
Solutions to the exam in Real-Time Systems 2016-05-12

1 a. Since the delay τ = 30 is an integer multiple of the sampling interval h = 1,
it will translate into a backward shift of τ/h = 30 samples in the discrete-
time system.

Sampling the non-delayed part of the system using Table 3 in IFAC PB, we

obtain

H ′(z) =
1.1(1− e−0.1)z+ e−0.1(e−0.1 − 0.9)

(z− e−0.1)2
=
0.004679z+ 0.004377

z2 − 1.81z+ 0.8187

Including the delay we have

H(z) =
0.004679z+ 0.004377

(z2 − 1.81z+ 0.8187)z30

b. The system order is given by the order of the denominator polynomial, which

is 32.

Stability can be assessed in two different ways: 1) Since the continuous-
time plant is stable (two poles in the left half plane plus a time delay that
does not affect stability), the ZOH-sampled plant must also be stable. 2)
The discrete-time system has two poles in e−0.1 (0.904 and 30 poles in 0,
which are all inside the unit circle, so the system is stable.

2. The problem is that there is a circular wait-chain. If all processes execute

the first Wait-statement, they all have acquired a resource. In the next

statement, they all try to acquire another resource which is already held

by one of the other processes. Deadlock will occur. This may be solved by

using hierarchical resource allocation and rewriting P3 to:

Wait(R1);
Wait(R3);
// Using R1 and R3
Signal(R3);
Signal(R1);

3 a. The sorting logic works as follows:

• Animals 2.0 years or younger, regardless of gender, are released.

• Male cattle 12.0 years or younger are released, while male cattle older
than 12.0 years are sent to the abattoir.

• Female cattle older than 2.0 years are milked for 6 minutes and then
released.

b. Change the condition AGE>2 & FEMALE to

2<AGE<10 & FEMALE and the condition AGE>12 & !FEMALE to

(AGE>12 & !FEMALE) | (AGE>10 & FEMALE) to achieve the desired result.

4. Both implementations are correct from a mutual exclusion point of view.

However, Implementation 2 may cause unnecessary blocking. Since a sin-

gle monitor is used to hold all the shared variables, it is, for example,

possible that the Regul thread will be blocked when trying to extract the

1

controller parameters using getParameters, by the Refgen thread which

is changing the reference value by executing setRef. Similarly, the Regul

thread can be blocked when calling getRef by the Swing thread in Opcom

calling setParameters.

5 a. With L = [l1, l2], the poles of the closed loop system are given by the char-
acteristic polynomial

det(zI − (Φ − ΓL)) = det

([

z 0

0 z

]

−

[

0.5 0

1 0.9

]

+

[

0 0

l1 l2

])

=

(z− 0.5)(z+ l2 − 0.9)

from which it is evident that one pole is already in 0.5. The position of the

second pole depends on the value of l2 and to place it in 0.5 simply means

selecting

l2 − 0.9 = −0.5→ l2 = 0.4

while the value of l1 is irrelevant.

Finally, in order to have a static gain of 1

lr =
1

C(I − Φ + ΓL)−1Γ
= l2 + 0.1 = 0.5

b. An observer is given by

x̂(k+ 1) = Φ x̂(k) + Γu(k) + K (y(k) − Cx̂(k)) →

x̂(k+ 1) = (Φ − KC)x̂(k) + Γu(k) + K y(k)

where K = [k1, k2]
T . The poles of the observer are determined by the eigen-

values of Φ − KC, which are computed as

det(zI − (Φ − KC)) = det

([

z 0

0 z

]

−

[

0.5 0

1 0.9

]

+

[

0 k1

0 k2

])

=

z2 + (k2 − 1.4)z+ (0.45− 0.5k2 + k1)

and imposing that the poles are in 0.25 means imposing that the character-

istic polynomial has the form (z− 0.25)(z− 0.25) which is z− 0.5z+ 0.0625.

z2 + (k2 − 1.4)z+ (0.45− 0.5k2 + k1) = z− 0.5z+ 0.0625

gives us

k2 − 1.4 = −0.5→ k2 = 0.9

and consequently

0.45− 0.5 ⋅ 0.9+ k1 = 0.0625→ k1 = 0.0625

2

6 a. According to the RMS scheme, the task with the shortest period is assigned

the highest priority. Thus we have: Task A: medium priority, Task B: low

priority and Task C: high priority.

The task set is not schedulable using the approximate schedulability con-

dition since

i=3
∑

i=1

Ci

Ti
=
1

3
+
2

5
+
0.5

2
= 0.9833 > 3(21/3 − 1) = 0.7798.

b. According to Theorem 8.3 in the course book, applicable to RMS analysis

assuming fixed priority assignment, all tasks, n to the number, will meet

their deadlines if and only if

∀i,Ri ≤ Di

where

Ri = Ci +
∑

∀ j∈hp(i)

⌈

Ri

Tj

⌉

Cj

where hp(i) is the set of tasks of higher priority than task i.

Calculation of the response times, R, for the tasks gives

RA0 = 0

RA1 = 1

RA2 = 1+

⌈

1

2

⌉

0.5 = 1.5

RA3 = 1+

⌈

1.5

2

⌉

0.5 = 1.5

RB0 = 0

RB1 = 2

RB2 = 2+

⌈

2

3

⌉

1+

⌈

2

2

⌉

0.5 = 3.5

RB3 = 2+

⌈

3.5

3

⌉

1+

⌈

3.5

2

⌉

0.5 = 5

RB4 = 2+

⌈

5

3

⌉

1+

⌈

5

2

⌉

0.5 = 5.5

RB5 = 2+

⌈

5.5

3

⌉

1+

⌈

5.5

2

⌉

0.5 = 5.5

RC0 = 0

RC1 = 0.5

(1)

We have that RA = 1.5 ≤ DA, RB = 5.5 > DB and RC = 1 ≤ DC and thus
the task set is not schedulable using RMS priority assignment.

c. The schedule is shown in Figure 1.

d. The utilization of the system is calculated from the expression

U =
i=1
∑

i=3

Ci

Ti
= 0.9833 < 1.

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A

B

C

Figure 1 The execution trace resulting from rate monotonic scheduling.

Since the utilization of the system is less than 1, the system is schedulable

using EDF.

7 a. Differentiating the equation for γ , we get

pγ (t) = β (y(t))

Setting p = q−1
h
gives

q− 1

h
γ (t) = β (y(t))

or equivalently

γ (t+ h) = γ (t) + hβ (y(t))

The equation for v becomes

v(t) =
s1
q−1
h
+ s0

(q−1
h
)2 + r1

q−1
h
+ r0

y(t) =

=
qs1/h+ s0 − s1/h

q2/h2 + q(r1/h− 2/h2) + r0 − 1/h2 − r1/h
y(t)

or equivalently

v(t+2h) = −(r1h−2)v(t+h)−(r0h
2−1−r1h)v(t)+s1hy(t+h)+(s0h

2−s1h)y(t)

(The equation for u is purely algebraic and does not have to be discretized.)

b. Since the original system is stable, Tustin’s method is guaranteed to give a

stable controller.

8. The smallest coefficient is 0.0625 = 1/16 = 1/24. Using four fractional bits,
we can represent all coefficients without round-off errors. We should not

use a larger number of fractional bits since that will increase the risk of

overflow in the intermediate calculations.

4

In fixed-point representation, the system matrices are given by

F = 24Φ =











12 0

4 16











, G = 24Γ =











4

1











In the calculations, the magnitude of the results should never exceed 215 =
32768. To avoid overflow, we should ensure that

p12x1 + 4up < 32768, p4x1 + 16x2 + up < 32768

Knowing that pup ≤ 256 and assuming the same magnitude limit l for both
x1 and x2, the second inequality will dominate, yielding

20l + 256 < 32768 [l < 1625.6

A safe limit is hence 1625. Reasoning only about the number of bits needed,

another option is to choose the limit as 210 − 1 = 1023.

The C code becomes something like:

int16_t x1, x2, u, x1unsat, x2unsat;

u = read_input();

x1unsat = (12 * x1 + 4 * u) >> 4;

x2unsat = (4 * x1 + 16 * x2 + u) >> 4

if (x1unsat > 1625)

x1 = 1625;

else if (x1unsat < -1625)

x1 = -1625;

else

x1 = x1unsat;

if (x2unsat > 1625)

x2 = 1625;

else if (x2unsat < -1625)

x2 = -1625;

else

x2 = x2unsat;

5

