linear extrapolation

f(t) = f(kh) +
t− kh

h
(f(kh+ h)− f(kh)) kh ≤ t < kh+ h

• Advantages:

• Better reconstruction

• Continuous output signal

• Disadvantages:

• f(kh+ h) must be available at time kh

• More involved controller design

• Not supported by standard DA-converters

5



Hold Devices

0 5 10

−1

0

1

Z
e
r
o
 o

r
d

e
r
 h

o
ld

0 5 10

−1

0

1

F
ir

s
t
 o

r
d

e
r
 h

o
ld

Time

In IFAC PB there are quite a lot of results presented for the first-order

hold case. These are not part of this course.

6

Dynamic Effects of Sampling

Continuous time control Discrete time control

0 10 20

−0.2

0

0.2

O
u

tp
u

t

(a)

0 10 20

−0.2

0

0.2

M
e
a
su

re
d

 o
u

tp
u

t

0 10 20

−0.2

0

0.2

In
p

u
t

Time

0 10 20

−0.2

0

0.2

O
u

tp
u

t

(b)

0 10 20

−0.2

0

0.2

M
e
a
su

re
d

 o
u

tp
u

t

0 10 20

−0.2

0

0.2

In
p

u
t

Time

Sampling of high-frequency measurement noise may create new

frequencies! 7

Aliasing

0 5 10

−1

0

1

Time

• Sampling frequency [rad/s]: ωs = 2π/h

• Nyquist frequency [rad/s]: ωN = ωs/2

Frequencies above the Nyquist frequency are folded and appear as

low-frequency signals.

Calculation of “fundamental alias” for an original frequency ω1:

ω = |(ω1 + ωN) mod (ωs)− ωN |

8

Aliasing – Real World Example

Feed water heating in a ship boiler

Steam

Valve

Pressure

Pump

Feed
water

Condensed
water

To boiler

Temperature

2 min

38 min

T
e
m

p
e
ra

tu
re

2.11 min

Time

P
re

s
s
u

re

9

Prefiltering

Analog low-pass filter needed to remove high-frequency measurement

noise before sampling

Example:

0 10 20 30

−1

0

1
(a)

0 10 20 30

−1

0

1
(b)

0 10 20 30

−1

0

1

Time

(c)

0 10 20 30

−1

0

1

Time

(d)

(a), (c): f1 = 0.9 Hz, fN = 0.5 Hz ⇒ falias = 0.1 Hz

(b), (d): 6th order Bessel prefilter with bandwidth fB = 0.25 Hz

More on aliasing in Lecture 11. 10

Time Dependence in Sampled-Data Systems

A-D D-AComputer

Clock

  u   
y

s

(a)

0 10
0

1

O
u

tp
u

t

(b)

0 10
0

1

O
u

tp
u

t

0 10
0

1

O
u

tp
u

t

Time

0 10
0

1

O
u

tp
u

t

Time

11



Sample and Hold Approximation

A sampler in direct combination with a ZOH device gives an average

delay of h/2

12

Design Approaches for Computer Control

Control Design in Discrete Time

Control Design in Continuous Time .

Discretized Controller

Difference Equation

Software Algorithm

Discretized Process Model

Continuous−Time Process Model

13

Design Approaches for Computer Control

Control Design in Discrete Time

Control Design in Continuous Time 

Discretized Controller

Difference Equation

Software Algorithm

Discretized Process Model

Continuous−Time Process Model

Lecture 8

Lectures 6,7,9

14

Sampled Control Theory

Algorithm Process

Clock

A-D D-A

Computer

    y(t )    u(t)y(tk ){ }     u(t k){ }

Basic idea: Look at the sampling instances only

• Stroboscopic model

• Look upon the process from the computer’s point of view

15

Disk Drive Example

Control of the arm of a disk drive

G(s) =
k

Js2

Continuous time controller

U(s) =
bK

a
Uc(s)−K

s+ b

s+ a
Y (s)

Discrete time controller (continuous time design + discretization)

u(tk) = K

(
b

a
uc(tk)− y(tk) + x(tk)

)

x(tk+1) = x(tk) + h
(
(a− b)y(tk)− ax(tk)

)

(Continuous-time poles placed according to P (s) = s3 + 2ω0s
2 + 2ω2

0s+ ω3
0)

16

Disk Drive Example

uc := adin(1)

y := adin(2)

u := K*(b/a*uc-y+x)

daout(u)

x := x+h*((a-b)*y-a*x)

Algorithm

Clock

Sampling period h = 0.2/ω0

0 5 10
0

1

O
u

tp
u

t

0 5 10

−0.5

0

0.5

Time (ω0t)

In
p

u
t

17



Increased Sampling Period

(a) h = 0.5/ω0, (b) h = 1.08/ω0

0 5 10
0

1

(a)

O
u

tp
u

t

0 5 10
0

1

(b)

O
u

tp
u

t

0 5 10 15

−0.5

0

0.5

Time (ω0t)

In
p

u
t

0 5 10 15

−0.5

0

0.5

Time (ω0t)

In
p

u
t

18

Better Performance?

Deadbeat control (different design), h = 1.4/ω0,

u(tk) = t0uc(tk) + t1uc(tk−1)− s0y(tk)− s1y(tk−1)− r1u(tk−1)

0 5 10
0

1

P
o
si

ti
o
n

0 5 10

0

0.5

V
e
lo

ci
ty

0 5 10

−0.5

0

0.5

Time (ω0t)

In
p

u
t

19

Better Performance?

Deadbeat: The output reaches the reference value after n samples

(n = model order)

No counterpart in continuous time

However, long sampling periods also have problems

• Open loop between samples

• Sensitive to model errors

• Disturbance and reference changes that occur between samples will

remain undetected until the next sample

20

Sampling of Linear Systems

Look at the system from the point of view of the computer

D-A

Clock

System A-D
    {u(tk )}     y (tk ){ }    y(t)    u(t)

Zero-order-hold sampling

• Let the inputs be piecewise constant

• Look at the sampling points only

21

Continuous-Time System Model

Linear time-invariant system model in continuous time:





dx

dt
= Ax +Bu

y = Cx +Du

Solution (see basic course in control):

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−s)Bu(s)ds

y(t) = CeA(t−t0)x(t0) + C

∫ t

t0

eA(t−s)Bu(s)ds+Du(t)

Use this to derive a discrete-time model

22

Sampling a Continuous-Time System

Solve the system equation

dx(t)

dt
= Ax(t) +Bu(t)

from time tk to time t under the assumption that u is piecewise constant

(ZOH sampling)

x(t) = eA(t−tk)x(tk) +

∫ t

tk

eA(t−s′)Bu(s′) ds′

= eA(t−tk)x(tk) +

∫ t

tk

eA(t−s′) ds′ Bu(tk) (Bu(tk) const.)

= eA(t−tk)x(tk) +

∫ 0

t−tk

−eAs dsBu(tk) (var. change s = t− s′)

= eA(t−tk)x(tk) +

∫ t−tk

0

eAs dsBu(tk) (change int. limits)

= Φ(t, tk)x(tk) + Γ(t, tk)u(tk)

23



The General Case

x(tk+1) = Φ(tk+1, tk)x(tk) + Γ(tk+1, tk)u(tk)

y(tk) = Cx(tk) +Du(tk)

where

Φ(tk+1, tk) = eA(tk+1−tk)

Γ(tk+1, tk) =

∫ tk+1−tk

0

eAsds B

No assumption about periodic sampling

24

Periodic Sampling

Assume periodic sampling, i.e. tk = kh. Then

x(kh+ h) = Φx(kh) + Γu(kh)

y(kh) = Cx(kh) +Du(kh)

where

Φ = eAh

Γ =

∫ h

0

eAs dsB

NOTE: Time-invariant linear system!

No approximations

25

Example: Sampling of Double Integrator

dx

dt
=




0 1

0 0


x+




0

1


 u

y =

 1 0


x

Periodic sampling with interval h:

Φ = eAh = I +Ah+A2h2/2 + · · ·

=




1 0

0 1


+




0 h

0 0


 =




1 h

0 1




Γ =

∫ h

0




1 s

0 1






0

1


 ds =

∫ h

0




s

1


 ds =




h2

2
h




26

Calculating the Matrix Exponential

Pen and paper for small systems

Φ = L−1 (sI −A)−1

Matlab for large systems (numeric or symbolic calculations)

>> syms h

>> A = [0 1; 0 0];

>> expm(A*h)

ans =

[ 1, h]

[ 0, 1]

27

Calculating the Matrix Exponential

One can show that


Φ Γ

0 I


 = exp

(


A B

0 0


h

)

Simultaneous calculation of Φ and Γ

>> syms h

>> A = [0 1; 0 0];

>> B = [0; 1];

>> expm([A B;zeros(1,size(A,2)) 0]*h)

ans =

[ 1, h, 1/2*h^2]

[ 0, 1, h]

[ 0, 0, 1]

28

Sampling of System with Input Time Delay

dx

dt
= Ax(t) +Bu(t− τ)

u t( )

t

τ

kh − h kh kh + h     kh + 2h t

Delayed 
signal

29



Sampling of System with Input Time Delay

Input delay τ ≤ h (assumed to be constant)

dx(t)

dt
= Ax(t) +Bu(t− τ)

x(kh+ h)− Φx(kh) =

∫ kh+h

kh

eA(kh+h−s′)Bu(s′ − τ)ds′

=

∫ kh+τ

kh

eA(kh+h−s′)ds′ B u(kh− h) +

∫ kh+h

kh+τ

eA(kh+h−s′)ds′ B u(kh)

= eA(h−τ)

∫ τ

0

eAsdsB

︸ ︷︷ ︸
Γ1

u(kh− h) +

∫ h−τ

0

eAsdsB

︸ ︷︷ ︸
Γ0

u(kh)

x(kh+ h) = Φx(kh) + Γ1u(kh− h) + Γ0u(kh)

30

Sampling of System with Input Time Delay

Introduce a new state variable z(kh) = u(kh− h)

Sampled system in state-space form




x(kh+ h)

z(kh+ h)


 =




Φ Γ1

0 0






x(kh)

z(kh)


+




Γ0

I


u(kh)

The approach can be extended also for τ > h

• h < τ ≤ 2h ⇒ two extra state variables, etc.

Similar techniques can also be used to handle output delays and delays

that are internal in the plant.

In continuous-time delays mean infinite-dimensional systems. In

discrete-time the sampled system is a finite-dimensional system

⇒ easier to handle

31

Example – Double Integrator with Input Delay τ ≤ h

Φ = eAh =




1 h

0 1




Γ1 = eA(h−τ)

∫ τ

0

eAs dsB =




1 h− τ

0 1






τ2/2

τ


 =




hτ − τ2/2

τ




Γ0 =

∫ h−τ

0

eAs dsB =




(h− τ)2/2

h− τ




x(kh+ h) = Φx(kh) + Γ1u(kh− h) + Γ0u(kh)

32

Solution of the Discrete System Equation

x(1) = Φx(0) + Γu(0)

x(2) = Φx(1) + Γu(1)

= Φ2x(0) + ΦΓu(0) + Γu(1)

...

x(k) = Φkx(0) +
k−1∑

j=0

Φk−j−1Γu(j)

y(k) = CΦkx(0) +

k−1∑

j=0

CΦk−j−1Γu(j) +Du(k)

Two parts, one depending on the initial condition x(0) and one that is a

weighted sum of the inputs over the interval [0, k − 1]

33

Stability

Definition

The linear discrete-time system

x(k + 1) = Φx(k), x(0) = x0

is asymptotically stable if the solution x(k) satisfies ‖x(k)‖ → 0 as

k → ∞ for all x0 ∈ Rn.

Theorem

A discrete-time linear system is asymptotically stable if and only if

|λi(Φ)| < 1 for all i = 1, . . . , n.

34

The matrix Φ can, if it has distinct eigenvalues, be written in the form

Φ = U




λ1 ∗
. . .

0 λn


U−1. Hence Φk = U




λ1
k ∗

. . .

0 λn
k


U−1.

The diagonal elements are the eigenvalues of Φ.

Φk decays exponentially if and only if |λi(Φ)| < 1 for all i, i.e. if all the

eigenvalues of Φ are strictly inside the unit circle. This is the asymptotic

stability condition for discrete-time systems

If Φ has at least one eigenvalue outside the unit circle then the system is

unstable

If Φ has eigenvalues on the unit circle then the multiplicity of these

eigenvalues decides if the system is stable or unstable

Eigenvalues obtained from the characteristic equation

det(λI − Φ) = 0

35



Stability Regions

In continuous time the stability region is the complex left half plane, i.e,,

the system is asymptotically stable if all the poles are strictly in the left

half plane.

In discrete time the stability region is the unit circle.

36

The Sampling-Time Convention

In many cases we are only interested in the behaviour of the discrete-time

system and not so much how the discrete-time system has been obtained,

e.g., through ZOH-sampling of a continuous-time system.

For simplicity, then the sampling time is used as the time unit, h = 1,

and the discrete-time system can be described by

x(k + 1) = Φx(k) + Γu(k)

y(k) = Cx(k) +Du(k)

Hence, the argument of the signals is not time but instead the number of

sampling intervals.

This is known as the sampling-time convention.

37

Discrete-time systems may converge in finite time

Consider the discrete-time system

x(k + 1) =




0 1/2

0 0


 x(k)

We then have that

x(2) = 0

for all x(0). Thus, the system converges in finite time!

Φ has its eigenvalues in the origin ⇒ Deadbeat

Finite-time convergence is impossible for continuous-time linear systems.

Hence, the above system cannot have been obtained by sampling a

continuous-time system (However, it can be obtained through feedback

applied to a continuous-time system, see Lecture 9).

The possibility to have finite convergence (deadbeat) is one of the few

differences between discrete-time and continuous-time systems.

38

Pulse Response

0 5 10

0

0.2

0.4

0.6

0.8

1

u h

0 5 10

0

0.2

0.4

0.6

0.8

1

x(1) = Γ x(2) = ΦΓ x(3) = Φ2Γ . . .

h(1) = CΓ h(2) = CΦΓ h(3) = CΦ2Γ . . .

h(0) = D h(k) = CΦk−1Γ k = 1, 2, 3, . . .

(Continuous-time: h(t) = CeAtB +Dδ(t) t ≥ 0)

39

Convolution

Swedish: Faltning

Continuous time:

(h ∗ u)(t) =
∫ t

0

h(t− s)u(s)ds t ≥ 0

Discrete time:

(h ∗ u)(k) =
k∑

j=0

h(k − j)u(j) k = 0, 1, . . .

40

Solution to the System Equation

The solution to the system equation

y(k) = CΦkx(0) +

k−1∑

j=0

CΦk−j−1Γu(j) +Du(k)

can be written in terms of the pulse response

y(k) = CΦkx(0) + (h ∗ u)(k)

Two parts, one that depends on the initial conditions and one that is a

convolution between the pulse response and the input signal

41



Reachability

Continuous-time systems only have one reachability concept, whereas

discrete-time systems have two (consequence of deadbeat)

Definition

A discrete-time linear system is reachable if for any final state xf , it is

possible to find u(0), u(1), . . . , u(k − 1) which drive the system state

from x(0) = 0 to x(k) = xf for some finite value of k.

Theorem

The discrete-time linear system is reachable if and only if rank(R) = n

where

R =

Γ ΦΓ · · ·Φn−2Γ Φn−1Γ




is the reachability matrix and n is the order of the system.

(Corresponds to continuous-time controllability and reachability.)

42

Controllability

Definition

A discrete-time linear system is controllable if for any initial state x(0),

it is possible to find u(0), u(1), . . . , u(k − 1) so that x(k) = 0 for some

finite value of k.

If a system is reachable it is also controllable, but there are discrete-time

linear systems which are controllable but not reachable. One such

example is

x(k + 1) =




0 1/2

0 0


 x(k) +




1

0


 u(k)

Although R does not have full rank, u(k) = 0 yields x(2) = 0 no matter

which x(0).

A system is controllable if and only if all the eigenvalues of the

unreachable part of the system are at the origin

43

Stabilizability

Definition

A discrete-time linear system is stabilizable if the states of the system

can be driven asymptotically to the origin

Theorem

A discrete-time linear system is stabilizable if and only if all the

eigenvalues of its unreachable part are strictly inside the unit circle

Reachability ⇒ Controllability ⇒ Stabilizability

44

Observability (again two concepts)

Definition

A discrete-time linear system is observable if there is a finite k such

that knowledge about inputs u(0), u(1), . . . , u(k) and outputs

y(0), u(1), . . . , y(k) are sufficient for determining the initial state x(0)

Theorem

The discrete-time linear system is observable if and only if rank(O) = n

where

O =




C

CΦ
...

CΦn−1




is the observability matrix and n is the system order

(Corresponds to continuous-time observability and reconstructability.)

45

Reconstructability

Definition

A discrete-time linear system is reconstructable if there is a finite k

such that knowledge about inputs u(0), u(1), . . . , u(k) and outputs

y(0), y(1), . . . , y(k) are sufficient for determining the current state x(k)

Theorem

A system is reconstructable if and only if all the eigenvalues of the

nonobservable part are zero

A system that is observable is also reconstructable

46

Detectability

Definition

A system is detectable if the only unobservable states are such that

they decay to the origin, i.e., the corresponding eigenvalues are

asymptotically stable.

Observability ⇒ Reconstructability ⇒ Detectability

47



Duality

There is a duality betweeen the reachability and the observability

properties:

Reachable Observable

Controllable Reconstructable (in n steps)

Stabilizable Detectable (asymptotically)

We will return to these concepts in Lecture 9.

48

Kalman decomposition

In the same way as for continuous-time linear systems one can

decompose a system into (un)reachable and (un)observable subsystems,

using a state tranformation z = Tx

where

• Sro is reachable and observable

• Srō is reachable but not observable

• Sr̄o is not reachable but observable

• Sr̄ō is neither reachable nor observable

49

Difference Equations

Difference equation of order n:

y(k) + a1y(k − 1) + · · ·+ any(k − n) = b1u(k − 1) + · · ·+ bnu(k − n)

Differential equation of order n:

dny

dtn
+ a1

dn−1y

dtn−1
+ · · ·+ any = b1

dn−1u

dtn−1
+ · · ·+ bnu

50

From Difference Equation to Reachable Canonical Form

y(k) + a1y(k − 1) + · · ·+ any(k − n) = b1u(k − 1) + · · ·+ bnu(k − n)

Start with b1 = 1 and b2 = · · · = bn = 0 in difference equation above

Put k → k + 1, and y(k) = z(k):

z(k + 1) + a1z(k) + · · ·+ anz(k − n+ 1) = u(k)

x(k) = [ z(k) z(k − 1) . . . z(k − n+ 1) ]
T

gives

x(k + 1) =




z(k + 1)

z(k)

...

z(k − n+ 2)



=




−a1 −a2 . . . −an

1 0 . . . 0
. . .

...

1 0



x(k) +




1

0
...

0



u(k)

z(k) = [ 1 0 . . . 0 ]x(k)

51

Reachable Canonical Form

Let

y(k) = b1z(k) + b2z(k − 1) + · · ·+ bnz(k − n)

Then (think superposition!)

x(k + 1) =




−a1 −a2 . . . −an

1 0 . . . 0
. . .

...

1 0



x(k) +




1

0
...

0



u(k)

y(k) = [ b1 b2 . . . bn ]x(k)

which corresponds to

y(k) + a1y(k − 1) + · · ·+ any(k − n) = b1u(k − 1) + · · ·+ bnu(k − n)

52

State-Space Realizations

By choosing different state variables, different state-space models can be

derived which all describe the same input–output relation

A realization is minimal if the number of states is equal to n.

In the direct form the states are selected as the old values of y together

with the old values of u – non-minimal.

Some realizations have better numerical properties than others, see

Lecture 11.

53



Some useful Matlab commands

>> A = [0 1;0 0]

>> B = [0;1]

>> C = [1 0]

>> D = 0

>> contsys = ss(A,B,C,D)

>> h = 0.1

>> discsys = c2d(contsys,h) % ZOH sampling

>> pole(discsys)

>> impulse(discsys)

>> step(discsys)

54


