
Solutions to the exam in Real-Time Systems 180411

These solutions are available on WWW:
http://www.control.lth.se/course/FRTN01/

1.

a. The reachability matrix WC =
 Γ ΦΓ

 is

WC =

 1 −2
0 0


which has not full rank (since the second column vector is a scalar multiple
of the first column vector), i.e., the system is not reachable and the open loop
system has a pole in 0.5 that cannot be modified by the control signal.

b. However, since our objective is to place both poles in 0.5 it is indeed possible
to do this using state feedback.
The closed loop system becomes

x(k+ 1) = (Φ − ΓL)x(k) + Γlryref (k)

=

−2− l1 3− l2
0 0.5

 x(k)

The characteristic polynomial of the closed loop system becomes

(z+ (2+ l1))(z− 0.5)

which is should be equal to

(z− 0.5)(z− 0.5)

From this follows that l1 = −2.5 and l2 could have any value, e.g., 0.
In order to have unit static gain (Hyyref = 1), lr should be chosen as

lr =
1

C(I − Φ+ ΓL)−1Γ
= 0.5

2.

a. The CPU utilization, U = 2/4+ 1/3 = 0.833

b. Since the deadlines are different from the periods and we are using EDF the
only possibility to determine the scheduability (that is part of the course) is
to draw the schedule over one hyperperiod and to check that all deadlines are
met. The hyperperiod is lcm(4, 3) = 12 and the schedule is shown in Figure
1. As can be seen from the schedule all deadlines are met and, hence, the
taskset is schedulable.

3.
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Figure 1 Solution to Problem ??. The down arrows indicate job arrivals and the up arrows
indicate job deadlines.

a. The continuous time transfer function G(s) can be found as

G(s) = C (sI − A)−1 B = 1
s(s+ 1)

.

Using the table from the formula sheet, the pulse transfer function H(z) is
determined as

H(z) =
e−1z+

(
1− 2e−1)

z2 − (1+ e−1) z+ e−1 .

The zero is determined from the nominator of H(z), i.e. zz = 2 − e =
−0.718. The poles are determined from the denominator of H(z), i.e. zp =
1+ e−1

2
±

1− e−1

2
, giving zp = 1 and zp = e−1 = 0.368. Since one of the

poles is precisely on the unit circle, the system is stable but not asymptotically
stable.

b. From H(z) one can derive the following expression.

y(k+ 2) −
(
1+ e−1) y(k+ 1) + e−1y(k) = e−1u(k+ 1) +

(
1− 2e−1)u(k)

4.

a. Replacing s with z− 1
h

in G(s) = s2 + 2s+ 100
s2 + 20s+ 100

gives the following expres-
sion for H(z).

H(z) = z2 + (2h− 2)z+ 1− 2h+ 100h2

z2 + (20h− 2)z+ 1− 20h+ 100h2

Checking the asymptotic stability conditions

1− 20h+ 100h2 < 1
1− 20h+ 100h2 > −1+ 20h− 2
1− 20h+ 100h2 > −1− 20h+ 2

gives

20h(5h− 1) < 0
h2 − 0.4h+ 0.04 > 0
h2 > 0
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leading to the following inequalities

h < 1/5
h ,= 1/5
h ,= 0

The solution is thus 0 < h < 1/5, with the discretized filter

H(z) = z2 + (2h− 2)z+ 1− 2h+ 100h2

z2 + (20h− 2)z+ 1− 20h+ 100h2 .

b. The distorted frequency ω1 is given by (see page 43 in the Computer Control
text book),

ω1 =
2
h
tan−1

(
ωdh

2

)
,

which (when substituting h = 0.2s) gives ω1 = 10tan−1(1) = 5π
2 rad/s ( 7.85

rad/s.

5. The error is in the take() method. The synchronized block is around a too
small part of the code. This may result in that, if two consecutive calls to
take() are made, the “wrong” thread may end up as owner of the semaphore.
To fix the problem, put the two lines next to the right bracket inside the
synchronized block.

6. This problem was incorrectly formulated. The taskset, in fact, is not schedula-
ble, so no schedule can be generated. We have taken that into account in the
correction.

a. The schedule lenght is the least common multiplier between the periods of
the tasks, LCM(3, 6, 9) = 18.

b. The taskset is not schedulable, so a non-preemptive schedule cannot be gener-
ated. An example of non-preemptive schedule would have been the following,
where A misses its deadline in the last activation period.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

AAAAA

BBBBBBBBB

CCCC

If we disregard the missed period, the worst case response time for Task A
would be equal to 3 (both at time 15 and at time 12). The worst case response
time for task B is equal to 6 (at time 18) and the worst case response time
for task C is 7 (at time 7).

c. The pseudo-code for the dispatcher of the three tasks that uses the scheduler
above is the following. Notice the time increment and the wait until.
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CurrentTime(t);

LOOP

A();

IncTime(t, 1);

WaitUntil(t);

B();

IncTime(t, 3);

WaitUntil(t);

A();

IncTime(t, 1);

WaitUntil(t);

C();

IncTime(t, 2);

WaitUntil(t);

A();

IncTime(t, 1);

WaitUntil(t);

B();

IncTime(t, 3);

WaitUntil(t);

A();

IncTime(t, 1);

WaitUntil(t);

C();

IncTime(t, 2);

WaitUntil(t);

A();

IncTime(t, 1);

WaitUntil(t);

B();

IncTime(t, 3);

WaitUntil(t);

END;

7.

a. In fixed-point representation, a coefficient k should be stored as an integer
K = round(k · 2N), where the integer N is the number of fractional bits.
8-bit integers can store values in the range [−128, 127], and the largest
magnitude among the coefficients is 3.262. In order to represent the integer
part of this we need two bits. That means that 8 − 1 − 2 = 5 bits should be
used for the fractional part in order to get maximal resolution.
The controller coefficients become

A = round(0.8967 · 25) = 29
B = round(0.2332 · 25) = 7
C = round(−3.262 · 25) = −104
D = round(−0.8484 · 25) = −27

b. #define A 29
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#define B 7

#define C -104

#define D -27

#define N 5

int8_t y,x,u;

int16_t x16 = 0, u16 = 0;

...

y = readInput();

/* Calculate output */

u16 = u16 + ((int16_t)D*(int16_t)y) + (1 << N-1) >> N; /* add D*y */

/* check for saturation */

if (u16 > 127) {

u = 127;

} else if (u16 < -128) {

u = -128;

} else {

u = u16;

}

writeOutput(u);

/* Update state */

x16 = (((int16_t)A*(int16_t)x + (int16_t)B*(int16_t)y) + (1 << N-1)) >> N;

/* check for saturation */

if (x16 > 127) {

x = 127;

} else if (x16 < -128) {

x = -128;

} else {

x = x16;

}

u16 = (((int16_t)C*(int16_t)x) + (1 << N-1)) >> N;

8. A possible solution is shown in Figure 2.

new person
enters queue

people in 
queue

space left 
in pool

people
in pool

person 
enters pool 

person 
leaves pool

person ready to 
enter the queue

Figure 2 Solution for problem 8.
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9.

a. By looking at the step response we see that B has a stationary error while
A does not. This means that only one of the controllers should have an
integrator. Indeed, looking at HC2(z) we see that it contains (z − 1) in the
denominator. Therefore we know that A correspond to HC2 and B to HC1.

b. By looking at the two step responses we see that C has a “ringing” control
signal. This implies that the model corresponding to that one does not include
the undamped process zero found at z = 0.95. We see that for step response
D there is no ringing signal, implying that the undamped process zero is
included in the model.
Looking at the two models, we see that Hm2(z) include the undamped process
zero. Hence, Hm1 correspond to C and Hm2 correspond to D.

10.

a. The first thing one should realize by inspecting the code is that the two
controllers are running with different sampling periods. The controller for
the first plant, P1(s), has a sampling period of h1 = h = 0.05 seconds, while
the second controller for P2(s) has a sampling period of h2 = 2 · h = 0.1
seconds.
When doing the stability analysis and discretizing the plants using ZOH we
therefore have the following discretized plants:

H1(z) =
1− e−h1

z− e−h1
, H2(z) =

1− e−10h2

z− e−10h2
.

We should then also notice that both controllers are simple P-controllers with
gains K1 = 10 and K2 = 20.
We can now derive the closed loop transfer functions for the two plants and
controllers. The first one is given by

Hcl1(z) =
K1H1(z)

1+ K1H1(z)
=

K1 · (1− e−h1)

z− e−h1 + K1 · (1− e−h1)

implying that the pole is located at

z1 = e−h1 − K1 · (1− e−h1) ( 0.46

which is stable.
Similariliy, the pole for the second system is given by

z2 = e−10h2 − K2 · (1− e−10h2) ( −12.27

which is outside the unit circle, implying that the closed loop is unstable!

b. To remedy the problem of the second closed-loop being unstable it is tempting
to change the sampling period of that node by removing the if-statement.
However, this would move the pole of the second closed-loop system to

z′2 = e−10h2/2 − K2 · (1− e−10h2/2) ( −7.26
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which does not solve the problem.
A different way to move the close-loop pole of the unstable system would be
to change the controller gain K2. In fact, a controller gain of 1 would be
sufficient to stabilize the plant since the pole will then be located in

z′′2 = e−10h2 − (1− e−10h2) ( −0.26.
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