
Solutions to the exam in Real-Time Systems 190829

These solutions are available on WWW:

http://www.control.lth.se/course/FRTN01/

1.

a.

Φ(h) = eAh =
∑

k≥0

1

k!
Akhk = I + Ah =

[

1 h

0 1

]

Γ(h) =

∫ h

0

eAtB dt =

∫ h

0

[

t

1

]

dt =

[

t2/2

t

]∣

∣

∣

∣

∣

h

t=0

=

[

h2/2

h

]

x(k + 1) =

[

1 h

0 1

]

x(k) +

[

h2/2

h

]

u(k).

The system then becomes

x(k+ 1) =

[

1 2

0 1

]

x(k) +

[

2

2

]

u(k).

b. The continuous-time poles are in 0 and are mapped by the ZOH to two poles in

1. Those poles describe double integrator dynamics in both the time domains,

this is expected since the ZOH doesen’t alterate such dynamic zi = eh·si .

2.

a. In the original structure, C(z) is responsible for handling both set-point

changes and disturbances. This means that there is a trade off in the perfor-

mance. In the new structure, the problems have been separated. C(z) now

handles disturbances and Gm(z) and G f f (z) handles set-point changes. This

gives one more degree of freedom and therefore often better performance.

b.

Y (z) =
P(G f f (z) + C(z)Gm(z))

1+ P(z)C(z)
R(z).

3.

a. The cont. transfer function is given by

G (s) = C (sI − A)−1
B =

1

s2 + 6s+ 9
=

1

(s+ 3)2
.

So the poles are located in s = −3 and the system is stable.

b. With forward difference the approximation is given by H (z) = G (s′) with

s′ = z− 1.

H (z) =
1

(s′ + 3)2
=

1

(z− 1+ 3)2
=

1

(z+ 2)2
.

So the poles are located in z = −2, which is outside the unit circle, and the

discrete-time system is unstable. (Sample time h = 1)

1

c. With Tustin approximation we have that s′ =
2

h
·

z− 1

z+ 1
, with h = 1 we get:

H (z) = G
(

s′
)

=
1

(

2
z− 1

z+ 1
+ 3

)2
=

1
(

2
z− 1

z+ 1

)2

+ 6 · 2
z− 1

z+ 1
+ 9

=
(z+ 1)2

4 (z− 1)2 + 12 (z− 1) (z+ 1) + 9 (z+ 1)2

=
(z+ 1)2

4z2 − 8z+ 4+ 12z2 − 12+ 9z2 + 18z+ 9

=
(z+ 1)2

25z2 + 10z+ 1
=

1

25
·

(z+ 1)2

z2 +
10

25
z+

1

25

=
0.4 (z+ 1)2

z2 + 0.4z+ 0.04
=

0.4 (z+ 1)2

(z+ 0.2)2
.

So there is a zero at z = −1 and two poles at z = −0.2, which is within the

unit circle and hence the system is stable.

4.

a. A continuous-time double pole in s = −1 corresponds to a discrete-time double

pole in e−h = e−0.1, i.e., the desired closed loop characteristic polynomial

should be

(z− e−0.1)2 = z2 − 2e−0.1z+ e−0.2 = z2 + p1z+ p2.

With the linear feedback

u(k) = −l1x1(k) − l2x2(k)

the closed-loop system becomes

x(k+ 1) =









1− l1h2/2 h− l2h2/2

−l1h 1− l2h








x(k).

The characteristic polynomial of the closed-loop system is

z2 +

(

l1h2

2
+ l2h − 2

)

z+

(

l1h2

2
− l2h + 1

)

.

Comparing this with the desired characteristic polynomial leads to the follow-

ing linear equations for l1 and l2

h2l1

2
+ hl2 − 2 = p1

h2l1

2
− hl2 + 1 = p2

with the solution

l1 =
1

h2
(1+ p1 + p2) = 0.9056

l2 =
1

2h
(3+ p1 − p2) = 1.8580

.

2

b. The characteristic polynomial of the observer is given by

det(zI − Φ+ KC) = det









z− 1+ k1 −0.1

k2 z− 1









= z2 + (k1 − 2)z+ 1− k1 + 0.1k2

.

The desired characteristic polynomial is

(z− e−0.2)2 = z2 − 2e−0.2z+ e−0.4

Equating the coefficients we get

{

k1 − 2 = −2e−0.2

1− k1 + 0.1k2 = e−0.4

[K =


 0.3625 0.3286





T

.

c. The model and feedforward generator design is based is performed as follows.

In order to make sure that the states of the model are compatible with the

states of the process the following approach can be used. To begin with the

model can be chosen identical to the process, i.e.,

xm(k+ 1) = Φxm(k) + Γu f f (k)

ym(k) = Cxm(k)
. (1)

The dynamics of the model can then be modified by the linear control law

u f f (k) = −Lmxm(k) + lruc(k). (2)

The model dynamics is then given by

xm(k+ 1) = (Φ − ΓLm)xm(k) + Γlruc(k)

ym(k) = Cxm(k)
. (3)

Here, Lm is chosen to give the model the desired eigenvalues and lr is chosen

to give the model a static gain of 1. The feedforward control signal u f f (k) is

generated in such a way that it will give the desired behavior when used as

an input to the process.

The desired characteristic polynomial of the model is given by

(z− e−2h)2 = (z− e−0.2)2 = z2 − 2e−0.2z+ e−0.4

From the first sub-problem it follows that the coefficients of Lm should be

chosen as

l1 =
1

h2
(1+ p1 + p2) = 3.2859

l2 =
1

2h
(3+ p1 − p2) = 3.4611

Finally, lr is chosen to get the static gain 1. This is obtained by setting

lr =
1

C(I − Φ+ ΓLm)−1Γ
= 3.2

3

d. Both the observer and the process model should be updated in UpdateState.

Also in UpdateState pre-calculations can be done both for u and for u f f . This

leads to the following pseudo-code:

CalculateOutput:

Sample y and obtain uc

u f f = u f f + lruc

u = u+ u f f

Output u

Update State:

x̂ = Φ x̂+ Γu+ K(y− Cx̂)
xm = Φxm + Γu f f

u f f = −Lmxm

u = L(xm − x̂)

5.

a. Since 1 ≤ a < 2, only one bit is needed to represent the integer part and

8−1−1 = 6 bits are left for the fractional part. The fixed point representation

of a is round(1.35 · 26) = 86.

b. In the following code, the result of the multiplication is saved in a temporary

variable, which has type int16_t. The value is then saturated to handle

overflows and underflows and finally casted into its corresponding int8_t

value.

#include <inttypes.h>

// Insert in the next two lines the

// results from the first subproblem

#define n 6

#define a 86

int8_t x, b;

// define more variables if needed

int16_t temporary;

// assume b is initialized to a value (you don’t need to write

// the code for the initialization of b)

// write the code to compute x

temporary = ((int16_t) a*b) >> n;

if (temporary > 127)

temporary = 127;

else if (temporary < -128)

temporary = -128;

x = (int8_t) temporary;

6.

a. Denoting the control task execution time with x it is possible to compute the

utilization as

U =
x

4
+

4

12
+

9

20

4

where 20 is the period of the user interaction tasks in milliseconds obtained as

1000/50. For schedulability the utilization should be less than 1 and imposing

the conditions above gives x < 0.867 milliseconds.

b. As stated above, the task set is schedulable using EDF. For monotonic priority

assignments, a sufficient schedulability criterion is if the utilization satisfies

the condition
i=n
∑

i=1

≤ n(21/n − 1).

But the utilization for the given task set is

i=n
∑

i=1

= 0.5/4+ 4/12+ 9/20 = 0.9083 ≥ 3(21/3 − 1) (0.78

and we can not conclude that the tasks are schedulable. We instead turn to

the exact analysis, where the response time for process i can be calculated

from iteration of the equation

Ri = Ci +
∑

j∈hp(i)

⌈

Ri

Tj

⌉

C j.

The highest priority task is the control task, which will trivially have a

response time which we denote R1 = C1 = x = 0.5 ms. For the medium

priority reference generator we get, with initial guess R0
2 = C2 = 4:

R1
2 = C2 +

⌈

R0
2

T1

⌉

C1 = 4+

⌈

4

4

⌉

0.5 = 4.5

R2
2 = C2 +

⌈

R1
2

T1

⌉

C1 = 4+

⌈

4.5

4

⌉

0.5 = 5.0

R3
2 = C2 +

⌈

R2
2

T1

⌉

C1 = 4+

⌈

5.0

4

⌉

0.5 = 5.0

which gives R2 = 5.0 ms. For the user I/O task, with initial guess R0
3 = C3 = 9

we get

R1
3 = C3 +

⌈

R0
3

T1

⌉

C1 +

⌈

R0
3

T2

⌉

C2 = 9+

⌈

9

4

⌉

0.5+

⌈

9

12

⌉

4 = 14.5

R2
3 = C3 +

⌈

R1
3

T1

⌉

C1 +

⌈

R1
3

T2

⌉

C2 = 9+

⌈

14.5

4

⌉

0.5+

⌈

14.5

12

⌉

4 = 19

R3
3 = C3 +

⌈

R2
3

T1

⌉

C1 +

⌈

R2
3

T2

⌉

C2 = 9+

⌈

19

4

⌉

0.5+

⌈

19

12

⌉

4 = 19.5

R4
3 = C3 +

⌈

R3
3

T1

⌉

C1 +

⌈

R3
3

T2

⌉

C2 = 9+

⌈

19.5

4

⌉

0.5+

⌈

19.5

12

⌉

4 = 19.5

which gives R3 = 19.5 ms. All tasks will therefore meet their deadlines.

7.

5

Red

T1

Green

T2

Orange

T3

Traffic Light A

Red

T1

Green

T2

Orange

T3

Traffic Light B

(a) Before A.T3 firing

Red

T1

Green

T2

Orange

T3

Traffic Light A

Red

T1

Green

T2

Orange

T3

Traffic Light B

(b) After A.T3 firing

Figure 1 Illustration of the unboundedness of the suggested solution.

Red

T1

Green

T2

Orange

T3

Traffic Light A

Red

T1

Green

T2

Orange

T3

Traffic Light B

(a) Before A.T1 and B.T1 firing

Red

T1

Green

T2

Orange

T3

Traffic Light A

Red

T1

Green

T2

Orange

T3

Traffic Light B

(b) After A.T1 and B.T1 firing

Figure 2 Illustration of the lack of mutual exclusion of the suggested solution.

a. The suggested solution is indeed unbounded. Every time traffic light A fire

transition T3 a new token will appear in B.Red, even though it might already

have one there. See Fig. 1.

The suggested solution is clearly not mutually exclusive since there is nothing

preventing it from firing both A.T1 and B.T1 simultaneously, see Fig 2.

b. To solve all problems all one needs to do is to add a semaphore that is shared

between the two traffic lights. The extended solution can be seen in Fig. 3.

8 a. The output will be

Output 1 = 7

Output 2 = 3

Output 3 = 9

b. a is a local variable which is assigned the value 7 in the main method. The

fact that a is passed as an argument to myMethod will not change its value,

since Java uses call-by-value when simple data types are used as method

arguments. ref1 is a reference to a MyClass object, which is then passed

as an argument to the method myMethod. Since Java uses call-by-reference

6

Red

T1

Green

T2

Orange

T3

Traffic Light A

Red

T1

Green

T2

Orange

T3

Traffic Light B

Sempahore

Figure 3 Solution that ensures both boundedness and mutual exclusion between the green

lights.

when passing objects as arguments to methods the assignment obj.a = 3

will be performed on the object referenced by ref1 (actually Java uses call-by

value also in this case since it is a reference that is the argument to the

method). Since b is declared as static all instances of MyClass will share this

attribute. Hence, the assignment obj.b = 9 in myMethod will effect also the

object referenced by ref2.

7

