
Solutions to the exam in Real-Time Systems 150507

These solutions are available onWWW: http://www.control.lth.se/course/FRTN01/

1.

a. The pulse-transfer function is given by:

H (z) = C (zI − Φ)−1 Γ + D

[ H (z) = ( 1 0 )

(

z− 1/2 2

0 z

)−1(
0

−1

)

=

=
1

z (z− 1/2)
( 1 0 )

(

z −2

0 z− 1/2

)−1(
0

−1

)

=

=
2

z (z− 1/2)

So there are no zeroes and the poles are located in z1 = 0 and z2 = 0.5
which are both within the unit circle, and thus the system is asymptotically

stable.

b.

Y (z) =
2

z2 − 0.5z
U (z) Z[

z2Y (z) − 1/2zY (z) = 2U (z)

[ y(k+ 2) − 0.5y(k+ 1) = 2u (k)

2.

a. The system without the delay L is equivalent to the system:

ẋ = −
1

T
x +
K

T
u

y= x

It is now straightforward to use zoh-sampling which gives:

x(k+ 1) = e−h/T x(k) + K (1− e−h/T)u(k)

y(k) = x(k)

The discrete-time transfer function Ĥ(z) of this system is given by:

Ĥ(z) =
K (1− e−h/T)

z− e−h/T

Adding a 3 sample delay z−3 to Ĥ(z) gives the discrete-time transfer func-
tion H(z) we are looking for:

H(z) =
K (1− e−h/T)

z3(z− e−h/T)
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b. In order to write the state space of the a system with 3 sample delay we have

to introduce the 3 states x2(k) = u(k−1), x3(k) = u(k−2),u4(k) = u(k−3).
This gives:

x(k+ 1) = Φx(k) + Γu(k)

y(k) = Cx(k)

Where x(k) = [x1(k), x2(k), x3(k), x4(k)]
T ,

Φ =













e−h/T 0 0 K (1− e−h/T)

0 0 0 0

0 1 0 0

0 0 1 0













, Γ =













0

1

0

0













, C =













1

0

0

0













T

.

.

3.

a. According to Theorem 8.1 in Real-Time Control Systems all deadlines will

be met if

U =
i=n
∑

i=1

Ci

Ti
≤ 1

[ U =
2

10
+
2

6
+
2

8
= 0.7833 ≤ 1

So the task set is schedulable using EDF.

b. With RMS the priorities will be assigned according to the period time:

Task Priority

A low

B high

C medium

Using Theorem 8.3 the task set is schedulable if:

i=n
∑

i=1

Ci

Ti
≤ n

(

21/n − 1
)

Z[ 0.7833 ≤ 3
(

21/3 − 1
)

= 0.7798

which is a contradiction. However, if one uses the alternative hyperbolic

bound test one has that

(1+
2

10
)(1+

2

6
)(1+

2

8
) = 1.9999 ≤ 2
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and, hence, the task set is schedulable. Alternatively one can use the exact

response time analysis:

R0B = 0, R1B = CB = 2, R2B = CB = 2

R0C = 0, R1C = CC = 2,

R2C = CC +

⌈

R1C
TB

⌉

CB = 2+

⌈

2

6

⌉

2 = 2+ 2 = 4

R3C = 2+

⌈

4

6

⌉

2 = 2+ 2 = 4

R0A = 0, R1A = CA = 2,

R2A = CA +

⌈

R1A
TB

⌉

CB +

⌈

R1A
TC

⌉

CC = 2+

⌈

2

6

⌉

2+

⌈

2

8

⌉

2 = 2+ 2+ 2 = 6

R3A = 2+

⌈

6

6

⌉

2+

⌈

6

8

⌉

2 = 2+ 2+ 2 = 6

Since Ri ≤ Di for all i the task set is schedulable using RMS.

c. With DMS the priorities will be according to the deadline:

Task Priority

A medium

B high

C low

Using Theorem 8.5 the task set is schedulable if:

i=n
∑

i=1

Ci

Di
≤ n

(

21/n − 1
)

Z[
2

6
+
2

4
+
2

7
= 1.1190 ≤ 3

(

21/3 − 1
)

= 0.7798

Which is a contradiction and we will have to use exact analysis:

RB = 2

R0A = 0, R1A = 2

R2A = CA +

⌈

R1A
TB

⌉

CA = 2+

⌈

2

10

⌉

2 = 2+ 2 = 4

R3A = CA +

⌈

R2A
TA

⌉

CA = 2+

⌈

4

10

⌉

2 = 2+ 2 = 4

R0C = 0, R1C = 2

R2C = CC +

⌈

R1C
TA

⌉

CA +

⌈

R1C
TB

⌉

CB = 2+

⌈

2

10

⌉

2+

⌈

2

6

⌉

2 = 6

R3C = CC +

⌈

R2C
TA

⌉

CA +

⌈

R2C
TB

⌉

CB = 2+

⌈

6

10

⌉

2+

⌈

6

6

⌉

2 = 6

Since the worst-case response time is less than the deadline for all the tasks

the task set is schedulable using DMS.
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The continuous time transfer functions for the first four systems are

G1 = 1/s

G2 = 1/(s+ 1)

G3 = 10/(s+ 2)

G4 = 1/(s
2 + 0.3s+ 1)

where all but G4 are first-order systems. G4 exhibits an oscillating step

response, which no first order system can do.

H5(z) contains a pole on the negative real axis. Thus, H5(z) can not be a
ZoH-sampled version of a first order system (Re(eph) ≥ 0 ∀p which means

no poles in the left half plane).

H6(z) contains two poles in the left half plane which means H6(z) is of
order two, further, the step response is oscillating.

Conclusion: Systems H1(z), ...,H3(z) can and are ZoH-sampled versions of
first order, continuous systems, which H4(z), ...,H6(z) can not be.

5.

a. Studying the formula

f = p( f1 + fN) mod ( fs) − fN p

and inserting f = 20 Hz, fs = 50 Hz, fN = 25 Hz, gives the equation

20 = p( f1 + 25) mod (50) − 25p

this gives the two possible solutions ( f1 + 25) mod (50) = 5 and ( f1 +
25) mod (50) = 45. In the range 25 to 500 Hz the first solution generates
the possible frequencies

f1 = {30, 80, 130, 180, 230, 280, 330, 380, 430, 480} and the second solution
generates the possible frequencies f2 = {70, 120, 170, 220, 270, 320, 370, 420, 470}.

So the complete answer is

{30, 70, 80, 120, 130, 170, 180, 220, 230, 270, 280, 320, 330, 370, 380, 420, 430, 470, 480}.

They could also be found by subtracting and adding 20 to multiples of the

sampling frequency.

b. A second order deadbeat filter has no low-pass filtering properties.

6.

a. By approximating the s with
(z−1)
z
we get the pulse transfer function

Hc(z) = K

(

1+
z

T1(z− 1)

)

.

This can then be converted to the difference equation

u(k+ 1) − u(k) =
K (Ti + 1)

Ti
e(k+ 1) − K e(k).
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b. In the difference equation in a) the two coefficients we need to convert to

fixed point is
K (Ti+1)
Ti

and K . Since the largest coefficient is in the interval

[4, 8] we need m = 3 integer bits and are left with n = 16−m−1 = 12 frac-

tional bits. The conversion to fixed point is done using round
(

K (Ti+1)
Ti

⋅ 211
)

=

19548 and round
(

K ⋅ 211
)

= 17613.

int16_t coeff1 = 19548;

int16_t coeff2 = 17613;

int n = 12;

int16_t do_control(int16_t e) {

// Controller states

static int16_t old_u, old_e;

int16_t u = old_u

+ (int16_t) (((int32_t)coeff1*e) >> n)

- (int16_t) (((int32_t)coeff2*old_e) >> n);

old_u = u;

old_e = e;

return u;

}

7. The poles in the system are in 0.9 and 1.2. Since p1.2p > 1 it is unstable. The

controllability matrix is

[

0 0

1.1 1.32

]

, so the system is uncontrollable. How-

ever, even though it is uncontrollable it is possible to make it asymptotically

stable since the uncontrollable state is already asymptotically stable. For

example, the state-feedback vector L = [ 0 1 ] makes the system asymptot-
ically stable.

This can also be realized by studying the characteristic polynomial with the

state feedback law u = −Lx, L = [l1, l2].

det(λ I − A+ BL) = (λ − 0.9)(λ − 1.2+ 1.1l2)

here the unstable root can be "stabilized" with the parameter l2.

8. • The synchronized-block in the put-method must span the entire method

block. After exiting the block we might have a race condition which may

cause loss of data.

• One might think that having just an if-statement around the wait in

the get-method should be enough since we use notify when we put

data. But since both consumers waiting and producers waiting uses the

same monitor, the notifyAll in get will also wake those threads that

are waiting to get data. The put-method must call notifyAll instead

of notify and make the if-statement a while-loop.

• Another reason why the if-statement in get must be made a while-

loop is to protect against spurious wakeups.

9.
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a. The simplest way to show this is to find a simple counter-example, e.g.,

G1(s) = G2(s) = 1/s. In this case we know, e.g. from Table 3 that HG1(z) =
h/(z− 1). However, from the same table we have that HG1G2(z) = h

2(z+
1)/2(z− 1)2 which is not the same as HG1(z)HG2(z) = h

2/(z− 1)2.

b. For zero-order hold sampling the input should be a piece-wise constant

signal. When two systems are connected in series this holds for the input to

the first system, i.e., the system that is connected to the ZOH hold circuit,

but it does not hold for the input to the second system.

c. By studying the matrices it is easily shown that the system consists of a

double integrator (states x1 and x2) and of a first order system with a
continuous-time pole in −1 (state x3). Hence, the pulse transfer function
is the sum of the pulse transfer function of the double integrator and the

pulse transfer function of a first order system, which again according to

Table 3 is

H(z) =
h2(z+ 1)

2(z− 1)2
+
1− e−h

z− e−h

=
(h2/2)(z+ 1)(z− e−h) + (1− e−h)(z− 1)2

(z− 1)2(z− e−h)

10.

a. The problem is that the run method is spelled with a capital R. Since Java

is case-sensitive run() and Run() are two separate unrelated methods. The

built-in Thread class contains a default run() method that is supposed to

be overridden. This method does not do anything. In this case when the

thread is started the default run() method will be started and nothing will

happen.

b. The problem is still the same. However, the Java compiler requires that each

class that implements an interface also provides implementations for all the

methods defined in the interface. The Runnable interface contains the run()

method. Since the code above does not provide any implementation for this

method a compilation error is generated.
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