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1. Introduction

1.1 Why Automatic Control?

Automatic control is very important in process industry. It is needed to operate the

processes such that energy and raw materials are utilized in the most economical and

efficient ways. At the same time, it is necessary that the produced products fulfill

the specifications, and that the processes operate in a safe way.

In a feedback control system, the available manipulated variables are used to fulfill

the specifications on the process output, despite the influence of disturbances, see

Figure 1.1. The process variables that are measurable are called process outputs or

measurement signals. The variables that are available for manipulation are called

process inputs, manipulated variables or control signals. The desired performance

of the system or plant can be specified in terms of the desired value of an output.

This is called the setpoint or reference value. The performance of the system is also

influenced by measurable or (most commonly) unmeasurable disturbances. The task
of the controller is to determine the process inputs such that the performance of

the total system is as good as possible. The performance can be measured in many

different ways. For instance, we may want to minimize the variation in the output or

minimize the energy consumption.

In our daily life we are surrounded by control systems. Some examples are:

• Heating and cooling systems in buildings.

• Temperature and concentration control within the human body.

• Frequency and voltage control in power networks.

• Speed and path following when riding bikes or driving cars.

A process control system in a plant typically has many different purposes:

• Product specifications. The outgoing product must fulfill the specifications with
respect to, for instance, quality or purity.

• Safety. The plant must be operated such that the safety regulations for personnel
and equipment are met.

• Operational constraints. Due to environmental and process considerations it is
necessary to keep certain variables within tight bounds.

Setpoint Input

Controller Process

Disturbance

Output

Figure 1.1 A simple feedback control system.
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Lecture 1. Introduction

• Economy. The control system must ensure that energy and raw materials are
used as economically as possible.

These tasks can be seen as plant-wide goals that must be fulfilled. To do so it is

necessary to divide the operation of the plant into subtasks and subgoals. These

are then further subdivided until we reach the bottom line, which consists of simple

control loops with few inputs and outputs and with quite well defined goals. The

basic building blocks in a process control system are simple feedback controllers. The

purpose of this text is to develop an understanding for how these building blocks can

be used to create a control system for a large plant.

1.2 Basic Principles of Automatic Control

Feedback

The main principle of automatic control is feedback, which implies that the measured

signals are used in real time to calculate the control signals, i.e., that information

is continuously fed back into the process. This turns out to be a very important and

useful concept. The idea of feedback control is illustrated in an simple example.

EXAMPLE 1.1—THERMOSTAT

A simplified picture of a thermostat is shown in Figure 1.2. The purpose of the

thermostat is to keep the temperature of the water constant. The temperature of

the water is measured using a thermocouple. The thermocouple gives an electrical

signal that is compared with a signal that represents the desired temperature. The

comparison is made in a differential amplifier. This gives an error signal that is used

to control the power of the heater. The heater can be controlled by a relay or contactor

in which case the power is switched on or off. To obtain a better control the heater

can be controlled by a thyristor. It is then possible to make a continuous change in the

power. The thermostat is an example of a feedback system, where the control signal

is determined through feedback from the measured output. The feedback is negative

since an increase in the water temperature results in a decrease in the power.

The introduction of feedback in the control system can often lead to dramatic per-

formance improvements. Unstable systems can be stabilized, the speed of the system

25 75

50

   Mixer   Heater    Thermocouple

Power

Amplifier

Measurement

Difference

ErrorDesired temperature

Figure 1.2 A simplified diagram of a thermostat for heating of water.
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1.2 Basic Principles of Automatic Control

Water
temperature

Σ
Power

WaterAmplifier

signal
ErrorDesired

temperature

−

Figure 1.3 Block diagram of the thermostat in Figure 1.2.

can be increased, and the tracking accuracy can often be improved by several orders

of magnitude. Since the system operates in closed loop, only a rough model of the pro-

cess is needed. Disturbances can be compensated for once their effect have become

visible in the process output.

Block Diagrams

To describe processes from a control point of view we often use block diagrams. Fig-

ure 1.3 shows a block diagram for the thermostat system. The block diagram is built

up by rectangles and circles, which are connected by lines. The lines represents sig-

nals that carry information. The rectangles or blocks show how the signals influence

each other. The arrows show the cause-effect direction. The circle with the summation

symbol shows how the error signal is obtained by taking the difference between the

desired temperature and the measured temperature. Notice that one symbol in the

block diagram can represent several parts of the process. This gives a good way to

compress information about a process. The block diagram gives an abstract represen-

tation of the process and shows the signal flow or information flow in the process.

Feedforward

Feedforward is a complementary principle to feedback. A very simple controller, like

an automatic door opener, can often operate using pure feedforward. The principle is

illustrated in in the block diagram in Figure 1.4. The controller calculates the control

signal based on the setpoint and a model of the process. The resulting output is not

measured, meaning that the system operates in open loop. It is obvious that such an

approach cannot be used for unstable systems. Even for stable systems, there will

always be some error in the output due to model uncertainty and disturbances. If

some process disturbances are measurable, they can be taken into account by the

controller, as indicated by the dashed arrow. Again, this requires a model of how the

disturbances affect the process.

Combined Feedback and Feedforward

A good controller typically uses both feedback and feedforward to achieve optimum

performance, see Figure 1.5. Measurable disturbances and known changes in the

Setpoint

Input

Disturbances

Feedforward

Controller
Process

Output

Figure 1.4 A feedforward control system.
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Setpoint Input

Measurable disturbances
Unmeasurable disturbances

Controller Process

Output

Figure 1.5 A combined feedforward–feedback control system.

setpoint may be compensated for using feedforward, while the unmeasurable distur-

bances are handled using feedback. Consider for instance the cruise control system

in a car. Feedback is used to ensure that the speed of the vehicle is maintained at

the desired value, despite the load of the vehicle and the changing road conditions.

Feedforward can be added to achieve more comfortable acceleration and deaccelera-

tion during setpoint changes and to compensate ahead of time for changing road or

traffic conditions using information from, e.g., the GPS system.

1.3 Graphical Process Representations

Process models are central to the analysis and design of feedback control systems.

Process control systems can often seem complicated, since they contain a relatively

large number of different parts. These parts may represent many different branches of

technology, e.g., chemistry, biology, electronics, pneumatics, and hydraulics. To work

effectively with control systems it is essential to master several different ways to

describe the system and its elements. Graphical representations provide a qualitative

impression of the system function. Many different graphical methods have been used

within control for process description. We have already seen the block diagram. Three

other common representations are described below.

General Process Layouts

A simplified process (or plant) sketch is often an effective means to provide an
overview of a process to be controlled. This sketch should show the different process

(or plant) components; preferably in a stylized form to provide clarity. A schematic
layout of a simple process is shown in Figure 1.6. A layout of a more complicated

plant site is shown in Figure 1.7. Note that there are no standards or rules for these

drawings. However, good pictures are easily identified.

Process Flow Sheets

Within the process industry a limited number of unit operations and reactor types

are used. Therefore a set of almost international standard symbols have been intro-

duced for the different components. Similar standards have been introduced by the

power generation and the sanitation industries. A process flow sheet is illustrated in

Figure 1.8.

Process and Instrumentation Diagrams

To illustrate the combined process and instrumentation system, a set of standard

symbols have been proposed and is applied within the process and control industry.

These diagrams are often referred to as P/I (process and instrumentation) diagrams.

6
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Recycle

Feed

Separator

Reactor

Coolant
system

Coolant

Figure 1.6 Schematic layout of a simple process.

Ethylene Polyethylene

Crude
oil

NH3 PolymersUrea

Figure 1.7 Schematic layout of a more complex plant site.

A simple example is shown in Figure 1.9. The P/I diagram is a factual representation
of the combined process and instrumentation system hardware.

Instruments are depicted as circles in the P/I diagram. A two or three letter com-
bination is used to denote the purpose of the instrument. The first letter denotes

the physical quantity being instrumented. The most common quantities in process

industry are T = temperature, L = level, F = flow, and P = pressure. Nonstandard
quantities include C (or Q) = concentration and X = power. The last letter(s) denotes
the instrument function(s). Here, T = transmitter (sensor) and C = controller are
the most common functions. Other common functions are I = indicator, R = recorder,
A = alarm, and V = valve.

1.4 Introduction to Dynamical Process Models

In the simple feedback control system depicted in Figure 1.1, it is the task of the

controller to determine the process input such that the process output follows the

setpoint. Different processes react differently to changes in the control signal. Some

processes react very quickly, while other processes are slow. Further, the response

may be well damped, oscillatory, or even unstable. These characteristics are called

the process dynamics.

In order to design a good control system, we must learn the dynamical properties of

the process. This can be done in several different ways. For simple control loops in

7
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Reactor Heat exchanger Separator

A

B

C

Rest product

Figure 1.8 Process flowsheet for a simple plant with a reactor, heat exchanger, and a distil-

lation column.
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Figure 1.9 Process and instrumentation (P/I) diagram for the process in Figure 1.8. Signal
connections are indicated with dashed lines.

process industry, it often suffices to perform some simple experiments. For more com-

plex process parts, or for control loops with higher demands on performance, it may

be necessary to derive a mathematical model of the process dynamics. This involves

deriving the relationships between the physical quantities using mass balances, en-

ergy balances, etc. This method is sometimes the only one possible, for example when

the process is not yet in existence.

The two methods outlined above are often combined. First, the structure and complex-

ity of the model are determined from the physics of the plant. Then, the parameters

of the dynamical model are found by experiments on the process.
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1.4 Introduction to Dynamical Process Models

In this course, we will work with several different dynamical process models. We

will mainly work with continuous-time models. Simple step-response models based

on experiments will be introduced in the next lecture. In Lecture 3, the state-space

model is introduced as a general mathematical object to describe both linear and

nonlinear process dynamics. A state-space model describes how the process inputs,

the internal process state, and process outputs are related.

Often, the internal workings of the process are not so important from a control per-

spective. It can suffice to describe the dynamical relationship between the inputs and

the outputs. Such models are called input-output models, and they are introduced

in Lecture 4. The transfer function is a compact mathematical representation of the

input-output dynamics for a linear process.

Sometimes it can give important insight to study processes and control systems in the

frequency domain. There, the response of the system to sinusoidal input signals of

different frequencies is characterized. Such frequency-domain models are introduced

and analyzed in Lecture 8.

Some of the different dynamical process descriptions that we will encounter in the

course are illustrated in Figure 1.10. The exact meaning of the various mathematical

symbols will be revealed in the following chapters.

(a)

(b)

(c)

(d)

ẋ= f (x,u)
y=�(x,u)

Process

G(s)

G(iω )

u(t) y(t)

U(s) Y(s)

Figure 1.10 Illustration of some different dynamical process models that will be used in

the course: (a) experimental step-response model, (b) nonlinear state-space model, (c) linear
input-output model in the Laplace domain, (d) frequency-response model.
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2. Simple Process Models. PID

Control

2.1 Introduction

In this lecture we will study simple control loops; those which consist of a section

of a process with feedback through a controller (see Figure 2.1). For the moment
we shall disregard the surroundings and treat the simple control loops as our whole

control problem. Our process section has a measured signal level or process variable

y and a control signal u. The aim of the control process is for the process variable

y to follow a setpoint r as closely as possible. In certain circumstances this means

that we want the process variable to follow the setpoint when this changes quickly.

This is the typical servo problem. It is not common in the field of process control for

the setpoint to vary very often. Instead, it is variations in load which cause us the

problems in getting y to follow r. Regardless of which particular type of problem we

have, we solve it by the use of feedback. Feedback means that we compare the process

variable y with the setpoint r, and use this comparison to determine what the control

signal u will look like. This decision is taken inside the controller.

r e u y

Σ Controller Process

−1

Figure 2.1 A simple feedback loop.

2.2 Step-Response Models

In order to obtain good closed-loop performance, the parameters of the controller

should be adjusted in accordance with the dynamics of the process. A simple exper-

imental way to obtain a rough model of the process dynamics is to perform a step

response experiment. First, the process should be in steady state. The input u is then

momentarily changed as a step of size ∆u. The output response y is recorded and
analyzed.

A typical step response for a well-behaved industrial process is shown in Figure 2.2.

Some important characteristics of the process dynamics can be determined from the

response:

• Dead time, L, is defined as the time it takes from a change in the control
signal to the start of a reaction in the process variable.

• Time constant, T , is defined as the time taken for the process variable to
reach 1− e−1 ( 63% of its final value. Note that the dead time is not included

10



2.2 Step-Response Models

63%

a
b

L T

∆y

∆u

Output

Input

Time

Time

0%

100%

Figure 2.2 Typical step response with definitions of some process characteristics.

when determining this value. A step response usually consists of several time

constants because most processes are multi-capacitive. The characteristic we

specify in this way is the dominant time constant.

• Static gain, Kp = ∆y/∆u, is a measure of how much the process variable
changes in relationship to the change in the control signal when the signals

have stabilized.

• Overshoot, a/∆y, is usually given as a percentage of the change in static process
variable. Within the process industry, the overshoot is nearly always zero in

open-loop, uncontrolled processes.

• Damping, here defined as 1− b/a, is a measure of the stability of the process.
Many industrial processes are well damped before they are subjected to feedback

control. In step-response analysis we therefore find that the damping is one in

the majority of cases. A slightly different definition of damping will be given in

Lecture 5.

A great advantage of step-response analysis is that it is simple to carry out. The input

signal is simple to generate by setting the controller in manual mode and adjusting

its control signal. In most cases this method requires a chart recorder in order to

record the process variable, but it may be sufficient sometimes to just use a clock.

Step-response analysis is a useful aid when we want to tune a controller using a

systematic method but cannot spend too much time on building the model. Systematic

tuning rules of this type are described in Lecture 9.

If the process is of integrating type, i.e., if the process does not settle at a new

stationary level after a step change in the control signal but continues to increase,

the step-response analysis as described above is not directly usable. Instead, one

usually determines only the dead time L and the velocity gain, Kv = ∆y/(∆u ⋅ L), see
Figure 2.3.

11
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∆y

∆u

Output

Input

Time

Time

L

Figure 2.3 Step response for an integrating process.

2.3 Common Process Types

The dynamic characteristics of different sections of the process are often very dif-

ferent. They vary in their speed, amplification, stability, etc. In this section we shall

attempt to group them into certain main types. This grouping or cataloging will make

future description easier, as we shall define a number of concepts and types of process

which later on we shall be using frequently.

It is important to stress what is included in the section of the process in simple

control loops. The process section consists of everything apart from the controller,

in other words all the dynamic components which sit between the output signal of

the controller and its process variable or measured signal. This means that, e.g.,

transducers, valves, actuators and any module boxes are included in what we have

called the process section.

Figure 2.4 shows the step response for six different types of processes. More detailed

step-response analysis will be carried out using mathematical tools in Lecture 5.

What this figure shows is quite simply the process variable after a step change has

occurred in the control signal. We shall now go briefly through each type of process.

Single-Capacitive Processes

The single-capacitive process is called so because its step response has the same

appearance as what we get from a simple electrical RC circuit. The time constant,

which is defined in the next section, for an RC filter is T = RC (see Figure 2.5).

This is the simplest type of process we come across. Mixing processes often display

this behavior. Temperature processes with direct transfer between two volumes can

also be described as single-capacitive processes.

12



2.3 Common Process Types

Integrating

Dead time

Single-capacitive Multi-capacitive

Oscillating

Inverse response

Figure 2.4 Step responses for some different types of processes.

Multi-Capacitive Processes

This is the most common type of process, often combined with the dead-time pro-

cess described below. The step response is the same as one gets from several series-

connected RC filters, hence the name.

Flow and pressure processes, together with certain temperature processes, can often

be described in this way.

Integrating Processes

Most processes within industry are input–output stable. This means that if we change

the control signal from one value to another, then the process variable will also

stabilize at a new level.

There are also certain processes which are of the integrating type. These do not

have the above characteristics. Some examples of this are level control, pressure

control in a closed vessel, concentration control in batches, and temperature control

R

C yu

100%

63%

RC time

Figure 2.5 A simple RC circuit and its step response.
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Lecture 2. Simple Process Models. PID Control

in batches. If, for example, a valve is opened to allow flow into a tank, the level will

rise linearly assuming that the output flow does not change. The common factor in

all these processes is that some form of storage occurs in them. In level, pressure and

concentration control storage of mass occurs, while in the case of temperature control

there is a storage of energy.

We shall see later in this text that there are large differences between stable and

integrating types of processes with regard to modeling and control. It is therefore

good to have a feeling for which types of processes are of the integrating type.

Oscillating Processes

This type of process is characterized by an oscillation of the step response around

its final stationary value. This type of process is not so common among uncontrolled

process sections within process industries. (On the other hand, it unfortunately is
quite common in controlled processes.) One case where it occurs is in concentration
control of recirculating fluids. In mechanical designs, however, it is common for pro-

cesses to be oscillating where elastic materials are used, e.g. pliable axles in servos,

spring constructions, etc.

Dead-Time Processes

This type of process is characterized by the lack of reaction of the process variable

to a step change until a certain time (the dead time or delay time) has passed. It
is seldom that the process consists only of a dead time response; the dynamics will

usually also include one or more of the other process types.

Dead times occur most often with material transport in pipes or on belts. If we

measure the pH, for example, of a fluid being transported in a pipe, where the addition

of the substance of which we wish to measure the concentration occurs a long way

upstream in relation to the transducer, a dead time will occur which corresponds

to the time taken for the fluid to be transported between the supply point and the

transducer.

This type of process can be difficult to control. In Lecture 10 we will describe a special

control structure for control of dead-time processes.

Inverse Response Processes

This last type of process is not particularly common. It is characterized by the re-

sponse to the step change starting in the “wrong” direction. It is not difficult to

understand that such a process could pose great problems for the controller.

The most common inverse response process within the process industry is level control

of the water level in boilers.

The six types of process mentioned above will naturally not cover all our processes.

There are for instance static processes that do not exhibit any dynamics at all. A few

processes are open-loop unstable. Also, we have not taken any form of non-linearity

into account. The vast majority of our processes, however, can be described in gross

terms by one of the above process types or combinations of them.

Of the processes above, the single capacitive and the integrating processes are the

easiest to control. This is because the process variable reacts immediately to a change

in the control signal. For the same reason, the dead-time process and the inverse

response process are the most difficult, because at the beginning the process variable

does not react at all, or reacts in the wrong direction.
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2.4 The PID Controller

2.4 The PID Controller

We shall now introduce the most commonly used controller—the PID controller. The

controller operates in closed loop according to the simple feedback loop shown in

Figure 2.1. We deduce the structure of the PID controller and show that it is a

natural extension of the very simplest controller, namely the On/Off controller. More
details about the PID controller will be given in Lecture 9.

On/Off Control

The On/Off controller is the simplest imaginable controller. Its control signal u is
given by

u(t) =
{

umax e(t) > 0
umin e(t) < 0

where e is the control error, i.e. the difference between the setpoint r and the mea-

surement signal y:

e = r − y

The function of the On/Off controller can also be described graphically, as shown in
Figure 2.6.

umax

umin

u

e

Figure 2.6 The control signal of the On/Off controller.

A drawback with this controller is that it gives rise to oscillations in the control loop.

In order for the controller to maintain a small difference between measurement signal

and setpoint, it must constantly switch the control signal between the two levels umax
and umin. If we for instance control the speed of a car by means of the gas pedal,

while it can only take on the values “no gas” and “full gas”, we will need to switch

between these two values in order to keep the average speed at the setpoint. This is

one way of driving, but it will not be very comfortable.

Proportional Control

For large control errors it can be reasonable to apply either the maximum or minimum

control signal. Consequently, the On/Off controller performs well for large errors.
The oscillations appear for small control errors and can be reduced by e.g. decreasing

the controller gain for small control errors. This can be achieved by introducing a

proportional band, giving a P controller. The control signal of the P controller is

given by

u(t) =







umax e(t) > e0
K e(t) + u0 − e0 ≤ e(t) ≤ e0
umin e(t) < −e0

15
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umax

umin

u

e
0

e–e
0

u
0

Proportional band

Figure 2.7 The control signal of the P controller.

where u0 is the control signal corresponding to a zero control error and K is the

gain of the controller. The P controller can also be described graphically, as shown in

Figure 2.7.

The output of the P controller corresponds to that of the On/Off controller for large
control errors. For control errors of magnitude less than e0, the control signal is,

however, proportional to the control error.

The P controller removes the oscillations, which were present during on/ off control.
Unfortunately this comes at a price. We are no longer granted a zero stationary

error, or in other words, that the setpoint and measurement signal coincide when all

signals in the control loop have reached constant values. This is easily realized by

studying the control signal. For small control errors, the P controller works within

its proportional band. The control error is then given by

e = u− u0
K

In stationarity the control error becomes zero if and only if at least one of the following

criteria are fulfilled:

1. K is infinitely large

2. u0 = u

Option number one, an infinite controller gain or a zero proportional band, is equiva-

lent to On/Off control. This alternative is therefore not a good solution, since it leaves
us with the initial oscillation problem. We are hence referred to option number two,

in order to eliminate the stationary control error. Here we can only eliminate the

stationary control error if we can find a value of u0, which makes it equal to the

control signal u for all values of the setpoint r.

From the expression for the control error of the P controller we see that a higher

controller gain K leads to a smaller control error. We also see that we minimize the

maximal stationary control error by choosing u0 in the center of the working range

of the control signal. In most controllers, u0 is consequently preset to u0 = 50%. In
some controllers, it is possible to adjust the value of u0. From the above discussion

we see that u0 should be chosen as close to the stationary value of u as possible.

Proportional–Integral Control

Rather than letting u0 be a constant parameter, one can choose to adjust it automat-

ically in order to achieve u0 = u when all signals in the control loop have reached
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time time

Figure 2.8 Two control cases where the output from a PI controller are equal at time t.

constant values. This would eliminate the residual control error and is exactly what

the integral part (I part) of a PI controller does. The control signal of a PI controller
is given by

u(t) = K
(

e(t) + 1
Ti

∫ t

0

e(τ )dτ
)

where Ti is the integral time of the controller. The constant level u0 of the P controller

has thus been replaced by the term

u0(t) =
K

Ti

∫ t

0

e(τ )dτ

which is proportional to the integral of the control error. This is why the term is

called the integral term or the integral part of the PID controller.

One can be convinced that the PI controller has the ability to eliminate residual

control errors by studying the above control law. Assume that we have a stationary

control error e ,= 0 despite the use of a PI controller. If the control error e is constant,
the proportional part in the PI controller will also hold a constant value K e. The

integral part will, however, not be constant. It will increase or decrease, depending

on the sign of the control error. If the control signal is changed, the measurement

signal y of the process must sooner or later increase or decrease. Consequently, the

error e = r − y cannot be constant. Since this conflicts with the assumption of a
stationary error, we have showed that we cannot have a non-zero stationary error,

when the controller contains an integral part. The only occasion when all signals

internal to the controller can be stationary, is when e = 0.
We have now showed that the PI controller solves the problem of a residual stationary

error and that of oscillations resulting from On/Off control. The PI controller is
therefore a controller without any substantial shortcomings. It is generally sufficient

when performance requirements are not extensive. Consequently, the PI controller is

the by far most commonly used controller in industrial applications.

Proportional–Integral–Derivative Control

One characteristic which limits the performance of the PI controller is that it only

takes past and present control errors into account; it does not try to predict the future

evolution of the control error. The problem is illustrated in Figure 2.8.

The two curves in Figure 2.8 show the evolution of the control error in the two cases.

The P part of the controller is proportional to the control error at the present time

instance t. This control error is equal for both figures. The integral part is proportional

to the surface delimited by the control error curve. This implies that a PI controller

yields the same control signal at time t for the two cases. An intelligent controller

should, however, see that there is a big difference between the cases. In the left
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e

t

D

I P

Figure 2.9 Illustration of PID control. The integral part is proportional to the surface under

the control error curve, the proportional part is proportional to the current control error and

the derivative part is proportional to the change rate of the control error.

curve, the control error decreases rapidly and the control action should be deliberate,

in order not to cause an overshoot. In the right curve, a decrease in the control error

is followed by a sudden increase. Here, the controller should apply a large control

signal in order to curtail the control error. The derivative part of the PID controller

accomplishes exactly this type of compensation. It is proportional to the change rate

of the control error, i.e. proportional to the time derivative of the error. The equation

of the PID controller is given by

u(t) = K
(

e(t) + 1
Ti

∫ t

0

e(τ )dτ + Td
de(t)
dt

)

where Td is the derivative time of the controller.

The maximal benefit of the D part is obtained in cases where much can be earned

by predicting the control error. This is the case for many temperature control appli-

cations. Due to the inertia of these systems it is necessary to abort heating in time.

Slow heat conduction can otherwise result in rising temperatures, long after the seize

of heating.

Everybody who has used a thick-bottomed pan for broiling has experienced this phe-

nomenon. It can take quite a while from the time instance when one turns down

the temperature control knob, until the temperature in the pan actually begins to

decrease. In the meanwhile the temperature can be subject to a significant overshoot

if one is not careful with the temperature control.

The PID controller can be summarized by means of Figure 2.9. The proportional part

provides the control signal with a contribution proportional to the current control

error. The integral part is the memory of the PID controller. It is proportional to a

weighted sum of all past control errors. Lastly, the derivative part tries to predict

future control errors using the derivative of the current control error.

2.5 Choice of Controller Type

After having studied the structure of the PID controller and the function of its three

parts, we can now decide when to use one or more parts of it.

On/Off Controller

The simplest type of controller, the On/Off controller, has, as we have seen, the great
disadvantage that it gives rise to oscillations in the process variable. However, it also
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has great advantages. It is cheap to manufacture and does not require the adjustment

of any controller parameters. It is therefore useful in processes where oscillations are

not too much of a disadvantage, where there is a requirement for an inexpensive

design, and where we do not want problems with selecting controller parameters.

The result is that we see this type of controller in our simplest household appliances

such as ovens, fridges, stoves, irons etc.

P Controller

In certain types of process we can work with a high gain in the controller without

having problems of stability. Many single-capacitive and integrating processes fall

into this category. We have seen earlier that a high gain in a P controller means that

the remaining control error will be small. We therefore do not need any integral part

in these control examples, if we can accept the remaining control error. We can often

accept this small control error in e.g. level control, because we are often working here

with a surge tank where the exact level is not important; what is important is that the

level remains within certain limits, such as the working range of the level transducer.

Another instance where it often does not matter whether we have a remaining control

error is in the inner loop in a cascade control structure (see Lecture 10). Here it is
also satisfactory just to use a P controller.

The D part is not required either if our process does not have high levels of inertia

with large lag (multi-capacitive processes), or if we do not place high demands on the
control performance. Integrating and single-capacitive processes respond immediately

to a change in the control signal. This can be seen clearly in Figure 2.4. For these

types of processes, therefore, it is not necessary to predict the control error or to make

prior compensation for it. The D part is therefore not necessary for these process

types. Also, since the high controller gain, despite filtering, results in amplification

of the noise which then appears in the control signal, it is usually wise not to use the

derivative part for these processes.

PD Controller

A well-insulated thermal process has almost the same response as an integrator.

Almost all the energy supplied is used to raise the temperature in the oven because

energy losses are negligible. With these types of process, too, we can work with large

gains in the controller, and we therefore often do not need any integral part in the

controller. In a thermal process, thermal energy is stored instead of mass as in level

control. In contrast to level control, thermal processes, in addition to acting as an

integrator, often have other difficult dynamics which arise from heat transport within

the materials. This means that it is seldom sufficient to use a P controller on its own,

but we have to complement it with a derivative part. This derivative part allows us

to stop the input of energy in time. In some thermal processes it is not sufficient

even to use the derivative part; some of the corresponding second derivative of the

temperature may also have to be used. This means that we are not just studying

the changes in temperature via the derivative part, but also the acceleration of the

temperature changes. The PD controller is sensitive to noise since it has a relatively

high gain at high frequencies. One important reason why PD controllers work so well

with thermal processes is that we can often obtain measurement signals from them

with relatively low noise level.

PI Controller

This is the most common controller type in industry. In the derivation of the PID

controller above, we saw that this was the simplest form which did not cause any
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particular disadvantage such as oscillations or stationary control error. We can always

manage without the D part if we do not have high demands on the speed of the control

loop. Another case which was mentioned above was when the lag of the process is

small (single-capacitive and integrating processes). Here the D part does not give
any great improvement to the control but can rather cause trouble as it amplifies the

noise.

Another case which is suitable for PI control is when we have long dead times. It

is certainly in this type of process that we have the greatest need for predicting the

future control error. However, trying to get a prediction of how the process variable

will change in the immediate future from the derivative of the process variable is not

a good method. Because of the dead time there is a delay before the effects of any

control action can be seen on the process variable. It is therefore considerably better

with this type of process to try to predict the future course of the process variable

by studying the control signal combined with a model of the process. This is called

dead time compensation, and will be studied in Lecture 10. If we do not have access

to dead time compensation, it is better to use a PI controller than a PID controller.

A third case where we should disconnect the D part is when the process is disturbed

by high levels of noise. As a first attempt, of course, we should try to filter out the

noise, but sometimes this is not sufficient. The D part will then give a poor prediction

and should be removed.

PID Controller

Adding the D part to the PI controller often gives better performance, especially for

lag-dominated processes without long dead times, in other words on multi-capacitive

processes. It allows us to increase both the P part and the I part while maintaining

the same level of damping.

I Controller

A pure integrating controller is appropriate when the process dynamics can be ap-

proximated by a static system. This is the case when the process is stable and has

a very short time constant or when the performance demands are very modest. In

those cases, the proportional part is not needed to speed up the dynamics, but the

integral part is still needed in order to eliminate the stationary error.
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3. State-Space Models

3.1 Mathematical Modeling

To describe the dynamic behavior of processes, mathematical models are often derived

using the extensive quantities, which, according to the laws of classical physics, should

be conserved. The most important extensive quantities in process control are

• Total mass

• Component mass

• Energy

• Momentum

The variables representing the extensive quantities are called state variables since

they represent the system state. The changes in the system or process state are

determined by the conservation equations. The conservation principle for extensive

quantity K may be written for a selected volume element V of a process phase as

Accumulation
of K in V

unit time
=

Flow of K
into V

unit time
−

Flow of K
out of V

unit time
+

Generation
of K in V

unit time
−

Consumption
of K in V

unit time
(3.1)

The balance must be formulated for each of the relevant phases of the process, and

expressions for the quantity transfer rates between the phases must be formulated

and included in the flow terms. Note that by convention an inflow of quantity into

a phase is positive on the right hand side of (3.1). The type of differential equation
resulting from application of the conservation principle depends upon the a priori

assumptions. If the particular phase can be assumed well mixed such that there are

no spatial gradients and the quantity is scalar (e.g. temperature or concentration)
then the conservation balance may be formulated for the whole volume occupied

by the phase. In that case an ordinary differential equation results. Other types of

models, i.e. where spatial gradients are essential, yield partial differential equations.

Some of the most commonly applied conservation balances for the case of ideal mixing

are listed below. Note that the momentum balance usually plays no role in this case.

Total mass balance:
dρV

dt
=
∑

i=all
inlets

ρiqi −
∑

i=all
outlets

ρiqi

Component j mass balance:

dcjV

dt
=
∑

i=all
inlets

cj,iqi −
∑

i=all
outlets

cj,iqi + r jV
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Total energy balance:

dE

dt
=
∑

i=all
inlets

ρiViHi −
∑

i=all
outlets

ρiViHi +
∑

all phase
boundaries

Qk +W

Here,

c = molar concentration (moles/unit volume)
E = total energy
q = volume flow rate
H = enthalpy in per unit mass
Q = net heat received from adjacent phase
r = net reaction rate (production)
ρ = mass density
V = volume
W = net work done on the phase

Mathematical modeling of process dynamics will now be illustrated in an example.

EXAMPLE 3.1—CONTINUOUS STIRRED TANK REACTOR

Consider the continuous stirred tank reactor (CSTR) system in Figure 3.1. An exother-
mic reaction A → B takes place in the reactor. A cooling coil is used to maintain the
reaction mixture at the desired operating temperature by removing heat that is re-

leased in the exothermic reaction. The fundamental dependent quantities for the

reactor are:

1. The total mass of the reacting mixture in the tank

2. Mass of chemical A in the reacting mixture

3. Total energy of the reacting mixture in the tank

We will assume that the CSTR is perfectly mixed, that the mass densities of the feed

and the product streams are both equal to ρ, and that the reaction rate is given by
the Arrhenius expression

r = k0e−E/RT cA

qin, cA,in, Tin

q, cA, T

Tc

Figure 3.1 Continuous stirred tank reactor with cooling coil
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where E is the activation energy, R is the ideal gas constant, and k0 is a kinetic

constant.

Further, we will assume that Cp is the specific heat capacity of the reacting mixture,

(−∆Hr) is the heat of reaction, U is the overall heat transfer coefficient, A is the
total area of heat transfer, and Tc is the temperature of the cooling fluid. We can

then state the following balance equations:

1. Total mass balance:
d(ρV )
dt

= ρqin − ρq

2. Mass balance on component A:

d(cAV )
dt

= cA,inqin − cAq− rV

3. Total energy balance:

ρVCp
dT

dt
= ρCpqin(Tin − T) + (−∆Hr)rV + UA(Tc − T)

Simplifying these expressions, the differential equations for the state variables V , cA,

and T become

dV

dt
= qin − q

dcA

dt
= qin
V
(cA,in − cA) − k0e−E/RT cA

dT

dt
= qin
V
(Tin − T) +

(−∆Hr)k0
ρCp

e−E/RT cA +
UA

VρCp
(Tc − T)

(3.2)

The model is nonlinear and of third order since there are three state variables. In the

model, qin, q, cA,in, Tin, and Tc can be viewed as input signals (manipulated variables
or disturbances), while ρ, Cp, (−∆Hr), k0, E, R, U , and A are constants.

3.2 State-Space Models

Modeling the dynamic process behavior using balance equations typically yields a set

of ordinary differential equations. The resulting model may be written as a higher-

order differential equation relating the input u and the output y, e.g.,

dny

dtn
+ p1

dn−1y
dtn−1

+ ⋅ ⋅ ⋅+ pny= q0
dmu

dtm
+ q1

dm−1u
dtm−1

+ ⋅ ⋅ ⋅+ qmu

The above model is linear, but we may also have nonlinear differential equations.

This type of model is called an input-output model and will be the focus of the next

lecture.

In a state-space model, we use a set of first-order differential equations to explicitly

model how the n internal state variables x1, . . ., xn of the process evolve as functions
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of the m process inputs u1, . . ., um and of the state variables themselves:

dx1

dt
= f1(x1, x2, . . . , xn, u1, u2, . . . , um)

dx2

dt
= f2(x1, x2, . . . , xn, u1, u2, . . . , um)
...

...

dxn

dt
= fn(x1, x2, . . . , xn, u1, u2, . . . , um)

(3.3)

The parameter n is called the order of the system. The state-space model may be

efficiently represented using vector notation, with column vectors for each of the

process state variables x, the process inputs u, and for the right hand sides f as

follows,

x =





x1

x2
...

xn





u =





u1

u2
...

um





f =





f1

f2
...

fn





thus giving the vector differential equation

dx

dt
= f (x,u)

This equation is called the state equation of the system. Given the initial values of the

state variables and the input signals it is in principle possible to predict the future

values of the state by integrating the state equation.

The models for the p process outputs, which are assumed to be algebraic, may simi-

larly be collected in a measurement vector

y1 = h1(x1, x2, . . . , xn, u1, u2, . . . , um)
...

...

yp = hp(x1, x2, . . . , xn, u1, u2, . . . , um)

Introducing vectors

y=





y1

y2
...

yp





h =





h1

h2
...

hp





allows us to compactly write the measurement equation as

y= h(x,u)

Many of the processes that we are interested in are modeled by nonlinear differential

equations. Such nonlinear state-space models can be simulated by computing its so-

lutions numerically, using e.g. a simulation package such as MATLAB/Simulink. It
is however well known that there is no general mathematical theory for the analytical

solution of nonlinear equations. Only for linear differential equations are closed-form,

analytic solutions available.
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In a few rare cases, it is possible to transform a nonlinear system into a linear one

by an appropriate change of variables. This is in general not possible. The standard

approach in process control is rather to develop a linear model that approximates the

dynamic behavior of a nonlinear system in a neighborhood of the specified operating

point. Linearization is the procedure by which we approximate nonlinear systems

with linear ones. This procedure will be described in detail in Lecture 6.

Linear State-Space Models

A linear time-invariant state-space model with n state variables, m inputs, and p

outputs is given by

dx1

dt
= a11x1 + . . .+ a1nxn + b11u1 + . . .+ b1mum
...

dxn

dt
= an1x1 + . . .+ annxn + bn1u1 + . . .+ bnmum

y1 = c11x1 + . . .+ c1nxn + d11u1 + . . .+ d1mum
...

yp = cp1x1 + . . .+ cpnxn + dp1u1 + . . .+ dpmum

Note that only linear expressions of the state variables and of the inputs appear in

the right-hand side of the equations. In a linear model, the state variables x1, . . ., xn
usually describe deviations from the desired operating point.

Introducing vectors x, u and y as before and matrices A, B, C, and D of appropriate

sizes, (3.2) can compactly be written as

dx

dt
= Ax + Bu (3.4)

y= Cx + Du (3.5)

Note that (x,u) = (0, 0) is always a steady-state solution to (3.4).
Under enough simplifying assumptions, mathematical modeling can sometimes di-

rectly yield linear dynamical models. One such modeling example is given below.

EXAMPLE 3.2—COMPARTMENT MODEL

A compartment model can be used to model the transport of substances between

interconnected volumes, such as the flow of drugs and hormones in the human body.

It is assumed that there is perfect mixing so that the substance concentration is

constant in each compartment. The complex transport processes are approximated

by assuming that the flow rates between the compartments are proportional to the

concentration differences in the compartments. This results in simple, linear models,

which are amenable to analysis.

Erik Widmark pioneered the study of ethanol pharmacokinetics in the 1920s and was

the first to describe a one-compartment model. Torsten Teorell later introduced the

two-compartment model. Compartment models are still an important analytical tool

in the development of new drugs.

A two-compartment model is shown in Figure 3.2. We assume that the transport be-

tween the connected compartments is driven by concentration differences. We further
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1 2

u

k12

k0

Figure 3.2 A two-compartment model

assume that a drug with concentration c0 is injected in compartment 1 at a volume

flow rate of u, and that the concentration in compartment 2 is the measured output.

Let c1 and c2 be the concentrations of the drug in the compartments and let V1 and V2
be the volumes of the compartments. The dynamics of the system can be obtained by

keeping track of the flow rates into and out of each compartment. The mass balances

for the compartments are

V1
dc1

dt
= k12(c2 − c1) − k0c1 + c0u

V2
dc2

dt
= k12(c1 − c2)

y= c2

Clearly, this model is not valid for all possible values of the variables. In particular,

the concentrations can never be negative in a real system.

3.3 Solution of the State Equation

For a linear state-space model, (3.4)–(3.5), it is possible to analytically compute how
the system state will behave as a function of the initial state and of the control inputs.

We will see that the eigenvalues of the system matrix A play a key role in the solution.

This will allow us to reason about stability of a system in the following section. We

will first look at the scalar case (i.e., one state variable) before treating the general
case.

The Scalar Case

Consider a first-order linear system with one input:

dx

dt
= ax + bu

The solution to this differential equation is given by

x(t) = eatx(0) +
∫ t

0

ea(t−τ )bu(τ ) dτ (3.6)

The first term on the right hand side represents the influence of the initial value and

the second term is the influence of the input signal during the time interval from 0

to t. If a < 0 then the influence of the initial value will vanish as t increases.
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3.3 Solution of the State Equation

The General Case

The linear n:th order state equation (3.4) has the solution

x(t) = eAtx(0) +
∫ t

0

eA(t−τ )Bu(τ ) dτ (3.7)

where eAt is the matrix exponential, defined as

eAt = I + At+ (At)
2

2!
+ (At)

3

3!
+ ⋅ ⋅ ⋅

As in the scalar case, the solution (3.7) consists of two parts. The first part depends
on the initial value of the state vector x(0). This part is also called the solution to
the free system or homogeneous system. The second part depends on the input signal

u over the time interval from 0 to t.

The exponential matrix is an essential part of the solution. The characteristics of the

solution is determined by the matrix A. The matrix eAt is called the fundamental

matrix or the state transition matrix of the linear system (3.4). The influence of the
B matrix is essentially a weighting of the input signals.

The Role of the Eigenvalues of A

We will now show that the eigenvalues of the matrix A play an important role for

the solution of (3.4). The eigenvalues of the matrix A are given by the roots of the
characteristic equation

det(λ I − A) = 0 (3.8)
The polynomial det(λ I − A) = P(λ) is known as the characteristic polynomial of the
system. The number of roots of (3.8) is the same as the order of A.
Let us first assume that the A matrix in (3.4) is diagonal, i.e.

A =





λ1 0 0 . . . 0

0 λ2 0 . . . 0

...
. . .

...

0 0 0 . . . λn





For a diagonal matrix the diagonal elements λ i are the eigenvalues of A. Note that
we allow λ i to be a complex number. The matrix exponential is then

eAt =





eλ1t 0 0 . . . 0

0 eλ2t 0 . . . 0
...

. . .
...

0 0 0 . . . eλnt





The eigenvalues of the A matrix will thus determine the time functions that build

up the solution. Eigenvalues with positive real part give solutions that increase with

time, while eigenvalues with negative real part give solutions that decay with time.

To interpret the solution (3.7) for a general matrix A we need to introduce the concept
of multiplicity of an eigenvalue. The multiplicity of an eigenvalue is defined as the

number of eigenvalues with the same value. If the matrix A has an eigenvalue λ i
with multiplicity mi then it can be shown that the corresponding time function in e

At

becomes

Pmi−1(t)eλ it

where Pmi−1(t) is a polynomial of t with a maximum degree of mi − 1.
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Lecture 3. State-Space Models

EXAMPLE 3.3—EIGENVALUE WITH MULTIPLICITY TWO

Assume that

A =



−1 1

0 −1





This matrix has the eigenvalue −1 with multiplicity 2. The matrix exponential is

eAt =



e−t te−t

0 e−t





To summarize, the free system response is a sum of functions Pmi−1(t)eλ it, where λ i
are the eigenvalues of the matrix A. Real eigenvalues correspond to real exponential

functions. The characteristic equation (3.8) can also have complex roots

λ = σ + iω

Such a root corresponds to the oscillatory solution

eλ t = eσ t+iω t = eσ t(cosω t+ i sinω t)

3.4 Stability

We saw in (3.7) that the solution to the linear state equation has two parts: one
depending on the initial state and one depending the input signal. When discussing

stability, we disregard the input signal and only look at the free system

dx

dt
= Ax

which has the solution

x(t) = eAtx(0)

We give the following stability definitions:

DEFINITION 3.1—ASYMPTOTIC STABILITY

A linear system is asymptotically stable if x(t) → 0 when t→∞ for all initial values
x(0) when u(t) = 0.

DEFINITION 3.2—STABILITY

A linear system is stable if x(t) is bounded for all initial values x(0) when u(t) = 0.

DEFINITION 3.3—INSTABILITY

A linear system is unstable if there is any initial value x(0) that gives an unbounded
state x(t) when u(t) = 0.

In the previous section, we found that each eigenvalue λ i gives rise to a solution
term of the form Pmi−1(t)eλ it, where mi is the multiplicity of the eigenvalue. From
this, we can conclude that the system is asymptotically stable if the real part of all
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3.4 Stability

eigenvalues are negative. If any eigenvalue has positive real part, then the system is

unstable. Finally, if all eigenvalues have negative or zero real part then the system

may be stable or unstable; if the eigenvalues with zero real part have multiplicity

one, then the system is stable.

To summarize we have the following stability criteria for linear dynamical systems:

• A linear system is asymptotically stable if and only if all eigenvalues lie in the
left half-plane, i.e., if and only if all roots λ i of the characteristic equation satisfy
Re λ i < 0.

• A linear system is unstable if any eigenvalue lies in the right half-plane, i.e., if
any root λ i of the characteristic equation satisfies Re λ i > 0.

• A linear system is stable if all eigenvalues lie in the left half-plane or on the
imaginary axis and any eigenvalues on the imaginary axis are single, i.e., if all

roots λ i of the characteristic equation satisfy Re λ i ≤ 0 and any roots satisfying
Re λ i = 0 have multiplicity one.

Note that asymptotic stability implies stability, but the opposite is not true. A stable

system that is not asymptotically stable is referred to as a marginally stable system.

EXAMPLE 3.4—STABILITY OF A FIRST-ORDER SYSTEM

Consider the scalar linear system

dx

dt
= ax

The eigenvalue is a, and the free system response is x(t) = eatx(0). The relation
between the eigenvalue location in the complex plane and the stability of the system

is illustrated in Figure 3.3.
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Figure 3.3 Relationship between eigenvalue location (top) and free system response (bottom)
for a first-order system: (a) asymptotic stability, (b)marginal stability, (c) instability. The initial
state is x(0) = 1.
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Figure 3.4 Relationship between eigenvalue locations (top) and free system response (bottom)
for a second-order system: (a) asymptotic stability, (b) marginal stability, (c) instability. The
initial state is x(0) = [1 0]T .

EXAMPLE 3.5—STABILITY OF A SECOND-ORDER SYSTEM

Consider a second-order system with complex eigenvalues. The imaginary part of the

eigenvalues causes the free response to oscillate, cf. (3.3). The relation between the
eigenvalue locations in the complex plane and the stability of the system is illustrated

in Figure 3.4.

Routh–Hurwitz Stability Criteria

It turns out that it is not necessary to compute the eigenvalues of A to check stability;

it is sufficient to study the coefficients of the characteristic polynomial. Assume that

the characteristic polynomial is given by a monic polynomial

P(λ) = det(λ I − A) = λn + p1λn−1 + p2λn−2 + . . .+ pn

A necessary condition for asymptotic stability is that all coefficients p1, . . . , pn are

positive.

Exact conditions for asymptotic stability were derived by E. J. Routh and A. Hurwitz

in the 19th century. The resulting stability tests are known as the Routh–Hurwitz

stability criteria. It is useful to know the Routh–Hurwitz criteria for second and third

order systems by heart. For a second-order characteristic polynomial,

P(λ) = det(λ I − A) = λ2 + p1λ + p2

the system is asymptotically stable if and only if p1 > 0 and p2 > 0. For a third-order
characteristic polynomial,

P(λ) = det(λ I − A) = λ3 + p1λ2 + p2λ + p3

the system is asymptotically stable if and only if p1 > 0, p2 > 0, p3 > 0, and p1p2 > p3.
Criteria for higher-order systems can be derived using the so called Routh–Hurwitz’

algorithm.
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4. Input-Output Models

In this lecture we will focus on linear dynamical processes and analyze the input-

output behavior of such systems. We will disregard the internal states of the systems.

The concept of a transfer function will allow us to treat linear dynamical systems as

abstract mathematical objects. These objects can be connected in series, parallel or

feedback fashion by means of simple algebraic manipulations. The use of transfer

functions and the Laplace transform makes it straightforward to calculate the output

response to arbitrary input signals.

4.1 The Laplace Transform

Solving the state equation (3.4) for a particular input signal can be very cumber-
some and usually gives little insight into the general properties of the system. To

simplify the study of linear differential equations we therefore introduce a new tool:

the Laplace transform. This is a method that is often used in applied mathematics.

The Laplace transform gives a way to get a feel for the behavior of the system without

solving the differential equations in detail. The Laplace transform will thus make it

possible to qualitatively determine how the processes will react to various types of

input signals and disturbances.

Definition

The Laplace transform is a transformation from a real-valued function of a scalar

variable t to a complex-valued function of a complex variable s. In process control

t is the time and s can be interpreted as a (complex) frequency. The transforma-
tion implies that both time functions and differential equations are transformed into

functions of a complex variable. The analysis of the systems can then be done by

investigating the transformed variables. The solution of differential equations is re-

duced to algebraic manipulations of the transformed system and the transformed

time functions.

DEFINITION 4.1—LAPLACE TRANSFORM

The Laplace transform of the function f (t) is denoted F(s) and is obtained through

F(s) = L{ f (t)} =
∫ ∞

0

e−st f (t) dt

Direct application of the definition can be used to derive the Laplace transform of

some common time functions:

EXAMPLE 4.1—LAPLACE TRANSFORM OF A STEP FUNCTION

Let f (t) be a unit step function

f (t) =
{

0 t < 0
1 t ≥ 0
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Lecture 4. Input-Output Models

The Laplace transform is

F(s) =
∫ ∞

0

e−st dt =
[

− e
−st

s

]∞

0

= 1
s

EXAMPLE 4.2—LAPLACE TRANSFORM OF A RAMP FUNCTION

Assume that f (t) is a ramp

f (t) =
{

0 t < 0
at t ≥ 0

The Laplace transform is

F(s) =
∫ ∞

0

ate−st dt = a
s2

Often the definition is not used directly. A table of Laplace transforms of common

time functions is found in the Collection of Formulae.

Properties of the Laplace Transform

From the definition of the Laplace transform it follows that it is a linear operator,

i.e.

L{a1 f1(t) + a2 f2(t)} = a1L{ f1(t)} + a2L{ f2(t)} = a1F1(s) + a2F2(s)
Since the single-sided Laplace transform is used, F(s) does not contain any informa-
tion about f (t) for t < 0. This is usually not a drawback in process control since we
can define that the systems are in steady state for t < 0 and let the inputs start to
influence the systems at t = 0.
To obtain the Laplace transform of a differential equation it is necessary to derive

the transform for a time derivative of a signal.

THEOREM 4.1—LAPLACE TRANSFORM OF TIME DERIVATIVE

Let F(s) be the Laplace transform of f (t). Then

L

{
d f (t)
dt

}

= sF(s) − f (0)

where f (0) is the initial value of the function f (t).

If the initial values are zero then taking the time derivative corresponds to multi-

plication by s. If the differential equation has initial values the expressions become

more complex.

The following theorem is useful for analysing dead time processes.

THEOREM 4.2—LAPLACE TRANSFORM OF TIME DELAY

Let F(s) be the Laplace transform of f (t), and let L > 0 be a time delay. Then

L{ f (t− L)} = F(s)e−sL
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4.1 The Laplace Transform

The following two theorems can be used to obtain steady state values and starting

of solutions to differential equations. They will prove useful when analyzing the step

responses of dynamical systems.

THEOREM 4.3—FINAL VALUE THEOREM

Let F(s) be the Laplace transform of f (t). Then

lim
t→∞

f (t) = lim
s→0
sF(s)

if the limit on the left hand side exists.

THEOREM 4.4—INITIAL VALUE THEOREM

Let F(s) be the Laplace transform of f (t). Then

lim
t→0
f (t) = lim

s→∞
sF(s)

if the limit on the left hand side exists.

Further properties of the Laplace transform can be found in the Collection of Formu-

lae.

Solution of Linear Differential Equations Using the Laplace Transform

Using Theorem 4.1 together with a table of Laplace transforms makes it very easy to

solve ordinary differential equations. Sometimes, it is necessary to use partial fraction

decomposition before applying the inverse transform. Two examples are given below.

EXAMPLE 4.3—FIRST-ORDER INHOMOGENEOUS ODE WITH INITIAL VALUE

Determine the solution to the first-order linear differential equation

dy

dt
+ ay= t

with the initial value y(0) = y0.
Taking the Laplace transform of each term in the equation gives

sY(s) − y0 + aY(s) =
1

s2

Y(s) = y0

s+ a +
1

s2(s+ a)

Applying the inverse Laplace transform (using the table of transforms) yields

y(t) = e−aty0 +
t

a
− 1
a2

(
1− e−at

)

The influence of the initial value will vanish as t→∞ if a > 0.
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Lecture 4. Input-Output Models

EXAMPLE 4.4—SECOND-ORDER INHOMOGENEOUS ODE

Determine the solution to the second-order linear differential equation

d2y

dt2
+ 4dy
dt
+ 3y= 5 sin 2t

with the initial conditions

y(0) = 0 dy(0)
dt

= 0
Taking the Laplace transform of the equation gives

(s2 + 4s+ 3)Y(s) = 10

s2 + 4
The transform of the output is

Y(s) = 10

(s2 + 4s+ 3)(s2 + 4) =
10

(s+ 1)(s+ 3)(s2 + 4)

= 1

s+ 1 −
5

13

1

s+ 3 −
8

13

s

s2 + 4 −
1

13

2

s2 + 4
The table of transforms now gives

y(t) = e−t − 5
13
e−3t − 8

13
cos 2t− 1

13
sin 2t

4.2 The Transfer Function

Let the input–output relationship of a linear system be described by an n:th order

differential equation

dny

dtn
+ p1

dn−1y
dtn−1

+ ⋅ ⋅ ⋅+ pny= q0
dmu

dtm
+ q1

dm−1u
dtm−1

+ ⋅ ⋅ ⋅+ qmu (4.1)

Assuming that all initial values are zero and taking the Laplace transform gives

(sn + p1sn−1 + ⋅ ⋅ ⋅+ pn)Y(s) = (q0sm + q1sm−1 + ⋅ ⋅ ⋅+ qm)U(s)
Introducing the polynomials

P(s) = sn + p1sn−1 + ⋅ ⋅ ⋅+ pn
Q(s) = q0sm + q1sm−1 + ⋅ ⋅ ⋅+ qm

this can be compactly written as

P(s)Y(s) = Q(s)U(s)
Solving for Y(s) gives

Y(s) = Q(s)
P(s)U(s) = G(s)U(s)

G(s) is called the transfer function of the system. It is a compact representation of the
input-output relationship (4.1). Using the transfer function, the output response Y(s)
to any input signal U(s) can be found by means of the simple algebraic relationship

Y(s) = G(s)U(s) (4.2)
In general, this procedure is much simpler than directly solving the differential equa-

tion (4.1) in the time domain.
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4.2 The Transfer Function

Solution of the State Equation Using the Laplace Transform

We will now calculate the response of a state-space system by using the Laplace

transform. Starting from a linear state-space model

dx

dt
= Ax + Bu

y= Cx + Du

and taking the Laplace transform of each term yields

sX (s) − x(0) = AX (s) + BU(s)
Y(s) = CX (s) + DU(s)

Note that we include the initial value of x. Solving for X (s) gives

(sI − A)X (s) = x(0) + BU(s)
X (s) = (sI − A)−1x(0) + (sI − A)−1BU(s)

The output signal is given by

Y(s) = C(sI − A)−1x(0) +
(

C(sI − A)−1B + D
)

U(s) (4.3)

Just as we saw in Equation (3.7) in the previous lecture, we have one part that
depends on the initial state x(0) and one part that depends on the input signal u(t).
Since the system is linear, we can study the response to the initial state and the input

separately. Assuming x(0) = 0, we obtain the input-output relationship

Y(s) =
(

C(sI − A)−1B + D
)

U(s) = G(s)U(s)

Again, G(s) is the called transfer function of the system.

Poles and Zeros

The transfer function G(s) gives the properties of the system and can be used to deter-
mine its dynamical behavior without solving the differential equations. The transfer

function can often be written as a rational function

G(s) = Q(s)
P(s)

where Q(s) and P(s) are polynomials in the Laplace variable s. P(s) is called the
characteristic polynomial of the system. The degree of P(s) is n, where n is the order
of the system. The degree of Q(s) is less than or equal to n.
One important exception to the above is when the system contains a time delay. A

process dead time of L seconds corresponds to the inclusion of a factor e−sL in the
transfer function. This factor cannot be written as a rational function, and hence

cannot be described in terms of a finite number of poles and zeros.

DEFINITION 4.2—POLES

The poles of the system are given by the roots of the characteristic polynomial, i.e.,

by the n solutions to

P(s) = 0
This is known as the characteristic equation.
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Figure 4.1 Singularity diagram for the system G(s) = k(s+ 1)/(s2 + 4s+ 8).

DEFINITION 4.3—ZEROS

The zeros of the system are given by the roots of Q(s), i.e., by the solutions to

Q(s) = 0

The poles and zeros for a given transfer function G(s) can be illustrated in a singu-
larity diagram (also known as a pole/zero map). The poles are represented by crosses
and the zeros by circles in the complex s-plane, see the example in Figure 4.1. Note

that to fully specify the transfer function from the singularity diagram it is necessary

to know the gain parameter k in the transfer function.

Relationship Between Eigenvalues and Poles

For a linear state-space system

dx

dt
= Ax + Bu

y= Cx + Du

we have shown above that the transfer function is given by

G(s) = C(sI − A)−1B + D

By noting that

(sI − A)−1 = adj(sI − A)
det(sI − A)

we see that the poles of G(s) are given by the roots of the characteristic equation

det(sI − A) = 0

This is the same equation as (3.8) (with s as the independent variable instead of λ).
We conclude that the poles of G(s) are identical to the eigenvalues of A. The stability
criteria in Section 3.4 can hence be used also to check the stability of systems written

in transfer function form. For instance, for a system to be asymptotically stable, all

poles should lie in the left half plane.
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4.3 Block Diagram Algebra

Translation Between Different System Representations

So far, we have encountered three different ways to represent a linear dynamical

system:

• Linear state-space model

• Higher-order linear differential equation

• Transfer function

The three representations are equivalent in the sense that they can all capture the

input–output relationship of a linear system. The state-space model is however more

expressive since it also keeps track of the internal state variables of the system.

It is straightforward to translate between the last two representations using Theo-

rem 4.1. The translation from state-space model to transfer function is given by (4.2).
The opposite translation is non-unique, since the state variables can be chosen in

infinitely many ways. Translation charts for various canonical state-space forms are

given in the Collection of Formulae.

4.3 Block Diagram Algebra

A control system typically consists of several subsystems. These may be different parts

of the process, sensors, controllers, and actuators. It important to be able to describe

the dynamics of the full system. Block diagrams and transfer functions are good

tools in this respect. For linear systems each subsystem (block) can be described by a
transfer function. The subsystems can be connected in different ways. There are three

basic couplings, see Figure 4.2. Let each the subsystem have the transfer functions

G1 and G2 and let the total transfer function from the input to the output be G. We

have the following relationships:

Σ

Σ

G1 G2

G1

G2

G1

−G2

(a)

(b)

(c)

Figure 4.2 Three basic connections of subsystems: (a) series connection, (b) parallel connec-
tion, (c) feedback connection.
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Series connection:

G(s) = G1(s)G2(s)

Parallel connection:

G(s) = G1(s) + G2(s)

Feedback connection:

G(s) = G1(s)
1+ G1(s)G2(s)

The three basic couplings can be used to simplify a complex system to derive the

total transfer function from the input to the output. A straightforward way to derive

the total transfer function from inputs to the output is to introduce notations for the

internal signal and write down the relations between the signals. The extra signals

are then eliminated one by one until the final expression is obtained. Another way

to simplify the derivation is the so called backward method. The method can be used

on systems without inner feedback loops and is illustrated in the following example.

EXAMPLE 4.5

We consider the system in Figure 4.3 and derive the transfer functions from U(s)
and V (s) to Y(s). Start from the output end of the block diagram and write down
the expression for the Laplace transform of the output. This is expressed in signals

coming from the left. These signals are then expressed in terms of other signals, and

so on. For the example we have

Y = G2(V + Y1)
Y1 = G1E
E = H1U − H2Y

Combining these, we have

Y = G2(V + G1(H1U − H2Y))

After some training it is possible to write down the last expression directly, without

introducing the internal variables Y1 and E. Solving for Y, The expression for the

Laplace transform of the output is given as

Y = G1G2H1

1+ G1G2H2
U + G2

1+ G1G2H2
V

Σ Σ
U E

V

YY1
G1 G2

−H2

H1

Figure 4.3 The system in Example 4.5

.
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5. Transient Analysis. Nonlinear

Systems

In the first part of this lecture, we will finish the analysis of linear dynamical system

by studying their transient response—their impulse response and their step response.

In the second part, we will have a look at typical nonlinearities in process control.

5.1 Impulse and Step Response

In the previous lecture, we learned how to calculate the output response of a linear

system to an arbitrary input signal using the Laplace transform. Given the systems’s

transfer function G(s), the input-output relationship in the Laplace domain is given
by

Y(s) = G(s)U(s)

Below we study two important special cases: the response to an impulse function and

the response to a step function.

The Impulse Response

The impulse response describes how the output signal responds when the input signal

is an impulse function, i.e.,

u(t) = δ (t)

Impulse response analysis is common in medicine and biology. One can for instance

inject a substance into the blood circulation and study the resulting uptake and

secretion. An example of an impulse response experiment is shown Figure 5.1.
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Figure 5.1 Impulse response experiment.
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Lecture 5. Transient Analysis. Nonlinear Systems

For a linear system, the impulse response, denoted h(t), is easily computed from a
state-space model or a transfer function model. With x(0) = 0 and u(t) = δ (t), the
solution (3.7) to the state-space equation simplifies to

x(t) = eAtB

and the output is given by

y(t) = CeAtB + Dδ (t) " h(t)

Once again it is seen that the matrix exponential eAt plays an important role. The

impulse response will approach zero when t → ∞ if the system is asymptotically

stable, and it will be bounded (except, possibly, at t = 0) if the system is stable.
For a system given in transfer function form, the output is computed as

Y(s) = G(s)U(s) (5.1)

The Laplace transform of the input u(t) = δ (t) is U(s) = 1, so we have

Y(s) = G(s)

The transfer function is hence equal to the Laplace transform of the impulse response.

The impulse response can be obtained through inverse transformation:

h(t) = L−1
{

G(s)
}

h(t) is also known as the weighting function of the system. The reason is the following.
The response to a general input u(t) can be computed by (5.1). Applying the inverse
transform to we obtain

y(t) =
∫ t

0

h(t− τ )u(τ ) dτ (5.2)

The output at time t is hence a weighted sum of old inputs up to time t, where h(t)
determines how old inputs are weighted.

The Step Response

The step response describes how the output signal responds when the input signal is

a unit step function, i.e.,

u(t) =
{

0 t < 0
1 t ≥ 0

Step response analysis is very common in chemical process industry, where it can

be used to identify process dynamics. An example of a step response experiment is

shown in Figure 5.2

For a linear system in state-space form, assuming det A ,= 0, the step response can
be calculated as

y(t) = CA−1(eAt − I)B + D t ≥ 0
If the transfer function is given, the system output can be calculated using

Y(s) = G(s)U(s)

40



5.1 Impulse and Step Response

−1 0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

−1 0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

O
u
tp
u
t

In
p
u
t

Time

Figure 5.2 Step response experiment.

where the Laplace transform of the step input is given by U(s) = 1/s. We have

Y(s) = G(s)1
s

Applying the inverse Laplace transformation yields

y(t) = L−1
{
1

s
G(s)

}

=
∫ t

0

h(τ ) dτ

The step response is thus given by the integral of the impulse response.

Static Gain

In Section 2.2 is was shown how the static gain of a process can be determined from

a step-response experiment as Kp = ∆y/∆u. If the process is linear and its transfer
function G(s) known, the static gain can be directly obtained as Kp = G(0).
To prove this fact, let the input signal be a step of size ∆u: U(s) = ∆u/s. The output
signal then becomes

Y(s) = G(s)∆u

s

Applying the final value theorem yields

∆y= lim
t→∞
y(t) = lim

s→0
sY(s) = lim

s→0
sG(s)∆u

s
= G(0)∆u

and we have the static gain

Kp =
∆y

∆u
= G(0)

Note that the final value—and hence the static gain—exists if and only if G(s) is
asymptotically stable.
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Figure 5.3 Singularity chart and step response for the process G(s) = 1/s.

5.2 Relationship Between Transfer Function and Step

Response

In many situations it is useful to be able to see the characteristics of the step response

directly from the transfer function, without the need of calculations. In this section

we will see how the poles of the system affect the properties of the step response

for some simple processes. The influence of a process zero and a dead time in the

transfer function will also be examined.

Integrating System

Assume that the process is an integrator, described by the transfer function

G(s) = K
s

This process has a pole in s = 0. If the input of the process is a unit step, the Laplace
transform of the process output becomes

Y(s) = G(s)1
s
= K
s2

The output of the process is obtained by inverse transformation:

y(t) = Kt

It is seen that the output is unbounded and that the steady-state value does not

exist. The process can be said to have infinite static gain. Figure 5.3 shows the step

response when K = 1.

First-Order System

Assume that the transfer function of the process is given by

G(s) = K

1+ sT
This process has a pole in s = −1/T . If the input of the process is a unit step, the
Laplace transform of the process output becomes

Y(s) = G(s)1
s
= K

s(1+ sT)
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Figure 5.4 Singularity chart and step response for the process G(s) = 1/(1 + sT) when
T = 1, 2, 5.

The output of the process is obtained by inverse transformation

y(t) = K
(

1− e−t/T
)

If T < 0, i.e. if the pole lies in the right half-plane, the process is unstable and y(t)
is unbounded. From now on we assume that T > 0, i.e. that the pole lies in the left
half-plane.

Figure 5.4 shows the step responses corresponding to three different values of T .

We recognize this as the single-capacitive process type from Section 2.3. The figure

shows that a smaller T yields a faster step response. It also shows the pole of the

process. The further into the left half-plane the pole lies, the faster the step response

becomes.

The static gain of the system is

G(0) = K

This tell us that the process output approaches y= K as t→∞.
The parameter T is called the time constant of the process. At time t = T the process
output is given by

y(T) = K
(

1− e−T/T
)

= K
(

1− e−1
)

( 0.63K

Time constant T is thus the time it takes for the step response to reach 63% of its

final value. This is also seen in Figure 5.4.

Applying the initial value theorem on y(t) tells us that y(0) = 0. It is more interesting
to study at which rate the process output changes in the initial phase, i.e. to study

ẏ(0):

lim
t→0
ẏ(t) = lim

s→∞
s ⋅ sY(s) = lim

s→∞
s2K

s(1+ sT) =
K

T

The shorter the time constant, i.e. the further into the left half-plane the pole lies,

the faster the initial change of the process output becomes. This is also visible in

Figure 5.4.
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Figure 5.5 Singularity chart and step response of the process G(s) = 1/(1 + sT)2 when
T = 1, 2.

Second-Order System with Real Poles

Assume that the transfer function of the process is given by

G(s) = K

(1+ sT1)(1+ sT2)

This process has two real poles, in s = −1/T1 and s = −1/T2, respectively. T1 and T2
are the time constants of the process. Compared to a first-order system, the second-

order system has an equivalent time constant Teq = T1 + T2.
If the input to the process is a unit step, the Laplace transform of the process output

is given by

Y(s) = G(s)1
s
= K

s(1+ sT1)(1+ sT2)
By inverse transformation of this expression, we obtain the output of the process

y(t) =







K

(

1− T1e
−t/T1 − T2e−t/T2
T1 − T2

)

T1 ,= T2

K

(

1− e−t/T − t
T
e−t/T

)

T1 = T2 = T

From the first expression we see that, when one of the time constants is significantly

smaller than the other, the step response will approach that of a first-order process,

as in Example 5.2. If any pole lies in the right half-plane, the process is unstable

and y(t) grows out of bounds. We therefore assume that both poles lie in the left
half-plane, i.e. that T1 > 0 and T2 > 0.
Figure 5.5 shows the step response of the process as T1 = T2 = T . We recognize this
as a multi-capacitive process (see Section 2.3). Just as in the previous example, we
observe that the step response becomes faster as the poles move further into the left

half-plane. The static gain is

G(0) = K
It tells us that the output approaches y= K as t→∞.
The initial value theorem applied to ẏ(t) yields

lim
t→0
ẏ(t) = lim

s→∞
s ⋅ sY(s) = lim

s→∞
s2K

s(1+ sT1)(1+ sT2)
= 0
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Hence the time derivative is zero, which is also evident from Figure 5.5.

It is easy to verify that the initial time derivative is zero for all systems where the

number of poles minus the number of zeros is greater than one.

Second-Order System with Complex Poles

For a second order system with complex poles it is often convenient to write the

transfer function in the form

G(s) = Kω 20
s2 + 2ζ ω 0s+ω 20

0 < ζ < 1

Interpretations of the parameters ω 0 and ζ are given in Figure 5.6. The parameter
ω 0 is called the undamped frequency and corresponds to the distance between the
poles and the origin. The parameter ζ is called the relative damping and is related
to the angle ϕ as in Figure 5.6 through

ζ = cosϕ

The relative damping ζ gives the relation between the real and imaginary parts of
the poles.

If the process input is a step, the Laplace transform of the process output becomes

Y(s) = G(s)1
s
= Kω 20
s(s2 + 2ζ ω 0s+ω 20)

By inverse transformation of this expression the following process output is obtained.

y(t) = K
(

1− 1
√

1− ζ 2
e−ζ ω0t sin

(

ω 0

√

1− ζ 2t+ arccosζ

))

0 < ζ < 1

Im

Re

ω 0

ϕ

Figure 5.6 Interpretation of the parameters in the characteristic polynomial s2+2ζ ω 0s+ω 20.
The distance between the poles and the origin is the undamped frequency ω 0, whereas ζ = cosϕ
is the relative damping of the system.

45



Lecture 5. Transient Analysis. Nonlinear Systems

−1.5 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0 5 10 15
0

0.5

1

1.5

−2 −1 0 1

−1

−0.5

0

0.5

1

0 5 10 15
0

0.5

1

1.5

ζ =0.9
ζ =0.9

ζ =0.9 ζ =0.7

ζ =0.7

ζ =0.7
ζ =0.3

ζ =0.3

ζ =0.3

ω0=0.5

ω0=0.5

ω0=0.5
ω0=1

ω0=1

ω0=1 ω0=1.5

ω0=1.5

ω0=1.5

Re

Re

Im
Im

Time

Time

Singularity Chart

Singularity Chart

Step Response

Step Response

Figure 5.7 Singularity chart and step response of the process G(s) = 1/(s2 + 2ζ ω 0s +ω 20).
The two upper plots show the cases ζ = 0.7 and ω 0 = 0.5, 1, 1.5. The two lower plots show the
cases ω 0 = 1 and ζ = 0.3, 0.7, 0.9.

The expression contains a term consisting of a sinusoid with decaying amplitude.

Figure 5.7 shows the step response of the process for some different values of ζ and
ω 0. The parameter ω 0 determines the distance between the poles and the origin. Just
as in the previous examples, the step response becomes faster as the poles are moved

further into the left half-plane. We also see that the shape of the step response does

not change as long as ζ is held constant.

The parameter ζ determines the ratio between the real and imaginary part of the
poles. Figure 5.7 shows that the smaller ζ is, the less damped the step response
becomes. We also see that the initial part of the step response is fairly consistent as

long as ω 0 is held constant.

Second-Order System with a Zero

We will now examine the effect of a zero in the process transfer function. Assume

that the transfer function is given by

G(s) = (1+ sTz)G0(s)

where G0(s) is a stable transfer function without zeros. The influence of Tz will now
be determined. The step response is given by

y(t) = L−1
{

G0(s)
1

s

}

+ TzL−1 {G0(s)}
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Figure 5.8 Singularity chart and step response of the process G(s) = (1 + sTz)/(1 + sT)2
when Tz = 3,−3. The dashed step response corresponds to G0(s) = 1/(1+ sT)2, i.e., the process
without a zero.

The response is a weighted sum of the step and impulse responses of the system

G0(s). If Tz is small, the step response is dominated by the step response of G0(s). If
Tz is large, the shape of the step at the beginning will be dominated by the impulse

response of G0(s).
Figure 5.8 shows the step response of the process

G(s) = 1+ sTz
(1+ sT)2 T = 2

for different values of Tz. When Tz is negative, the step response starts in the “wrong”

direction. We recognize this as the inverse response process type from Section 2.3.

In the process industry, a well known example of a process with inverse response

arises when controlling the dome level in steam boilers. If one, for instance, would

like to increase the dome level by increasing the flow of water into the dome, the

first reaction will be that the water in the dome is cooled. This results in less steam

bubbles in the water and consequently the dome level decreases. Only after a while,

when the water has been heated anew, will the level increase.

Dead-Time System

In the last example, we study the effect of a dead time (time delay) in the transfer
function. Assume that the transfer function is given by

G(s) = G0(s)e−sL, L > 0

where G0(s) is the delay-free part of the process dynamics and L is the dead time.
Let y0(t) be the delay-free step response, i.e.,

y0(t) = L−1
{

G0(s)
1

s

}

Then the step response for the dead time process will simply be delayed by L time

units:

y(t) = y0(t− L)
The dead time can be combined with any of the transfer functions examples studied

above.
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5.3 Nonlinear Systems

As a simplifying assumption, we often say that the process we wish to control is linear.

By this we mean that the reaction of the process to changes in the control signal is

the same regardless of which part of the working range of the process we are lying

in. As long as the process is linear we can use one and the same controller setting

over the whole of the working range.

In practice, however, we always have nonlinearities in our control loops. In many

cases these may be disregarded, but sometimes they cause problems that we have

to remedy. This is particularly true if there are high demands on performance. It is

important to remember that we use the term process to mean everything which lies

outside the controller; this therefore includes transducers, control devices, etc.

Nonlinear Actuators—Valves

Valves are probably the most common cause of problems with nonlinearities in process

control. This is partly because they are nonlinear in their design, and partly because

they often cause problems because they are not in good condition.

A valve often has a different gain in different working areas. This can be determined

by drawing out the characteristics of the valve, i.e. the relationship between the signal

input to the valve and the flow through it. Figure 5.9 shows some common types of

valve characteristic. The linear characteristic is naturally the one the controller would

most like to see. If we have linear characteristics we can use the same controller

parameters over the whole of the working range. The quick opening characteristic

quickly gives a fast flow when the valve is opened. The equal percentage valve gives

a constant relative accuracy. The throttle valve is by nature a quick-opening valve.

However, using actuators, cams etc., the characteristic can be changed to linear or

equal percentage.

The above reasoning will hold as long as we do not have any large pressure-reducing

element in our line apart from the valve. If we have any other constrictions which

cause a pressure reduction in the line, the valve characteristics may be completely

different. In order to understand this, let us look at the two cases illustrated in

Figure 5.10. The flow through the valve is proportional to the square root of the

pressure difference, i.e. the difference in pressure before and after the valve. In the

first case, valve A is the only pressure-reducing element, and the characteristic will

Flow

Quick opening

Equal percentage

Linear

Valve position

Figure 5.9 Some different types of valve characteristics
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A

B C

Figure 5.10 Two cases which will result in different valve characteristics

be that which was expected. In the second case, apart from valve B we have valve

C which reduces the pressure in the line. An increase in the valve position of valve

B, therefore, will not give as large an increase in flow as a corresponding opening of

valve A would give.

It is not difficult to understand the technical problems of control when the valve is

nonlinear. Assume for a moment that we have a quick-opening valve. At a small valve

position the relative change in flow is large; in other words the valve has a high gain

at small valve openings. On the other hand, the quick-opening valve has a low gain at

large valve openings. If we are to tune a controller which is to span the whole control

range of the valve, we would have to give it a low gain so that we don’t get stability

problems at small valve openings. This, however, will result in slow control at large

valve apertures as we then have low gain in both the process and the controller.

One solution to the problem is to tell the controller what the valve characteristics

look like, so that it can vary its gain at different working positions. This is called

gain scheduling and will be discussed at the end of the lecture.

Nonlinear Sensors

Transducers (sensors) are often nonlinear. The reason for this is that the transduc-
ers are often not measuring directly the quantity we are actually interested in, but

another quantity which is related to it. Temperature transducers made of thermocou-

ples are one example. In the thermocouple, a voltage is measured which is dependent

on the temperature. The relationship between voltage and temperature is not linear.

Many controllers are indeed fitted with a calibration table so that one can linearize

these signals. In this way, the controller algorithm really does get a signal which is

proportional to temperature.

We shall look more closely at two other cases of nonlinear transducer where we often

have to remember to compensate for the nonlinearities ourselves.

pH Control. pH meters are often used for measuring concentrations in a fluid. The

pH meter is really measuring the concentration of hydrogen ions in the fluid. The

relationship between hydrogen ion concentration and the concentration we actually

wish to control is often nonlinear. This relationship often looks similar to that shown

in Figure 5.11. Here we can see clearly how the gain varies at different working

points. If we want to control our process just using a fixed controller, we should

tune it according to the worst case. This means that we should give the controller a

low enough gain so that we do not get stability problems where the process has its

highest gain. The result is that we have to accept slow control in the area where the

process has low gain. One solution to this problem is to tell the controller what the

nonlinearity looks like, and let the controller compensate for it accordingly.
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pH

Concentration

Figure 5.11 Example of the relationship between concentration and pH value

Flow Measurement. Flow is commonly measured by means of a differential pres-

sure sensor. The pressure difference is not a linear function of flow, but the pressure

is proportional to the square of the flow rate. In order to get a linear process, there-

fore, we have to take the square root of the signal before it reaches the PID algorithm

(see Figure 5.12). The transducers themselves are sometimes provided with a square
root algorithm, so that the signals from the device are already linear. In order to

cover those cases where the transducers themselves do not linearize the signal, most

process controllers have the ability to take the square root of the process variable.

Flow
Pressure

Flow

Figure 5.12 Compensation of the signal from a differential pressure sensor in order to give

a flow signal

Nonlinear Process Dynamics

Process dynamics are often nonlinear. If the nonlinearity is smooth, it is possible to

approximate the dynamics using a linear model around a stationary operating point.

This method is known as linearization and will be described in the next lecture. Below

we give two examples of nonlinear process dynamics.

Heating Processes. One example of a process where the dynamics vary depending

on whether the control signal is rising or falling is in heating processes, e.g. furnaces.

In these cases we can often increase the temperature in the controlled medium rela-

tively quickly by raising the temperature of the furnace. Lowering of the temperature

usually occurs without any active cooling, i.e. the medium is just allowed to cool nat-

urally. In automatic control terms, this means that the process has a high gain (and
a short time constant) when the control signal is increasing, and a low process gain
(and a long time constant) when the control signal reduces.

Population Dynamics. Another example of processes with nonlinear dynamics is

population dynamics. The dynamics of populations are interesting and important in

many different areas of social and environmental policy. There are examples where

new species have been introduced into new habitats, sometimes with disastrous re-

sults.
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Let x be the population of a species at time t. A simple model is to assume that the

birth rates and mortality rates are proportional to the total population. This gives

the linear model
dx

dt
= bx − dx = (b− d)x = rx, x ≥ 0 (5.3)

where birth rate b and mortality rate d are parameters. The model gives an exponen-

tial increase if b > d or an exponential decrease if b < d. A more realistic model is
to assume that the birth rate decreases when the population is large. The following

modification of the model has this property:

dx

dt
= rx

(

1− x
xc

)

, x ≥ 0, (5.4)

where xc is the carrying capacity of the environment. This model is called the logistic

growth model.

A simulation of the logistic growth model is shown in Figure 5.13. The parameters

are r = 1 and xc = 100. It is seen that close to the (unstable) equilibrium point x = 0,
the population grows exponentially. Close to the (stable) equilibrium point x = 100,
however, the population saturates.

A more sophisticated model of population dynamics includes the effects of competing

populations, where one species may feed on another. This is known as a predator-prey

model.

Let H(t) represent the number of hares (prey) and let L(t) represent the number of
lynxes (predator). The dynamics of the system are modeled as

dH

dt
= rH

(

1− H
k

)

− aHL
c+ H , H ≥ 0,

dL

dt
= b aHL
c+ H − dL, L ≥ 0.

(5.5)

In the first equation, r represents the growth rate of the hares, k represents the

maximum population of the hares (in the absence of lynxes), a represents the inter-
action term that describes how the hares are diminished as a function of the lynx

population and c controls the prey consumption rate for low hare population. In the

second equation, b represents the growth coefficient of the lynxes and d represents
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Figure 5.13 Simulation of the logistic growth model
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Figure 5.14 Simulation of the predator-prey model

the mortality rate of the lynxes. Note that the hare dynamics include a term that

resembles the logistic growth model (5.4).

A simulation of the predator-prey model is shown in Figure 5.14. For the given pa-

rameters and initial conditions, the populations do not converge to stationary values.

Rather, they oscillate and converge to a stable so called limit cycle. Limit cycles are

a common feature of nonlinear dynamical systems.

Gain scheduling

Above we have seen different types of nonlinearities—in the actuator, in the sensor,

and in the process dynamics. If we want to able to operate the process over a wide

range of values, it is often necessary to compensate for the nonlinearity. Sometimes,

when we know the form of the nonlinearity exactly, we can do this very accurately.

Examples of this are the compensation for thermocouples and taking the square root

of the signal from a flow meter. In most cases, however, the compensation is not so

simple. Also, it is often unnecessary for the compensation to be so accurate. In this

section we shall show how we can compensate for nonlinearities by the use of gain

scheduling.

In principle, gain scheduling is a table with a number of sets of controller parame-

ters which are each used under different operating conditions. We could imagine, for

example, that instead of one controller we had three, each of which worked within

its own part of the overall working range, and a switch which selected the correct

controller. Let us illustrate the principle with an example.

EXAMPLE 5.1—GAIN SCHEDULING WITH A NONLINEAR VALVE

Figure 5.15 shows the principle of gain scheduling in the control of a nonlinear valve.

In the table we have filled in the PID controller parameters which correspond to the

different working points. For small valve positions the lowest parameters are used;

for medium valve openings the middle set of parameters is used, and the upper set of

parameters is used for the large valve openings. One could naturally have more than

three sets if a more accurate distribution was required.

The output signal from the controller is used in this case to determine when we should

change controller parameters. It is of course the control signal which determines

where on the valve characteristic we find ourselves, i.e. the gain of the process.
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Figure 5.15 Gain scheduling to compensate for a nonlinear valve

In the example above we allowed the control signal to determine which controller

parameters were to be used. In other types of nonlinearity, other types of signal are

used to determine this. Here are some examples of reference signals selected for gain

scheduling:

1. Nonlinear valves, actuators: The control signal is used to form the reference

signal for gain scheduling.

2. Nonlinear transducers or nonlinear dynamics: The process variable is used to

produce the reference signal for gain scheduling

3. Production-dependent variations: Some external signal is used to form the gain

scheduling reference signal. In the case of heating it is, for example, the change

in the control signal which determines which parameters should be used.

We end by showing an example of the second choice of reference signal for gain

scheduling.

EXAMPLE 5.2—GAIN SCHEDULING WITH A NONLINEAR TANK

Figure 5.16 shows the principles of gain scheduling in the level control of a tank

with a variable cross-sectional area. Because of the shape of the tank, the gain of the

process varies depending on the level in the tank. In this case, at low levels we have

a small cross-sectional area in the tank. This means that the level varies rapidly if

we vary the flow into the tank. In other words, the process has a high gain when the

level in the tank is low. At high tank levels we have a relatively large cross-sectional

area in the tank. The process therefore has a low gain when the level in the tank is

high.

In this example is would be desirable to have different controller parameters at dif-

ferent tank levels. The gain scheduling should therefore be controlled by the level

measuring signal. The control signal, which determines the controlled flow into the

tank, will not function as a reference signal in this case because it is not at all related

to the tank level and therefore to the nonlinearity.
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Figure 5.16 Gain scheduling in the level control of a nonlinear tank
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6. Linearization. Feedback

Systems—An Example

6.1 Linearization

For processes with nonlinear dynamics, it is possible to linearize the nonlinear state-

space model around a stationary point. The resulting linear approximation is valid

in a small region around the stationary point. The linearized model is useful for the

analysis and design of feedback control loops.

Stationary Points

Consider a nonlinear dynamical system described by a state-space model,

ẋ = f (x,u)
y= �(x,u)

The stationary points or equilibria of the system are all points (x0,u0) where

f (x0,u0) = 0

that is, the points where the time derivatives of all state variables are zero.

Linearization—The Scalar Case

To explain the idea of linearization, we start with a simple scalar case. Assume a

nonlinear dynamical system in one variable,

dx

dt
= f (x)

We perform the linearization in four steps:

1. Find a stationary point x0, where f (x0) = 0.
2. Approximate f (x) with a straight line through x0:

f (x) ( f (x0)
︸ ︷︷ ︸

=0

+ d f
dx
(x0)

︸ ︷︷ ︸

=a

(x − x0)

3. Introduce a new state variable that measures the deviation from the stationary

point:

∆x = x − x0

4. The linearized system can then be written

d∆x

dt
= a∆x
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Figure 6.1 Linearization of the logistic growth model.

EXAMPLE 6.1—LOGISTIC GROWTH MODEL

Consider the logistic growth model from Section 5.2 with birth rate r = 1 and carrying
capacity xc = 100:

dx

dt
= x

(

1− x

100

)

= f (x)

The function f (x) is illustrated in Figure 6.1. There are two stationary points: x0 = 0
and x0 = 100. In either of these points, we can approximate f (x) by a straight line
as shown in the figure. For x0 = 0 we get the slope a = 1, and for x0 = 100 we get the
slope a = −1. Introducing the new state variable ∆x = x − x0 the linearized system
can for the two different cases be written as

d∆x

dt
=
{

∆x, x0 = 0
−∆x, x0 = 100

From the analysis, we can draw the conclusion that x0 = 0 represents an unstable
equilibrium, while x0 = 100 represents a stable equilibrium.

Linearization—The General Case

We will now demonstrate how to linearize a general nonlinear state-space model

ẋ = f (x,u)
y= �(x,u)

where f and � are smooth nonlinear functions of x and u. The procedure consists of
the following four steps:

1. Determine a stationary point (x0,u0) around which we shall approximate the
system.

2. Make Taylor series expansions of f and � around (x0,u0). Keep only the first
order terms.

f (x,u) ( f (x0,u0) + �
�x f (x

0,u0)(x − x0) + �
�u f (x

0,u0)(u− u0)

�(x,u) ( �(x0,u0) + �
�x�(x

0,u0)(x − x0) + �
�u�(x

0,u0)(u− u0)

Note that f (x0,u0) = 0 and introduce the notation y0 = �(x0,u0).
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6.1 Linearization

3. Introduce new variables

∆x = x − x0

∆u = u− u0

∆y= y− y0

4. The state space equations in the new variables are given by

∆̇x = ẋ − ẋ0 = ẋ = f (x,u) ( �
�x f (x

0,u0)∆x + �
�u f (x

0,u0)∆u = A∆x + B∆u

∆y= y− y0 = �(x,u) − y0 ( �
�x�(x

0,u0)∆x + �
�u�(x

0,u0)∆u = C∆x + D∆u

Note that f and � are in general vector functions. If we for instance deal with a system
with the two state variables, one measurement signal y, and one control signal, it

follows that

x =



x1

x2



, f =



f1

f2



,
� f
�x =





� f1
�x1

� f1
�x2

� f2
�x1

� f2
�x2





,
� f
�u =





� f1
�u
� f2
�u





,
��
�x =




��
�x1

��
�x2





EXAMPLE 6.2—LINEARIZATION OF A NONLINEAR TANK

Figure 6.2 shows a conical tank process with nonlinear dynamics. Assuming that the

tank walls form an angle that makes the diameter of the fluid surface equal to the

height of the fluid, the fluid volume becomes

V = πh3

12

A mass balance for the tank shows that the change in volume equals the inflow minus

the outflow
dV

dt
= qin − qout

We are interested in changes of the fluid level. These are obtained through

dV

dt
= dV
dh

dh

dt
= πh2

4

dh

dt

h

q

q

out

in

Figure 6.2 The nonlinear tank in Example 6.2.
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i.e.
dh

dt
= 4

πh2
(qin − qout)

Introduce the familiar notation

x = y= h, u = qin

and assume that qout is constant. The resulting state space description is given by

ẋ = 4

π x2
(u− qout) = f (x,u)

y= x = �(x,u)

Now we linearize this system according to the procedure outlined above.

1. Stationary points.

f (x0,u0) = 0\ u0 = qout

This criterion simply means that the inflow must equal the outflow in station-

arity. We obtain no restrictions on x0, i.e. we can linearize around any given

level.

2. Taylor series expansion.

f (x,u) ( − 8

π (x0)3 (u
0 − qout)(x − x0) +

4

π (x0)2 (u− u
0) = 4

π (x0)2 (u− u
0)

�(x,u) ( y0 + 1 ⋅ (x − x0) + 0 ⋅ (u− u0) = y0 + (x − x0)

3. New variables.

∆x = x − x0

∆u = u− u0

∆y= y− y0

4. State space equations in the new variables.

∆̇x = f (x,u) ( 4

π (x0)2∆u

∆y= �(x,u) − y0 = ∆x

We observe that the linearization in this case meant replacing the division by h2 in

the nominal case by a division by (x0)2, i.e. the level around which the system was
linearized. The approximation will be accurate as long as the deviation ∆x is small.
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6.2 Feedback Systems—An Example

6.2 Feedback Systems—An Example

The general idea of feedback was introduced in Lecture 1. The concept will now be

elaborated upon and properties of feedback systems will be investigated. We start by

analyzing the effects of feedback on a simple example—a heated stirred tank. The

process is shown in Figure 6.3. Assuming constant heat capacity and mass density

we obtain the model

VρCp
dT(t)
dt

= qρCp(Tin(t) − T(t)) + Q(t)

where ρ is the density, V the volume of the tank, Cp specific heat constant of the
liquid, and q the volume flow rate in and out the tank. Let the input be the heat Q into

the system and the output the liquid temperature T in the tank. The disturbance is

the input temperature Tin. It is convenient to regard all variables as deviations from

stationary values. For instance, Tin = 0 then implies that Tin is at its normal value.
The system can also be written as

T1
dT(t)
dt

+ T(t) = K1Q(t) + Tin(t) (6.1)

The process gain K1 and the time constant T1 of the process are given by

K1 =
1

qρCp
T1 =

V

q

Notice that the time constant T1 has dimension time. Taking the Laplace transform

of the differential equation (6.1) gives

T(s) = 1

1+ sT1

(

K1Q(s) + Tin(s)
)

(6.2)

The system can be represented by the block diagram in Figure 6.4. We will assume

that the parameters and the time scale are such that K1 = 1 and T1 = 1. The purpose
is to use the input Q(t) to keep the output T(t) close to the reference value Tref(t)
despite the influence of the disturbance Tin.

We will now investigate the dynamic behavior of the output temperature, when the

reference value Tref and the disturbance Tin are changed.

Q

Temperature

q, Tin

q, T

T

Figure 6.3 Stirred tank process.
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Q(s) T(s)
K1

1

1+ sT1
∑

Tin(s)

Figure 6.4 Block diagram of the stirred tank process.

Open-Loop Response

Assume that the input Q is zero, i.e. no control, and that the disturbance is a unit

step, i.e., the inlet temperature is suddenly increased. Notice that the desired value

in this case is Tref = 0. We do not want T to deviate from this value.
The Laplace transform of the output is

T(s) = 1

1+ sT1
⋅
1

s

and the time response is

T(t) = 1− e−t/T1

The temperature in the tank will approach the inlet temperature as a first order

system. The change in the input temperature will cause a change in the tank tem-

perature. The new steady state value will be the same as the input temperature.

Physically this is concluded since all the liquid will eventually by replaced by liquid

of the higher temperature. This is also found mathematically from (6.1) by putting
the derivative equal to zero and solving for T . The time to reach the new steady state

value is determined by the time constant of the open loop system T1. It takes 3—5

time constants for the transient to disappear.

Proportional Control

A first attempt to control the system is to let the input heat Q be proportional to the

error between the liquid temperature and the reference temperature, i.e., to use the

P controller

Q(t) = K
(
Tref (t) − T(t)

)
= K e(t)

In the Laplace domain, the controller is given by

Q(s) = K
(
Tref(s) − T(s)

)
= KE(s) (6.3)

If the temperature is too low then the heat is increased in proportion to the deviation

from the desired temperature. The parameter K is the (proportional) gain of the
controller. Combining (6.2) and (6.3) we have

T(s) = 1

1+ sT1

(

K1K
(
Tref(s) − T(s)

)
+ Tin(s)

)

Solving for T(s), we obtain the input–output relationship

T(s) = K1K

1+ sT1 + K1K
Tref(s) +

1

1+ sT1 + K1K
Tin(s)

The closed-loop system is of first order with a pole located in

s = −1+ K1K
T1
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Figure 6.5 Proportional control of the stirred tank process.
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Figure 6.6 Simulation of the stirred tank under P control with K = 0, 1, 2, and 5. The desired
reference is Tref = 0, and the disturbance is a unit step at t = 0. The case K = 0 gives the open
loop response.

By proper selection of the controller parameter K , the pole can be placed anywhere

on the negative real axis. This design method is known as pole placement. A block

diagram of the closed-loop system is shown in Figure 6.5.

Figure 6.6 shows the measurement signal and the control signal when using a P

controller for different values of the controller gain. The steady state error decreases

with increasing K . We can also note that the response becomes faster when the gain

is increased.

Proportional and Integral Control

To eliminate the steady state error we have to change the controller type. One possi-

bility is to introduce a PI controller. The controller can be written as

Q(t) = K
(

e(t) + 1
Ti

∫ t

0

e(τ ) dτ
)

(6.4)
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Q(s)Tref (s) T(s)
K1

−1

K (sTi+1)
sTi

1

1+ sT1
∑ ∑

Tin(s)

Figure 6.7 Proportional–integral control of the stirred tank process.

where e(t) = Tref(t) − T(t). In the Laplace domain, the PI controller is given by

Q(s) = K
(

1+ 1

sTi

)

E(s)

The Laplace transform of the output is given by

T(s) = 1

1+ sT1

(
K1K (sTi + 1)

sTi

(

Tref(s) − T(s)
)

+ Tin(s)
)

Solving for T(s), we obtain the input–output relationship

T(s) = K1K (sTi + 1)
s2T1Ti + s(K1K + 1)Ti + K1K

Tref (s) +
sTi

s2T1Ti + s(K1K + 1)Ti + K1K
Tin(s)

The block diagram of the closed-loop system is shown in Figure 6.7. The closed-loop

system is now of second order. By proper selection of the controller parameters K

and Ti, we can place the poles according to any characteristic polynomial. Figure 6.8

shows the response to disturbances when K = 1 and for different values of Ti.
When the integral term is active (Ti ,= ∞) the steady state error becomes zero. A
too small value of Ti leads to an oscillatory response. Figure 6.9 shows the closed

loop performance when the reference value is changed from 0 to 1 at t = 0 and when
the disturbance Tin is a unit step at t = 5. The regulator is a PI controller with
K = 1.8 and Ti = 0.45. The response is fast and well damped, without excessive
control signals.

Sensitivity Reduction and Robustness

Feedback will decrease the sensitivity of the closed loop system to changes in the

dynamics of the process. Assume that the process is controlled by a proportional

controller with gain K . The closed-loop static gain is then given by

Kcl =
K1K

1+ K1K
Assume that K1K = 5. A ±10% change in K1K will then give Kcl = [0.82, 0.85].
The sensitivity will be less when K1K is increased. For instance K1K = 10 gives
Kcl = [0.9, 0.92] after a ±10% change in K1K .
The process gain and the time constant are inversely proportional to the flow q. Fig-

ure 6.10 shows the closed loop performance after a step in the reference value when

a PI-controller is used and when the flow through the tank q is changed ±20% com-
pared to the nominal value. Feedback brings robustness towards process variations

and disturbances in the closed-loop system.

62



6.2 Feedback Systems—An Example

0 5

0

1

O
u

tp
u

t

0 5

−2

−1

0

In
p

u
t

Time

Tin
Ti = ∞

Ti = 1
Ti = 0.25

Ti = 0.04

Ti = ∞
Ti = 1

Ti = 0.25
Ti = 0.04

Tref

Figure 6.8 Simulation of the stirred tank under PI control with K = 1 and Ti = ∞, 1, 0.25,
and 0.04. The desired reference value is Tref = 0 and the disturbance is a unit step at t = 1.

0 10
0

1

O
u

tp
u

t

0 10

0

1

2

In
p

u
t

Time

Figure 6.9 Reference and load disturbance for the temperature control system using a PI-

controller K = 1.8 and Ti = 0.45. The liquid temperature and the control signal are shown.
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Figure 6.10 The sensitivity to changes in the flow through the tank, when the system is

controlled with a PI-controller with K = 1.8 and Ti = 0.45. Increase of 20% (dashed), decrease
of 20% (dash-dotted), and the nominal case (full). Compare Fig 6.9.

Unmodeled Dynamics

We will now increase the complexity of the system model by assuming that the tem-

perature is measured using a sensor with dynamics. It is assumed that the measured

value Tm is related to the true temperature by the transfer function

Tm(s) =
1

1+ Tss
T(s)

The sensor has the time constant Ts, and the gain is one. Figure 6.11 shows the tem-

perature and the control signal when the PI-controller (6.4) is used with Tm instead
of T . The closed loop system will be unstable for some parameter combinations. The

stability can be analyzed by studying the coefficients of the characteristic polynomial

of the closed-loop system, see Section 3.4.

Summary

We have seen that feedback can be used to change the transient and steady state

properties of a closed loop system. Also the influence of the disturbances are reduced

through feedback. To obtain a steady state error that is zero it is necessary to have

an integrator in the controller. Finally, it was found that the closed loop system may

become unstable due to unmodeled dynamics.
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Figure 6.11 Temperature control using PI-controller and sensor dynamics. The liquid tem-

perature and the control signal are shown when Tin is a unit step, Ts = 0.1, K = 1 and Ti = ∞,
1, 0.25, and 0.04. Compare Figure 6.8
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7. Feedback Systems

7.1 Analysis of Stationary Errors

Two important tasks for a feedback control system are to make the output follow

the reference signal (the servo problem) and to eliminate disturbances (the regula-
tor problem). The reference value and the disturbance can be modeled as piecewise
constant signals, ramps, etc. An important question is how large the stationary er-

rors will be for different kinds of reference signals and disturbances. We know from

experience that the integral part in a PID controller can eliminate stationary errors

due to a constant reference value or a constant disturbance. The general situation

will now be analyzed.

Consider the feedback system in Figure 7.1. The Laplace transform of the control

error is

E(s) = 1

1+ G0(s)
R(s) − Gp(s)

1+ G0(s)
V (s)

where G0 = GpGc. Applying the final value theorem then gives the stationary error

e(∞) = lim
s→0
sE(s)

This calculation is valid as long as sE(s) is asymptotically stable.
To gain more insight we will assume that

G0(s) =
K (1+ q1s+ ⋅ ⋅ ⋅+ qm−1sm−1)
sn(1+ p1s+ ⋅ ⋅ ⋅+ pmsm)

= KQ(s)
snP(s)

The open loop system is parameterized to show the number of integrators, (i.e., poles
in the origin) and a gain K . The open loop system has n integrators. Notice that
Q(0) = P(0) = 1. The parameter K can be interpreted as the static gain when the
integrators have been removed. Further we let

Gc(s) =
K1Q1(s)
smP1(s)

Gp(s) =
K2Q2(s)
sn−mP2(s)

∑∑
r e

Gc(s) Gp(s)

v

y

−1

Figure 7.1 Simple feedback control system with reference signal r and disturbance signal v.
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Figure 7.2 The output and reference values as functions of time for different number of

integrators, n, when the reference signal is a step or a ramp.

where Q1(0) = Q2(0) = P1(0) = P2(0) = 1 and n − m ≥ 0. We first investigate
the influence of a reference value (and set v = 0). Let r(t) be a step of size a, i.e.
R(s) = a/s. The final value theorem then gives

e(∞) = lim
s→0

snP(s)a
snP(s) + KQ(s) =

{

a/(1+ K ) n = 0
0 n ≥ 1

When r(t) is a ramp, i.e. R(s) = b/s2, we get

e(∞) = lim
s→0

snP(s)
snP(s) + KQ(s) ⋅

b

s
=







∞ n = 0
b/K n = 1
0 n ≥ 2

It is possible to continue for more complex reference signal, but the pattern is obvious.

The more complex the signal is the more integrators are needed to get zero steady

state error. The calculations are summarized in Figure 7.2. Let us now make the

same investigation for disturbances when the reference value is zero. Now

E(s) = − Gp(s)
1+ G0(s)

V (s)

= − snP(s)
snP(s) + KQ(s) ⋅

K2Q2(s)
sn−mP2(s)

V (s)

= −s
mK2P1(s)Q2(s)
snP(s) + KQ(s) ⋅ V (s)
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Let the disturbance be a step, i.e. V (s) = a/s. The final value theorem gives

e(∞) = lim
s→0

−s
mK2P1(s)Q2(s)a
snP(s) + KQ(s) =







−aK2/(1+ K ) m = 0,n = 0
−a/K1 m = 0,n ≥ 1
0 m ≥ 1

When v(t) is a ramp, i.e. V (s) = b/s2, we get

e(∞) = lim
s→0

−s
mK2P1(s)Q2(s)
snP(s) + KQ(s) ⋅

b

s
=







−∞ m = 0
−b/K1 m = 1
0 m ≥ 2

Once again the number of integrators and the gain determine the value of the sta-

tionary errors.

Where Should the Integrators be Located?

It was shown above that it is important to have integrators in the system to elimi-

nate stationary errors. If the process does not have any integrator we can introduce

integrators in the regulator. Consider the system in Figure 7.1. If r is a step then e

will be zero in steady state if there is an integrator in either the controller Gc(s) or
in the process Gp(s). If v is a step it is necessary to have an integrator in Gc(s) to
obtain zero steady state. It is not sufficient with an integrator in Gp(s). To eliminate
load disturbances it is necessary to introduce integrators in the controller even if the

process contains integrators.

7.2 Sensitivity

Above it has been shown how feedback can be used to reduce the influence of dis-

turbances entering into the system. We will now show how feedback can be used to

make the system less sensitive to variations in parameters in the process.

EXAMPLE 7.1—NONLINEAR VALVE

Control of flows is very common in chemical process control. Control valves have,

however, often a nonlinear characteristic relating the flow to the opening of the valve.

For simplicity, we assume that the valve is described by static nonlinear relation.

y= �(u) = u2 0 ≤ u ≤ 1

where u is the valve opening and y is the flow through the valve. Small changes in

the opening ∆u will give small changes in the flow ∆y. The change is proportional to
the derivative of the valve characteristic, i.e.

∆y= �′(u)∆u = 2u∆u

The gain thus changes drastically depending on the opening. When u = 0.1 the gain
is 0.2 and when u = 1 it is 2. This nonlinearity can be reduced by measuring the flow
and controlling the valve position, see Figure 7.3. Assume that there are no dynamics

in the system and that the controller is a proportional controller with gain K . The

system is then described by

e = r − y
y= �(K e)
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Figure 7.3 Flow control.

0 1
0

1

Open loop

Closed loop

O
u
tp
u
t
fl
o
w
y

u and r

Figure 7.4 Input-output relations for the open loop system and the closed loop system when

K = 50. Notice that the input for the open loop system is r for the closed loop system.

This gives the relation

r = y+ 1
K
�−1(y) = y+ 1

K

√
y= f (y)

where �−1 is the inverse function. The gain of the closed loop system is given through

∆r = f ′(y)∆y

or

∆y= 1

f ′(y)∆r = 2K
√
y

1+ 2K√y∆r = 2Ku

1+ 2Ku∆r

If K is sufficiently high the gain of the closed loop system will be close to 1 and

almost independent of u. Figure 7.4 shows the input output relations for the open

loop and the closed loop systems.

We will now treat the more general case shown in Figure 7.5. The transfer function

from r to y is given by

Gcl(s) =
G f (s)Go(s)
1+ Go(s)Gy(s)

(7.1)

We will first investigate how variations in the transfer functions influence the re-
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Σ
r

G f G0
y

−Gy

Figure 7.5 Closed-loop system.

sponse from the reference value to the output. One way to do this is to determine

the sensitivity when there is a small change in the transfer function. Let a transfer

function G depend on a transfer function H, i.e. G = G(H). We define the relative
sensitivity of G with respect to H as

SH =
dG

dH
⋅
H

G

This can be interpreted as the relative change in G, dG/G, divided by the relative
change in H, dH/H. For the transfer function Gcl in (7.1) we have

SG f = 1

SGo =
1

1+ GoGy

SGy = −
GoGy

1+ GoGy

It is seen that a relative change in G f will give the same relative change in Gcl. As

long as the loop gain GoGy is large then SGo will be small. This will, however, cause

SGy to become close to one. From a sensitivity point of view it is crucial that the

transfer functions G f and Gy are accurate. These transfer functions are determined

by the designer and can be implemented using accurate components.
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8. Analysis in the Frequency

Domain

8.1 Frequency Response

Periodic or oscillatory signals are not very common in chemical engineering applica-

tions. For electrical and mechanical processes it is more natural to discuss responses

of systems to sinusoidal inputs. The frequency domain approach is, however, a very

useful way to get an additional way to analyze a dynamical system. The frequency

response that will be introduced below can be interpreted as a frequency dependent

“gain” of the process. The frequency response makes it possible to determine which

frequencies that will be amplified or attenuated. Based on the frequency response of

an open loop system it is easy to determine if a closed loop system is stable or not.

It is also possible to determine suitable controllers based on the frequency response.

Finally, the method gives a new interpretation of the transfer function of the system.

Figure 8.1 shows a block digram of a process with disturbances. The input u(t) and
the disturbance v(t) act on the process via the transfer functions Gp(s) and Gd(s)
respectively. The disturbance can for instance be a step, an impulse, or a periodic

signal. The steady state influence of a step disturbance is given by the steady state

gain Gd(0). The disturbance may also be periodic. Examples of periodic or almost
periodic disturbances are

• Measurement noise due to hum from the power supply.

• Unbalances in rotating mechanical parts.

• Influence of daily variation in outdoor temperature.

• Variation in feed concentration to a unit process.

In Section 5.1 we showed how a linear system could be characterized by giving its

step or impulse response. In this section we will investigate how periodic inputs or

disturbances in steady state are influencing the output of the process.

Σ

V (s)

U(s) Y(s)

Gd(s)

Gp(s)

Figure 8.1 Block diagram of process with input and disturbances.
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Lecture 8. Analysis in the Frequency Domain

EXAMPLE 8.1—FREQUENCY RESPONSE OF A FIRST ORDER SYSTEM

Assume that the process is described by

Y(s) = G(s)U(s) = b

s+ aU(s) (8.1)

where a > 0 and assume that the input signal is a sinusoidal signal sinω t. The
Laplace transform of the input is

U(s) = ω

s2 +ω 2

This gives

Y(s) = b

s+ a
ω

s2 +ω 2

= bω

ω 2 + a2
(
1

s+ a +
a− s
s2 +ω 2

)

The first part on the right hand side has an inverse transform which is a decaying

exponential since a > 0. This part will thus vanish as t increases. The second term
represents sinusoidal signals with frequency ω . Asymptotically we get

ya(t) = b
(

a

ω 2 + a2 sinω t− ω

ω 2 + a2 cosω t

)

= A sin(ω t+ϕ )

where

A = b√
ω 2 + a2

ϕ = − arctan ω

a

The derivation above shows that asymptotically the response to a sinusoidal input

is a sinusoidal output with the same frequency but with a change in amplitude and

phase. The excitation with a single frequency forces the output to vary with the

same frequency. To derive the result we used that the system is linear and stable.

We can thus regard the sinusoidal response determined by A and ϕ as a frequency
dependent gain and phase shift. The responses of the system (8.1) to sinusoidal inputs
of different frequencies are shown in Figure 8.2.

Frequency Response of a Linear System

Assume that the input signal is given by a sinusoid of frequency ω , i.e.

u(t) = sinω t

Let G(s) be the transfer function and h(t) the impulse response of the studied system.
Since the Laplace transform of an impulse is simply 1, it holds that

G(s) = L(h(t)) =
∫ ∞

0

e−sth(t)dt
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8.1 Frequency Response
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Figure 8.2 The input (dashed) and output (full) when the signal sinω t is applied to the
system (8.1) with zero initial value, when a = 1, b = 2, and (a) ω = 0.2; (b) ω = 1; (c) ω = 5.

We exploit this in order to find which output we obtain when the input is given by a

sinusoid. When the transient has died out, i.e. when t→∞, Equation (5.2) yields

y(t) =
∫ t

0

h(t− τ ′)u(τ ′)dτ ′ = [τ = t− τ ′] =
∫ t

0

h(τ )u(t− τ )dτ

=
∫ t

0

h(τ ) sinω (t− τ )dτ = Im
∫ t

0

h(τ )eiω (t−τ )dτ

= Im
∫ t

0

h(τ )e−iωτdτ eiω t = [t→∞] = ImG(iω )eiω t

= pG(iω )pIm ei argG(iω )eiω t = pG(iω )p sin(ω t+ argG(iω ))

This means that when the input signal is given by u(t) = sin(ω t), the output signal
becomes

y(t) = A sin(ω t+ϕ ) (8.2)
where

A = pG(iω )p
ϕ = argG(iω )

If we carry out a frequency analysis, i.e. let the input signal be a sinusoid with varying

frequency, and measure the amplitude and phase shift of the output signal, we can

thus determine the value of the transfer function for these frequencies. We obtain a

table containing frequencies and their corresponding amplitudes and phase shifts. A

table is, however, an inconvenient representation of the process dynamics. Therefore

the table is usually represented graphically. This is done mainly in either of two ways;

the Nyquist curve and the Bode plot.
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Figure 8.3 Nyquist curve.

8.2 The Nyquist Curve

The Nyquist curve is constituted of the complex number G(iω ) drawn in the complex
plane for ω in [0,∞]. Figure 8.3 shows a typical Nyquist curve.
Most processes have low-pass characteristics. This means that the output signal of

the process is affected by low frequency inputs, whereas high frequency signals are

damped out. Since the distance between the origin and points on the Nyquist curve

describes the gain of process, it is normal that the Nyquist curve approaches the

origin for high frequencies, as shown in Figure 8.3. The phase shift between in- and

output does usually increase with the frequency. This is the explanation to the spiral

shape of the curve in Figure 8.3.

The following example shows how one can compute the shape of the Nyquist curve,

given the transfer function.

EXAMPLE 8.2—NYQUIST CURVE DRAWING

Assume that the process is described by the transfer function

G(s) = 1

s+ 1
We compute G(iω ) and separate into its real- and imaginary parts

G(iω ) = 1

1+ iω = 1− iω
1+ω 2

= 1

1+ω 2
− i ω

1+ω 2

We see that the real part is positive, whereas the imaginary part is negative for all ω .
In other words, the Nyquist curve will be contained in the fourth quadrant. Further,

we see that G(iω ) ( 1 for small ω and G(iω ) → 0 as ω → ∞. The Nyquist curve is
shown in Figure 8.4
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8.3 The Bode Plot
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Figure 8.4 The Nyquist curve in Example 8.2.
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Figure 8.5 Bode plot.

8.3 The Bode Plot

The Bode plot features two curves, pG(iω )p and argG(iω ) as functions of ω . Figure
8.5 shows the Bode plot of a typical process. The magnitude plot is drawn in a loga-

rithmic scale, whereas the argument is drawn in a linear scale. The frequency axis

is logarithmic.

The Bode plot of a process often looks similar to the one shown in Figure 8.5. The low
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Lecture 8. Analysis in the Frequency Domain

frequency gain is often constant and corresponds to the static gain of the process. As

the frequency increases, the gain and phase shift also increase. In other words, the

process has low pass characteristics.

The Bode plot has some properties which makes it easier to draw than the Nyquist

plot. Assume that we can factor the transfer function, e.g., as

G(s) = G1(s)G2(s)G3(s)

The logarithms of the magnitude and argument, respectively, are given by

log pG(iω )p = log pG1(iω )p + log pG2(iω )p + log pG3(iω )p
argG(iω ) = argG1(iω ) + argG2(iω ) + argG3(iω )

This means that the Bode plot of a transfer function is given by the sum of the Bode

plots of its factors. This, in terms, enables us to draw all Bode plots which correspond

to products of less complex transfer functions, for which we have already drawn the

Bode plots. We shall study five sample transfer functions, into which all transfer

functions in this course can be factored. These sample transfer functions are

1. K

2. sn

3. (1+ sT)n

4.
(

1+ 2ζ s/ω 0 + (s/ω 0)2
)n

5. e−sL

1. Bode Plot of G(s) = K
The magnitude and argument of the transfer function G(s) = K are given by

log pG(iω )p = log K
argG(iω ) = 0

Both the gain and argument are independent of ω . The Bode plot is thus made up
by two horizontal lines. This is shown in Figure 8.6 where Bode plots corresponding

to three values of K are shown.

2. Bode Plot of G(s) = sn
The magnitude and argument of the transfer function G(s) = sn are given by

log pG(iω )p = log piω pn = n logω

argG(iω ) = n arg(iω ) = nπ

2

The magnitude plot is a straight line with slope n, due to the logarithmic scales. The

argument is independent of ω and thus forms a horizontal line. Figure 8.7 shows
three Bode plots corresponding to different values of n.
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Figure 8.6 Bode plot of G(s) = K , where K = 0.5, 1 and 4.

3. Bode Plot of G(s) = (1+ sT)n
The magnitude and argument of the transfer function G(s) = (1+ sT)n are given by

log pG(iω )p = n log
√

1+ω 2T2

argG(iω ) = n arg(1+ iωT) = n arctan(ωT)

For small values of ω the functions are given by

log pG(iω )p → 0
argG(iω ) → 0

For large values of ω the functions are given by

log pG(iω )p → n logωT

argG(iω ) → nπ

2

These two asymptotes, the low-frequency and high-frequency asymptotes, are shown

in Figure 8.8 together with the Bode plots corresponding to some different values of

n. The intersection between the low- and high frequency asymptotes is given by

logωT = 0

This frequency is called the corner frequency and is given by ω = 1/T .
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Lecture 8. Analysis in the Frequency Domain

4. Bode Plot of G(s) =
(
1+ 2ζ s/ω 0 + (s/ω 0)2

)n

The low-frequency asymptote of this transfer function is given by G(iω ) ( 1, i.e.

log pG(iω )p → 0
argG(iω ) → 0

For large ω the high-frequency asymptote is given by

G(iω ) ( (iω/ω 0)2n = (−1)n(ω/ω 0)2n

so that

log pG(iω )p → 2n log ω

ω 0

argG(iω ) → nπ

Figure 8.9 shows the Bode plots for some different values of the parameter ζ . The
figure shows that this transfer function results in a resonance peak at the frequency

ω 0. The peak increases in magnitude when ζ is decreased.

5. Bode Plot of G(s) = e−sL
This transfer function describes a pure time delay. This means that the output is

identical to the input, except that it has been delayed by a time L, y(t) = u(t − L).
If one sends a sinusoid through such a process, it outputs a sinusoid with the same

amplitude, but with a phase shift which is larger for higher frequencies. For the

transfer function G(s) = e−sL the magnitude and argument become

log pG(iω )p = log pe−iω Lp = 0

argG(iω ) = arg e−iω L = −ω L
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Figure 8.7 Bode plots of G(s) = sn, where n = 1,−1 and −2.
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Figure 8.8 Bode plot of G(s) = (1+ sT)n, where T = 1 and n = 1,−1 och −2.
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Figure 8.9 Bode plot of G(s) = ω 20/(s2 + 2ζ ω 0s+ω 20), where ω 0 = 1 and ζ = 0.05, 0.1, 0.2.

Figure 8.10 shows the Bode plot for some different choices of the delay L.
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Figure 8.10 Bode plot of G(s) = e−Ls for L = 5, 0.7 and 0.1

8.4 Nyquist’s Stability Criterion

Figure 8.11 shows the block diagram of a simple feedback loop where G0 = GcGp is
the open-loop transfer function, i.e. the product of the process transfer function Gp
and the controller transfer function Gc. There is a switch in the figure, which enables

us to cut the feedback. When the switch is in position 1, the control loop functions

normally. However, when the switch is in position 2, the feedback is broken and a

sinusoid is applied to the open-loop transfer function.

Assume that the switch is in position 2. Under the assumption that the loop transfer

function is stable, the signal e will also be a sinusoidal. Using (8.2), we can compute
the control error as

e(t) = −pG0(iω )p sin(ω t+ argG0(iω ))
= pG0(iω )p sin(ω t+ argG0(iω ) + π )

Let us choose the frequency of the sinusoid such that argG0(iω ) = −π and denote

G0

−1

r = 0 y

e

sin(ω t) 2

1
∑

Figure 8.11 The simple feedback loop, being analyzed by means of the Nyquist criterion.
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this frequency ω 0. We then obtain

e(t) = pG0(iω 0)p sin(ω 0t)

Let us further assume that pG0(iω 0)p = 1. Then we will obtain the signal

e(t) = sin(ω 0t)

i.e. the same signal which is sent into the system. If the switch is now toggled from

position 2 to position 1, the signals in the control circuit will not be affected. The con-

trol loop is caught in a self-induced oscillation. In other words we lie on the stability

boundary.

Correspondingly, one can imagine what will happen if pG0(iω 0)p ,= 1. Assume that
pG0(iω 0)p > 1. Then the signal e(t) will have the same frequency and phase as the
input, but the amplitude will be larger. If one toggles the switch from position 2 to

position 1 under these circumstances, the amplitude in the control loop will grow

and an unstable loop is obtained. Analogously, a gain pG0(iω 0)p < 1 will imply a
decreasing amplitude and a stable control loop.

We can summarize the stability investigation in the following way: Investigate the

magnitude of the loop transfer function at the frequency ω 0 for which argG0(iω ) =
−π . Depending on the magnitude we obtain one of the following cases.

pG0(iω 0)p < 1 Stable.

pG0(iω 0)p = 1 Stability boundary.

pG0(iω 0)p > 1 Unstable.

This intuitive reasoning is unfortunately not always true. It assumes, e.g., that signal

components with other freuqencies than ω 0 are damped out, which is not always the
truth. It was Nyquist that showed the shortcomings in this reasoning, and therafter

he formulated his criterion:

THEOREM 8.1—NYQUIST’S STABILITY CRITERION

Assume that all poles of the open-loop transfer function lie in the left half plane or

on the imaginary axis. Given this, the system is stable if the point −1 lies to the left
of the Nyquist curve as it is traversed from ω = 0 to ω = ∞.

Figure 8.12 shows Nyquist curves for some different loop transfer functions and the

Nyquist criterion interpretation of these.

One advantage of Nyquist’s stabiliy criterion, as opposed to studying the character-

istic equation of the closed-loop system, is that it is applicable also when the system

contains a delay. The Nyquist criterion, as formulated here, can however not be used

when the open-loop system contains poles in the right half-plane.

8.5 Stability Margins

We have now discussed stability concepts and different methods to determine stability.

In practice it is not sufficient to determine whether a process is stable. In addition

one wants to know the margins towards the stability limit. We will now introduce

three common margins, namely the gain margin, the phase margin and the delay

margin. The margins measure the robustness of the closed-loop system, i.e., how far

the system is from instability.
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Figure 8.12 Nyquist curves for four different loop transfer functions. According to the Nyquist

criterion the two leftmost systems are stable, whereas the two systems to the right are unstable.

Gain and Phase Margin

The gain and phase margins are easily defined using the Nyquist plot, see Figure 8.13.

For simplicity we assume that the Nyquist curve of the open loop transfer function G0
is strictly decreasing, both in magnitude and argument. The gain margin is denoted

Am and determines by how much the gain can be be increased without reaching
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Figure 8.13 Phase margin ϕm and gain margin Am in the Nyquist plot.
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Figure 8.14 Phase margin ϕm and gain margin Am in the Bode plot.

instability. This margin is read at the frequency ω 0, where the phase shift is π , i.e.
argG0(iω 0) = −π . The gain margin is thus given by

Am = 1/ pG0(iω 0)p

The phase margin is denoted ϕm and determines by how much the phase shift can be
decreased without passing the stability limit. The phase margin can be determined

by observing the phase shift in the Nyquist curve at the frequency ω c, where the
magnitude is unity, i.e. pG0(iω c)p = 1. The frequency ω c is known as the cross-over
frequency. The phase margin is given by

ϕm = π + argG0(iω c)

The cross-over frequency can be viewed as a measure of the speed of the closed-loop

system.

The gain and phase margins can also be read from the Bode plot, see Figure 8.14.

The critical point −1 in the Nyquist plot corresponds to two horizontal lines in the
Bode plot. One line corresponds to the magnitude pG0(iω )p = 1 while the other is
corresponding to the argument argG0(iω ) = −π . The gain margin is obtained as the
distance between the line pG0(iω )p = 1 and the magnitude curve at the frequency ω 0.
The phase margin is obtained as the distance between the line argG0(iω ) = −π and
the phase curve.

It is important to maintain reasonable stability margins, since it allows for some

variations in process dynamics. This is, however, not the only reason. The stability

margins and the distance to the critical point −1 are also decisive for the control
performance. If the stability margins are inadequate, jerky and poorly damped control

is obtained. On the other hand, large stability margins result in slow control.
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Customary rules of thumb prescribe gain and phase margins within the intervals

Am ∈ [2, 6] and ϕm ∈ [45○, 60○], respectively.

Delay Margin

The delay margin determines the length of an added delay required to drive the

control loop unstable. The delay margin has no interpretations as a distance in the

Nyquist plot, as we have seen for the gain and phase margins.

Assume that the open-loop transfer function G0(s) is augmented with a delay. The
new loop transfer function thus becomes

Gnew0 (s) = e−sLG0(s)

where L is the delay. The gain and phase shift of the new transfer function are given

by

pGnew0 (iω )p = pG0(iω )p
argGnew0 (iω ) = argG0(iω ) −ω L

The gain is thus not affected by the delay, while the phase shift decreases. Assume

that the nominal loop transfer function G0 has cross-over frequency ω c, i.e. that
pG0(iω c)p = 1, and that the corresponding phase margin is denoted ϕm. Since G

new
0

has the same gain as G0, the cross-over frequency of G
new
0 will also be ω c. The phase

margin will, however, decrease since the phase shift has decreased. The new phase

margin becomes

ϕ newm = ϕm −ω cL

If the delay is excessive, the phase margin vanishes and the closed-loop system be-

comes unstable. This occurs when

ω cL = ϕm

This gives us the following bound on how long delays can be before causing an unstable

system

Lm =
ϕm
ω c

The delay Lm is known as the delay margin and is a robustness margin in the same

way as the gain margin Am and the phase margin ϕm.

Obviously, we cannot allow delays close to Lm. The limit

ω cL < 0.2

is a good rule of thumb which guarantees a phase margin decrease of at most 12○.
The equation also reveals how this criterion can be met. Either the delay L must be

kept sufficiently short or one has to limit the cross-over frequency ω c, i.e. limit the
speed of the system.
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9. The PID Controller

9.1 Introduction

Many control problems can be solved using a PID-controller. This controller is named

after its function which can be described as

u(t) = K



e(t) + 1
Ti

t∫

e(τ ) dτ + Td
de(t)
dt



 = P+ I + D (9.1)

where u is the controller output, and e is the error, i.e. the difference between the

reference value r (the set point) and process output y (the measured variable). The
control action is thus composed of three terms, one part (P) is proportional to the
error, another (I) is proportional to the integral of the error, and a third (D) is
proportional to the derivative of the error. The transfer function of the PID controller

is given by

Gc(s) = K
(

1+ 1

sTi
+ sTd

)

(9.2)

Special cases are obtained by only using some of the terms i.e. P, I, PI, or PD con-

trollers. The PI controller is most common. It is also possible to have more compli-

cated controllers e.g. an additional derivative term, which gives a PIDD or a DPID

controller. The name PID controller is often used as a generic name for all these

controllers.

The PID controller is very common. It is used to solve many control problems. The

controller can be implemented in many different ways. For control of large industrial

processes it was very common to have control rooms filled with several hundred PID

controllers. The algorithm can also be programmed into a computer system that can

control many loops. This is the standard approach today to control of large industrial

processes. Many special purpose control systems also use PID control as the basic

algorithm.

The PID controller was originally implemented using analog techniques. The tech-

nology has developed through many different stages, pneumatic, relay and motors,

transistors and integrated circuits. In this development much know-how was accu-

mulated that was embedded into the analog design. In this process several useful

modifications to the “textbook” algorithm given by (9.1) were made. Many of these
modifications were not published, but kept as proprietary techniques by the manu-

facturers.

Today virtually all PID controllers are implemented digitally. Early implementations

of digital PID controllers were often a pure translation of the “textbook” algorithm

which left out many of the good extra features of the analog design. The failures

renewed the interest in PID control.

It is essential for any user of control systems to master PID control, to understand

how it works and to have the ability to use, implement, and tune PID controllers.

This chapter is intended to provide that knowledge.
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Lecture 9. The PID Controller

9.2 The PID Algorithm

In this section the PID algorithm will be discussed in more detail. Properties of

proportional, integral, and derivative action will be explained. Based on the insight

gained we will also make several modifications of the small-signal behavior of the

algorithm. This will lead to an improved algorithm which is significantly better than

the basic algorithm given by (9.1).

Proportional Action

A proportional controller can be described by

u = K (r − y) + u0 = K e+ u0 (9.3)

The control signal is thus proportional to the error. Notice that there is also a reset

or a bias term u0. The purpose of this term is to provide an adjustment so that the

desired steady state value can be obtained. Without the reset (integrating) term it
is necessary to have an error to generate a control signal that it different from zero.

The reset term can be adjusted manually to give the correct control signal and zero

error at a desired operating point.

Equation (9.1) holds for a limited range only because the output of a controller is
always limited (see Figure 2.7). The range of input signals where the controller is
linear is called the proportional band. Let pB denote the proportional band and umin
and umax the limits of the control variable. The following relation then holds

K = umax − umin
pB

The proportional band is given in terms of the units of the measured value or in

relative units. It is in practice often used instead of the controller gain. A proportional

band of 50% thus implies that the controller has a gain of 2.

The properties of a proportional control applied to a multi-capacitive process are il-

lustrated in Figure 9.1. This figure shows the step response of the closed-loop system

with proportional control. The figure shows clearly that there is a steady state error.

The error decreases when the controller gain is increased, but the system then be-

comes oscillatory. It is easy to calculate the stationary error. The Laplace transforms

of the error e = r − y is given by

E(s) = 1

1+ Gp(s)Gc(s)
R(s)

where R is the Laplace transforms of the reference value. With Gp(0) = 1 and Gc(0) =
K = 1 we find that the error due to a setpoint signal is 50% as is seen in the figure.

Integral Action

Early controllers for process control had proportional action only. The reset adjust-

ment u0 in (9.3) was used to ensure that the desired steady state value was obtained.
Since it was tedious to adjust the reset manually there was a strong incentive to au-

tomate the reset. One way to do this is illustrated in Figure 9.2. The idea is to low

pass filter the controller output to find the bias and add this signal to the controller

output. It is straight-forward to analyze the system in Figure 9.2. We get

U(s) = KE(s) + 1

1+ sTi
U(s)
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Figure 9.1 Illustration of proportional control. The process has the transfer function Gp(s) =
(s+ 1)−3.
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Figure 9.2 Controller with automatic reset.

Solving for U we get

U(s) = K
(

1+ 1

sTi

)

E(s) (9.4)

Conversion to the time domain gives

u(t) = K



e(t) + 1
Ti

t∫

0

e(τ ) dτ



 = P+ I

which is the input-output relation for a PI controller. Parameter Ti, which has di-

mension time, is called integral time or reset time. The properties of a PI controller

are illustrated in Figure 9.3. The figure illustrates that the idea of automatic reset

or PI control works very well in the specific case.

It is straight-forward to show that a controller with integral action will always give a

control error that is zero. To do this assume that there exist an equilibrium (steady
state). The process input, the output, and the error must then be constant. Let e0
denote the error and u0 the process input. Taking the inverse Laplace transform of

(9.4) gives the following relation

u0 = K
(

e0 + t e
0

Ti

)
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Figure 9.3 Illustration of PI control. The process has the transfer function Gp(s) = (s+ 1)−3.
The controller has the gain K = 1.

This implies that u0 is constant only if e0 = 0, i.e. the control error is zero. The
argument will obviously hold for any controller with integral action. Notice, however,

that a stationary solution may not necessarily exist. For instance the signals may

oscillate.

Another intuitive argument that also gives insight into the benefits of integral control

is to observe that with integral action a small control error that has the same sign

over a long time period may generate a large control signal.

Sometimes a controller of the form

u(t) = Ki
t∫

0

e(τ ) dτ = I

is used. This is called an I controller or a floating controller. The name floating

relates to the fact that with integral control there is not a direct correspondence

between the error and the control signal.

Derivative Action

A controller with proportional action has a significant disadvantage because it does

not anticipate what is happening in the future. This is illustrated in Figure 9.4 which

shows two error curves, A and B. At time t a proportional controller will give the same

control action for both error curves. A significant improvement can be obtained by

introducing prediction.

A simple way to predict is to extrapolate the error curve along its tangent. This means

that control action is based on the predicted error Td time units ahead, i.e.

ep(t+ Td) = e(t) + Td
de(t)
dt
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Figure 9.4 Illustrates the predictive nature of proportional and derivative control.

This gives the control law

u(t) = K
(

e(t) + Td
de(t)
dt

)

= P+ D

which is a PD controller. With such a controller the control actions for the curves A

and B in Figure 9.4 will be quite different. Parameter Td, which has dimension time,

is called derivative time. It can be interpreted as a prediction horizon.

The fact that control is based on the predicted output implies that it is possible to

improve the damping of an oscillatory system. The properties of a controller with

derivative action are illustrated in Figure 9.5. This figure shows that the oscillations

are more damped when derivative action is used.

Notice in Figure 9.5 that the output approaches an exponential curve for large values

of Td. This can easily be understood from the following intuitive discussion. If the

derivative time is longer than the other time constants of the system the feedback
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Figure 9.5 Illustration of the damping properties of derivative action. The process has the

transfer function Gp(s) = (s+ 1)−3. The gain is K = 5 and Td is varied.
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loop can be interpreted as a feedback system that tries to make predicted error ep
small. This implies that

ep = e+ Td
de

dt
= 0

This differential equation has the solution e(t) = e(0)e−t/Td . For large Td the error
thus goes to zero exponentially with time constant Td.

A drawback with derivative action is that parameter Td has to be chosen carefully.

Industrial PID controllers often have potentiometers to set the parameters K , Ti,

and Td. Because of the difficulty in adjusting derivative time Td the potentiometer

for Td is made so that derivative action can be switched off. In practical industrial

installations we often find that derivative action is switched off.

9.3 The Series Form of the PID Controller

Thus far we have assumed that the PID controller is described by the equation

u = K
(

e+ 1
Ti

∫

e(t)dt+ Td
de

dt

)

with corresponding transfer function

Gc(s) = K
(

1+ 1

sTi
+ sTd

)

This form is known as the parallel form, since the control error e is treated in par-

allel in the P, I and D parts. An equally common form in industrial applications is

illustrated by the transfer function

G′c(s) = K ′
(

1+ 1

sT ′i

)
(
1+ sT ′d

)

This is known as the series form, since it can be described as a series connection of

a PI and a PD controller. The difference between these two forms is not as large as

it might appear. If we multiply the factors in the series form we arrive at

G′c(s) = K ′
(

1+ 1

sT ′i

)
(
1+ sT ′d

)
= K ′

(

1+ T
′
d

T ′i
+ 1

sT ′i
+ sT ′d

)

The controller thus contains P, I and D parts. The only difference between the two

forms is hence their parameterizations. The relations are given by the following equa-

tions:

K = K ′T
′
i + T ′d
T ′i

K ′ = K
2

(

1+
√

1− 4Td
Ti

)

Ti = T ′i + T ′d T ′i =
Ti

2

(

1+
√

1− 4Td
Ti

)

Td =
T ′iT

′
d

T ′i + T ′d
T ′d =

Ti

2

(

1−
√

1− 4Td
Ti

)
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If one switches from one controller form to the other and simultaneously translates

the controller parameters appropriately, the functionality of the controller remains

unchanged.

Two interesting observations can be made concerning the structures. The first is that

the two representations are identical when the controllers are used as either P, PI or

PD controllers. It is only when all three terms are used that we have a difference in

parameterization between the series and parallel forms.

The second observations is that the parallel form is more general than its series

counterpart. We can always translate a controller from series to parallel form, but

the contrary is true only for the special case

Ti ≥ 4Td

This can be seen by comparing the transfer functions. The PID controller has a pole

in the origin and two zeros. In the parallel form the two zeros can be complex, while

the series form only allows for real zeros.

When the PID controller was implemented with pneumatic technology back in the

30s and 40s, it was done in series form, for practical reasons. The explanation to why

there still exist so many controllers in series form is that many manufacturers have

kept the controller structure, though the technology used to implement the controllers

have changed.

9.4 The Bode Plot of the PID Controller

We shall now study the Bode plot of the PID controller and choose to do so for its

series form. This form is easier to draw due to its real zeros. Also, the interpretation

of the controller parameters is more straightforward for the series form. The drawn

conclusions will, however, be valid also for the parallel form.

The transfer function G′c can be written

G′c(s) = K ′
(

1+ 1

sT ′i

)
(
1+ sT ′d

)
= K

′

sT ′i
(1+ sT ′i )(1+ sT ′d)

The low-frequency asymptote of the Bode plot is K ′/(sT ′i ), while its high-frequency
asymptote is given by K ′T ′ds. The Bode plot shows two corner frequencies. Under the
assumption that T ′i > T ′d the first corner frequency will appear at ω = 1/T ′i while
the second lies at ω = 1/T ′d. Both the corner frequencies correspond to zeros, causing
the Bode plot to break upwards.

The Bode plot of the PID controller is shown in Figure 9.6. The Bode plot clearly shows

the role of the three parameters. The gain K ′ determines the level of the magnitude
curve whereas the integral and derivative times T ′i and T

′
d determine its two corner

frequencies.

The integral part increases the low-frequency gain of the controller, which helps

reduce stationary errors. At the same, the phase is decreased, which may in turn

decrease the phase margin and hence give worse stability margins.

The derivative part of the controller increases the high-frequency gain of the con-

troller, which may amplify noise in the system. At the same time, the phase is in-

creased, which typically increases the phase margin and gives better stability mar-

gins.
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Figure 9.6 Bode plot of the PID controller with parameters K ′ = 1, T ′i = 10 and T ′d = 1.

9.5 Practical Modifications

The control law of an ideal PID is given by (9.1) or (9.2). We here discuss some
modifications that are needed to make the controller work well in practice.

Limitation of Derivative Gain

A pure derivative can and should not be implemented, because it will give a very large

amplification of measurement noise. The gain of the derivative must thus be limited.

This can be done by approximating the derivative term D(s) = sKTd as follows

D(s) ( sKTd

1+ sTd/N

The transfer function on the right approximates the ideal derivative term well at low

frequencies but the gain is limited to KN at high frequencies. The parameter N is

called the maximum derivative gain. Typical values of N are in the range 10–20.

Modification of Setpoint Response

In the basic algorithm given by (9.1) the control action is based on error feedback.
This means that the control signal is obtained by filtering the control error. Since

the error is the difference between the set point and the measured variable it means

that the set point and the measured variable are treated in the same way. There are

several advantages in providing separate signal treatments of those signals.

It was observed empirically that it is often advantageous to not let the derivative

act on the reference value or to let it act on a fraction of the reference value only.

The reason for this is that a step change in the reference signal will make drive the

output of the control signal to its limits. This may result in large overshoots in the
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Figure 9.7 Response of system to setpoint changes and load disturbances for controller with

different values of parameter β .

step response. To avoid this the derivative term can be modified to

D(s) = sKTd

1+ sTd/N
(γ R(s) − Y(s))

If the parameter γ is zero, which is the most common case, the derivative action does
not operate on the set point.

It has also been found suitable to let only a fraction β of the reference signal act on
the proportional part. The PID algorithm obtained then becomes

U(s) = K
[

βR(s) − Y(s)+ 1
sTi

(R(s) − Y(s))

+ sTd

1+ sTd/N
(γ R(s) − Y(s))

]

where U ,R, and Y denote the Laplace transforms of u, r, and y. The idea to pro-

vide different signal paths for the process output and the reference signal is a good

way to separate reference signal response from the response to load disturbances.

Alternatively it may be viewed as a way to position the closed-loop zeros.

The advantages of a simple way to separately adjust responses to load disturbances

and set points are illustrated in Figure 9.7. In this case parameters K , Ti, and Td are

chosen to give a good response to load disturbances. With β = 1 the response to set
point changes has a large overshoot, which can be adjusted by changing parameter

β .

There are also several other variations of the PID algorithm that are used in com-

mercial systems. An extra first order lag may be used in series with the controller

to obtain a high frequency roll-off. In some applications it has also been useful to

include nonlinearities. The proportional term K e can thus be replaced by K epep or by
K e3. Analogous modifications of the derivative term have also been used.
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Figure 9.8 Illustration of integrator windup.

Integrator Windup

The combination of a saturating actuator and a controller with integral action gives

rise to a phenomena called integrator windup. If the control error is so large that the

integrator saturates the feedback path will be broken, because the actuator will re-

main saturated even if the process output changes. The integrator, being an unstable

system, may then integrate up to a very large value. When the error changes sign the

integral may be so large that it takes considerable time until the integral assumes a

normal value again. The phenomena is also called reset windup. It is illustrated in

Figure 9.8, which shows a simulation of a process with a PI controller. The process

dynamics can be described as an integrator and the process input is limited to the

range −0.1 ≤ u ≤ 0.1. The controller parameters are K = 1 and Ti = 1. When a
reference signal in the form of a unit step is applied the computed control signal

is so large that the process actuator saturates immediately at its high limit. Since

the process dynamics is an integrator the process output increases linearly with rate

0.1 and the error also decreases linearly. The control signal will, however, remain

saturated even when the error becomes zero because the control signal is given by

u(t) = K e(t) + I

The integral has obtained a large value during the transient. The value is proportional

to the dashed area in the figure. The control signal does not leave the saturation

until the error has been negative for a sufficiently long time to reduce the value of

the integral. The net effect is a large overshoot. When the control signal finally leaves

the saturation it changes rapidly and saturates again at the lower actuator limit.

Anti-Windup. In a good PID controller it is necessary to avoid integrator windup.

There are several ways to avoid integrator windup. One possibility is to stop updating

the integral when the actuator saturates. This is called conditional integration.

Another method is illustrated in the block diagram in Figure 9.9. In this method an
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Figure 9.9 Controller with anti-windup. A system where the actuator output is measured is

shown in (a) and a system where the actuator output is estimated from a mathematical model
is shown in (b).

extra feedback path is provided by measuring the actuator output and forming an

error signal (es) as the difference between the actuator output (u) and the controller
output (v). This error is fed back to the integrator through the gain 1/Tt. The error
signal es is zero when the actuator does not saturate. When the actuator saturates

the extra feedback path tries to make the error signal es equal zero. This means that

the integrator is reset so that the controller output tracks the saturation limits. The

method is therefore called tracking. The integrator is reset to the saturation limits

at a rate corresponding to the time constant Tt which is called the tracking time

constant. The advantage of this scheme for anti-windup is that it can be applied to

any actuator as long as the actuator output is measured. If the actuator output is not

measured the actuator can be modeled and an equivalent signal can be generated

from a mathematical model as shown in Figure 9.9(b). It is thus useful for actuators
having a dead-zone or an hysteresis.

Figure 9.10 shows the improved behavior obtained with a controller having anti-

windup based on tracking. The system simulated is the same as in Figure 9.8. Notice

the drastic improvement in performance.
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Figure 9.10 Illustration of controller with anti-windup using tracking. Compare with Figure

9.8.

9.6 Simple Tuning Rules

The PID controller is an elementary controller, often used in simple applications

where one lacks the time and knowledge needed to further analyze the control prob-

lem. Consequently, there is a demand for easily applied rules of thumb, which can

be used to tune the controller parameters to an acceptable performance level. The

tuning should preferably be based on simple experiments conducted on the process.

Many tuning methods have been suggested since the PID controller was first intro-

duced. The by far most well known are, however, Ziegler–Nichols’ methods. They are

not the best methods, but among the easiest to apply. It is worth noting that these

methods are only to be considered as rules of thumb. They yield often acceptable

controller parameters. If one has higher demands of controller performance, more

elaborate methods may be needed.

The minimal amount of information needed to control a process is a process gain in

order to determine K and a process time for the determination of Ti and Td. Ziegler

and Nichols presented two methods in the 40s, which can be used to obtain these

parameters, a step response method and a frequency method (also known as the
ultimate-sensitivity method).
The most popular method in industry today is the lambda method. It was derived

in the sixties, and it provides acceptable control performance for a large class of

processes.

Ziegler–Nichols’ Step Response Method

Ziegler–Nichols’ step response method is based on manual control of the process, i.e.

that the control signal u is manually governed and no controller is present.

When the process has reached an equilibrium a step is issued in the control signal. We

assume the step size to be 1. Steps of different magnitude will require normalization
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Figure 9.11 Evaluation of the gain a and time b from a process step response.

Controller K Ti Td

P 1/a
PI 0.9/a 3b

PID 1.2/a 2b 0.5b

Table 9.1 Recommended controller tuning according to Ziegler–Nichols’ step response method.

of the response in the measurement signal.

Figure 9.11 shows a typical step response. A tangent is drawn through the point

where the incline of the step response attains a maximum. The gain a and time b are

then obtained from the intersection between this tangent and the coordinate axis.

Ziegler and Nichols suggested that the obtained parameters should yield the PID

parameters according to Table 9.1.

From the table we see that the controller gain K is chosen to be inversely proportional

to the process gain a and that the controller times Ti and Td are chosen proportional

to the process time b.

Ziegler–Nichols’ Ultimate-Sensitivity Method

Ziegler and Nichols ultimate-sensitivity method is based on incorporating a P con-

troller in the loop and thereafter conducting the following steps:

1. Successively adjust K until the process oscillates with a constant amplitude.

The corresponding gain is denoted K0.

2. Measure the period T0 of the oscillation.

3. Choose the controller parameters from Table 9.2.

In Ziegler–Nichols’ ultimate-sensitivity method we identify the point Gp(iω 180), being
the point where the process phase shift is −180○. If a P controller is installed in the
loop and its gain is gradually increased, one will eventually reach the gain K0 for

which pK0Gp(iω 180)p = 1. This corresponds to the limit of stability. The gain K0 thus
holds adequate information to calculate Gp(iω 180) while the frequency ω 180 is given
by the period T0, ω 180 = 2π /T0.
Now that we have realized how the ultimate-sensitivity method works, we can observe

that in the case of P control it suggests a controller with gain margin Am = 2.
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Controller K Ti Td

P 0.5K0

PI 0.45K0 T0/1.2
PID 0.6K0 T0/2 T0/8

Table 9.2 Recommended controller tuning according to Ziegler–Nichols’ ultimate-sensitivity

method.

The Lambda Method

The lambda method is based on a step response experiment, where static process gain

Kp, time delay L, and time constant T are determined. The experiment is shown in

Figure 9.12. The point where the process output has the largest derivative is first

determined, and the tangent to the curve at this point is drawn. The intersection

between this tangent and the line representing the level of the process output before

the step change is then determined. The time from the step change to this intersection

point gives an estimate of time delay L. Time constant T is then determined from the

time it takes to reach 63 % of the final value. Static gain Kp is finally determined by

dividing the change in process output with the magnitude of the control signal step:

Kp =
∆y

∆u

The lambda method has one parameter that can be set by the user, namely the desired

time constant of the closed-loop system. This time constant is called λ (lambda).
The original lambda method only considered PI control. The simple tuning rule is

K = 1

Kp

T

L + λ

Ti = T
(9.5)

∆y

∆u

Process output

Control signal

63%

L T

Figure 9.12 Determination of Kp, L, and T from a step response experiment.
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The integral time is chosen equal to the process time constant T . The gain, however,

is dependent on the choice of λ . A common choice is λ = T , which means that it
is desired to give the closed-loop system the same time constant as the open-loop

system.

The controller parameters are derived in the following way. The process and the

controller transfer functions are

Gp(s) =
Kpe

−sL

1+ sT Gc(s) = K
1+ sTi
sTi

Since Ti = T , the loop transfer function is

G0(s) =
KpK e

−sL

sT

The closed-loop transfer function between the setpoint and the process output becomes

G(s) = G0(s)
1+ G0(s)

= KpK e
−sL

sT + KpK e−sL
( KpK e

−sL

sT + KpK (1− sL)
= e−sL

1+ s(T/(KpK ) − L)

where the approximation is that the time delay in the denominator is replaced by the

first terms in its Taylor series expansion. Therefore, the closed-loop transfer function

is a first-order system with the same time delay as for the process, and with the time

constant λ = T/(KpK ) − L. By specifying λ , K is given by Equation (9.5).
It is possible to derive tuning rules for PID controllers with a similar approach as

for the PI controller. In this case, the time delay in the denominator of the closed-

loop transfer function is not approximated by a Taylor series expansion, but with

e−sL ( (1−sL/2)/(1+sL/2). The resulting PID parameters are given in the Collection
of Formulae.
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10. Control Structures

10.1 Introduction

The simple feedback controller we have discussed so far is a powerful tool, which can

provide efficient control and thus ensure stable operation of many simple processes.

The simple feedback controller suffers, however, from a shortcoming which originates

from the necessity of the measurement of the controlled variable. A deviation has to

be registered between the controlled variable and the setpoint before any corrective

action is taken by the controller.

Methods to deal with some aspects of this limitation are given in this chapter. The fact

that a deviation must be registered before any corrective action can be taken implies

that simple feedback is not very useful for processes with large delays relative to

the dominating time constants. In many processes it may be possible to measure

secondary process variables, which show the effect of disturbances before it is seen

in the controlled variable. This leads to the idea of using a secondary loop to aid the

primary control loop. This usage of multiple loops, called cascade control, is very

widespread in the process industries to improve the performance of simple feedback.

The ultimate case of this first basic limitation, occur when the desired controlled

variable cannot be measured, then simple feedback cannot be applied, and one must

resort to using secondary process measurements to estimate the desired controlled

variable. Such methods require also process models.

In summary this chapter deals with improving the behavior of feedback control using

linear functions, which are built around the simple feedback loop. The main appli-

cation of these techniques stems from operating the processes under varying condi-

tions. The implementation of these functions have been simplified tremendously by

the digital computer. Therefore the techniques described in this chapter have reached

widespread usage in the process industries.

10.2 Cascade Control

Cascade control is a strategy where two controllers are combined so that the output of

the first controller forms the setpoint of the other. This is illustrated by the following

example.

EXAMPLE 10.1—CONTROL OF A HEAT EXCHANGER

We want to control the temperature on the secondary side of a heat exchanger by

controlling the steam valve on its primary side. This can be achieved by letting the

temperature controller actuate the steam valve directly as shown in Figure 10.1.

What actually affects the temperature is not the position of the valve, but rather

the steam flow. If the valve is linear and the steam flow does not vary, there is a

constant relation between the valve position and the steam flow. Usually, however,

valves exhibit some form of nonlinearity and the steam pressure varies over time.

E.g. assume that the steam pressure on the primary side suddenly starts to decrease.

As a consequence the steam flow will decrease, leading to slower heating of the
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water on the secondary side. The temperature controller will issue a control signal

corresponding to a more open valve position and after a while the steam flow will

anew stabilize at a correct level. Consequently this strategy works, but the price is

rather large disturbances in the temperature.

If one can measure the steam flow it is possible to incorporate a flow controller

according to Figure 10.2. We form an inner control loop, which controls the steam

flow. The setpoint of the flow controller Gc2 is given by the control signal of the

temperature controller Gc1 . This is an example of a cascade control.

Cascading the controllers leaves the master controller Gc1 with a simpler task. Rather

than letting Gc1 bear the entire control burden, part of the assignment is reassigned

to the controller Gc2 . The controller Gc1 now only needs to produce a flow setpoint.

Subsequently, it is up to the flow controller to maintain a flow close to this setpoint.

A pressure variation will efficiently be eliminated by the flow controller, leading to

a decreased disturbances in the temperature, as compared to the case with only one

PID controller.

The general principle of cascaded control is shown in Figure 10.3. The primary goal

is to control the signal y1 by means of the controller Gc1 . This could be achieved by

using merely the controller Gc1 and letting its control signal enter the process directly.

During cascade control one exploits the availability of an additional measurement

signal, y2. By locally establishing a feedback connection from y2 by means of the

controller Gc2 one can achieve more efficient control, than would be possible with

only one controller. The controller Gc1 is often referred to as the primary or master

controller, whereas Gc2 is known as the secondary or slave controller.

Gc1

T

r1

y1

u1

Figure 10.1 Temperature control of a heat exchanger.

Gc1Gc2

F T

r1

y1

u1r2

y2

u2

Figure 10.2 Cascade control of a heat exchanger.
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u2 y2
u1r

y1
Gp1Gc2Gc1 Gp2

Figure 10.3 The principle of cascade control.

Cascade control is a typical example of how one can achieve more advanced control

solutions, despite the simple structure of the PID controller, by combining several

controllers. The foremost reason to use cascade control is to handle disturbances

which enter the process at Gp2 , before they give rise to disturbances in the primary

measurement signal y1. An example of this are the pressure variations in the above

example. A prerequisite is obviously that the inner control loop is significantly faster

than the outer one. Another advantage with cascade control is that the dynamics

which the primary controller is to control can be simplified. Without cascade control,

the controller Gc1 works on a process consisting of the two section Gp1 and Gp2 . When

cascading is implemented the process sections are changed to a combination of Gp1
and Gp2 in a feedback connection with Gc2 .

10.3 Mid-Range Control

The problem treated by mid-range control is illustrated in Figure 10.4. The figure

illustrates an example where two valves are used to control a flow. One valve, v1, is

small but has a high resolution. The other valve, v2, is large but has a low resolution.

Suppose that the small valve v1 is in the middle of its operating range and that

only small disturbances are acting on the system. In this case, one controller that

manipulates valve v1 is able to take care of the control problem. However, when larger

disturbances occur, valve v1 will saturate. In this case, the larger valve v2 must also

be manipulated.

The mid-range control strategy is illustrated in Figure 10.5. Controller Gc1 takes the

set point r and flow signal y as inputs and manipulates the small valve v1. A second

controller, Gc2 , takes the control signal from Gc1 as input and tries to control it to

a set point ru1 in the middle of its operating range by manipulating the large valve

v2. If both controllers have integral action, the flow will be at the set point r and the

valve v1 will be at the set point ru1 in steady state.

A block diagram of the mid-range control strategy is given in Figure 10.6. Process

Gp1 and controller Gc1 together form a fast feedback loop. The mid-ranging controller

F

v1

v2

Figure 10.4 Two valves are used to control the flow.
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F

Gc1Gc2

v1

v2

Figure 10.5 Mid-range control

Gc1

Gc2

Gp1

Gp2

r

ru1

u1

u2

y
Σ

Figure 10.6 Block diagram of a system with mid-range control.

Gc2 controls the valve position of controller Gc1 via the process output y. This means

that the output of controller Gc1 is controlled by driving the process output y away

from the set point. If this is done slowly, the deviation from the set point can be kept

small.

10.4 Ratio Control

In the process industries it is often desirable to maintain a fixed ratio between two

variables. One example is two feed streams to a chemical reactor where it is desirable

to maintain the molar ratio in order to ensure the proper stoichiometric mixture for

the reaction. Another example is two flows in a separation process, such as the reflux

ratio, i.e. ratio of reflux flow to distillate flow, in a distillation column. Ratio control

is extensively used in the process industries. Below two implementation methods for

ratio control will be discussed and one will be illustrated upon an air/fuel ratio control
of a combustion process.

In Figure 10.7 the two ratio control schemes are shown. In scheme a) the ratio of
the two measured variables is calculated and compared to the desired ratio a. The

a)

Σ

π
Σ

b)

PI−

+

PI

u

y

r

y/r

a

ea

y

r

ar

a

−1 −y
eb u

Figure 10.7 Block diagram for two implementations of ratio PI control. The desired ratio of

y/r is a. The symbol π designates multiplication, ÷ designates division.
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formed deviation is

ea = a−
y

r

In scheme b) the denominator variable r is multiplied with the desired ratio a, thus
forming the desired value for y. The deviation is formed as

eb = ar − y

In both cases the controller output is generated from the error signal with a conven-

tional PI (or PID) controller function. It follows from the two error equations that if
the error is zero then

a = y
r

Thus both schemes fulfill their purpose of keeping the ratio constant at steady state.

The main difference between the two schemes is seen by finding the gain of the

two error signals as r varies. These gains may be determined by finding the partial

derivative of the error with respect to the varying variable r

ka =
�ea
�r

∣
∣
∣
∣
y

= y

r2

kb =
�eb
�r

∣
∣
∣
∣
y

= a

Thus the gain is variable in the a) scheme but constant in the b) scheme. Both
schemes are commonly used in practice, but the b) scheme is applied most often due
to the constant gain.

A ratio controller can be built from a conventional PI or PID controller combined with

a summation and multiplier. These are often supplied as one unit, since this control

function is so common, where the controller can be switched from a ratio to a normal

controller.

EXAMPLE 10.2—AIR/FUEL RATIO TO A BOILER OR A FURNACE

Controlling a boiler or a furnace it is desirable to maintain a constant ratio between

air and fuel. Air is supplied in excess to ensure complete combustion of the fuel.

The greater the air excess the larger is the energy loss in the stack gases. Therefore

maintaining an optimal air excess is important for economical and environmental

reasons. A configuration to achieve this goal using ratio control is shown in Figure

10.8. The fuel flow is controlled by a PI controller. The air flow is controlled by a ratio

controller where fuel flow is the ratio variable. This configuration includes also a bias

b, which for safety reasons ensures an air flow even when no fuel flow is available.

Evaluation of the control error gives

e = aFf + b− Fair

Thus the static flow characteristic is: Fair = aFf + b.
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PI

PIΣ

π

ΣΣ

Ratio regulator

b

Fref

_

_

Fuel

a

Fair

Air

Ff

Figure 10.8 Configuration for air/fuel ratio control to a boiler or a furnace.

10.5 Feedforward

One obvious limitation of feedback is that corrective actions of course can not be

taken before the influence is seen at the output of the system. In many process con-

trol applications it is possible to measure the disturbances coming into the systems.

Typical examples are concentration or temperature changes in the feed to a chemical

reactor or distillation column. Measurements of these disturbances can be used to

make control actions before anything is noticed in the output of the process. It is

then possible to make the system respond more quickly than if only feedback is used.

Consider the process in Figure 10.9. Assume that the disturbance can be measured.

The objective is to determine the transfer function Gff such that it is possible to reduce

the influence of the measurable disturbance v. This is called feedforward control. The

system is described by

Y = GpU + GvV = (GpGff + Gv)V

The disturbance is totally eliminated from the output if

Gff(s) = −
Gv(s)
Gp(s)

Measurable
disturbance

ΣΣ
Control signal

Feedforward

Process

y

u

vGff

Gv

Gp

Figure 10.9 System with measurable disturbance.

105



Lecture 10. Control Structures

Feedforward is in many cases very effective. The great advantage is that rapid distur-

bances can be eliminated by making corrections before their influences are seen in

the process output. Feedforward can be used on linear as well as nonlinear systems.

Feedforward can be regarded as a built-in process model, which will increase the per-

formance of the system. The main drawback with feedforward is that it is necessary

to have good process models. The feedforward controller is an open loop compensation

and there is no feedback to compensate for errors in the process model. It is there-

fore common to combine feedforward and feedback. This usually gives a very effective

way to solve a control problem. Rapid disturbances are eliminated by the feedforward

part. The feedback takes care of unmeasurable disturbances and possible errors in

the feedforward term.

To make an effective feedforward it is necessary that the control signal can be suf-

ficiently large, i.e. that the controller has sufficiently large control authority. If the

ratio of the time constants in Gp and Gv is too large then the control signals become

large. To illustrate this assume that the transfer functions in Figure 10.9 are

Gp =
kp

1+ Tps
Gv =

kv

1+ Tvs

The feedforward controller given by (10.5) becomes

Gff = −
kv

kp
⋅
1+ Tps
1+ Tvs

The high frequency gain is kvTp/(kpTv). If this ratio is large then the feedforward
controller has high gain for high frequencies. This will lead to difficulties if the

measurement is corrupted by high frequency noise. Also if the pole excess (I.e. the
difference between the number of poles and zeros in the transfer function.) is larger
in Gp than in Gv the feedforward controller will result in derivatives of the measured

signal. One way to avoid the high frequency problem with feedforward is to only use

a static feedforward controller, i.e. to use Gff(0). This will also reduce the need for
accurate models.

EXAMPLE 10.3—FEEDFORWARD

Consider the tank system in Figure 10.10. The level is controlled using the input

flow. The output flow is a measurable disturbance. It is assumed that there is a

calibration error (bias) in the measurement of the output flow. The tank is described
by an integrator, i.e. Gp = 1/s, and the valve as a first order system

Gvalve(s) =
1

s+ 1
The feedforward controller is in this case given by

Gff(s) =
1

Gvalve(s)
= s+ 1

The controller will thus contain a derivation. The derivative can be approximated by

the high pass filter

s ( s

1+ Tff s
The feedforward is implemented as

Gff(s) =
s

1+ Tff s
+ 1 (10.1)
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Figure 10.10 Tank system with measurable disturbance.

or as the static feedforward controller

Gff(0) = 1 (10.2)

Figure 10.11 shows the response to a step disturbance when Tff = 0.1 and when
(10.1) and (10.2) are used. The reference value is zero. Also the response without
feedforward is shown. The response is greatly improved by including the dynamics

in the feedforward controller. The bias in the measurement will cause a drift in the

output, since the controller does not have any feedback from the output level.

Assume that the controller is extended with a feedback part. Figure 10.12 shows the

output and input when both feedforward and feedback are used. The example shows

the advantage of combining feedforward with feedback.

10.6 Deadtime Compensation

The derivative part of the PID controller is used to predict future values of the

measurement signal. This is done by studying its derivative. Evidently this method

works poorly if the process involves a long delay. In this case one could of course use a

PI controller, with the loss of the prediction provided by the D part. This is, however,

a significant disadvantage, since the prediction of future control errors is especially

useful when we have long process delays. As a consequence special controllers have

been developed, which can predict future control errors also in processes with long

delays. These predictions are, however, not based on deriving the measurement signal.
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(10.1)

(10.1)

(10.2)
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Figure 10.11 Feedforward control of the process in Figure 10.10 using (10.1) and (10.2) with
Tff = 0.1, when the disturbance is a unit step. The response without feedforward, i.e. the open
loop response, is also shown. (a) No measurement bias; (b) Measurement bias 0.05.

The principle of deadtime compensation controllers is to construct the control error

prediction based on the control signal, rather than the measurement signal. By de-

vising a model of the process to be controlled and letting the control signal drive both

the real process and the model, one can obtain near-future values of the measure-

ment signal of the process by studying the measurement signal of its simulation. The

most common delay compensation strategy is implemented in the Smith predictor.

A schematic sketch, illustrating the working principle of this strategy is shown in

Figure 10.13.

Apart from the usual controller parameters, the Smith predictor needs a model of

the process. Especially, it needs to know the length of the process delay. The figure

shows how the control signal enters the process as well as models of the process, one

with and one without the estimated process delay.

Let us assume that the model is an accurate deception of the process. The two signals

y and y1 will then be identical and therefore cancel each other. The remaining signal

entering the controller is y2, i.e. the signal we would have obtained if there was

no delay in the process. This way the controller works against a simulated process,

identical to the real process, with its delay removed. The control performance becomes

as good as it would have been without the delay, except the fact that the measurement

signal is obviously still delayed.

In reality the model is, however, not a perfect description of the process. Consequently,

the signal going back into the controller is not identical to y2. This usually calls for

a more conservative tuning of the controller than one would have chosen if the delay

was not present.

We shall now give an example of control using the Smith predictor.

EXAMPLE 10.4—THE SMITH PREDICTOR

Figure 10.14 shows the control of a first order process with a delay. The figure shows

the control performance of both the PI controller and the Smith counterpart.
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Figure 10.12 Feedforward and feedback control of the process in Figure 10.10 using (10.1)
with Tff = 0.1 and bias=–0.05. The feedback controller is a PID controller with Kc = 4, Ti = 3,
and Td = 0.5. (a) Output with (full) and without (dashed) feedforward; (b) Input with (full)
and without (dashed) feedforward. The reference signal is a unit step at t = 0 and the load
disturbance is a unit step at t = 15.
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Figure 10.13 The principle of the Smith predictor.

The PI controller is tuned to provide fast control action, without overshoots. At the

setpoint change the control signal steadily starts to integrate the control error. The

integration is slow enough not to cause any overshoot.

The delay compensation controller is also tuned not to cause any overshoot. It re-

sponds to setpoint changes and load disturbances significantly faster than the PI

controller. We can especially notice a crucial improvement at setpoint changes, as

compared to the PI case. This is because the Smith predictor issues a control signal

change before the setpoint change is visible in the measurement signal.

At load disturbances none of the controllers can react before the disturbance is visible

in the measurement signal. The only remedy here would be to introduce a feedforward

link from the disturbance.

We shall now conduct a closer study of the Smith predictor. The controller described

by Figure 10.13 is equivalent to the block diagram shown in Figure 10.15.
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The transfer function of the process is given by

Gp(s) = Gp0(s)e−sL

The estimated process is correspondingly described by the transfer function

Ĝp(s) = Ĝp0(s)e−sL̂

The controller Gc0, which is part of the Smith controller, is often a PI controller.

From the block diagram in Figure 10.15 the control signal of the Smith controller can

be computed as

U = Gc0(R − Y + Y1 − Y2)
= Gc0(R − Y + Ĝp0e−sL̂U − Ĝp0U)
= Gc0(R − Y) + Gc0Ĝp0(e−sL̂ − 1)U

If Gc0 is a PI controller, we see that the Smith controller can be considered as a PI

controller with an added term, which is driven by the control signal u. This is the

Measurement signal

Setpoint

Control signal

Figure 10.14 Comparison between the Smith controller (thick lines) and a PI controller (thin
lines). The figure shows the control performance when a setpoint change is followed by a load
disturbance.

Gc0 Gp

Ĝp0 e−sL̂

r

y2

y

y1

u

l

−
−−

∑

∑∑∑

Figure 10.15 Equivalent structure of the Smith predictor.
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term responsible for the prediction. In other words we have replaced the measurement

signal derivative based prediction in the PID controller with a prediction based on

the process model Ĝp and the control signal.

If the model is identical to the real process, i.e. if Ĝp = Gp and if we do not have any
process disturbances, the signals y and y1 will be identical. The only signal re-entering

the controller Gc0 will then be y2. This yields the control signal

U = Gc0(R − Y2) = Gc0(R − Gp0U) =
Gc0

1+ Gc0Gp0
R

Subsequently, the relation between the setpoint and measurement signal is given by

Y

R
= GpGc0

1+ Gp0Gc0
= Gp0Gc0

1+ Gp0Gc0
e−sL

This means that we have a transfer function identical to the case of a process without

delay, Gp = Gp0, except from the fact that the measurement signal is delayed by a
time L. Ideally this means that the controller Gc0 can be determined as if there was

no process delay. In reality, however, modelling errors and robustness margins force

us to tune the controller more conservatively.
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X. Discrete-Time and Sequence

Control

X.1 Introduction

In this chapter we will give an overview of sampled-data systems and how com-

puters can be used for implementation of controllers. Standard controllers such as

PID-controllers have over the years been implemented using mechanical, pneumatic,

hydraulic, electronic, and digital equipment. Most manufactured PID-controllers are

today based on microprocessors. This is done because of the cost benefits. If the sam-

pling frequency is high the controllers can be regarded as continuous time controllers.

The user can make the tuning and installation without bothering about how the con-

trol algorithm is implemented. This has the advantage that the operators do not

have to be re-educated when equipment based on new technology is installed. The

disadvantage is that the full capacity of sampled-data systems is not used.

Some advantages of using computers to control a process are:

• Increased production

• Better quality of the product

• Improved security

• Better documentation and statistics

• Improved flexibility

One of the most important points above is the increased flexibility. It is, in principle,

very simple to change a computer program and introduce a new controller scheme.

This is important in industrial processes, where revisions always are made. New

equipment is installed and new piping is done etc.

Some Historical Remarks

The development of process control using computers can be divided into five phases:

Pioneering period ( 1955
Direct-digital-control period ( 1962
Minicomputer period ( 1967
Microcomputer period ( 1972
General use of digital control ( 1980

The years above give the approximate time when different ideas appeared.

The first computer application in the process industry was in March 1959 at the

Port Arthur, Texas, refinery. The project was a cooperation between Texaco and the

computer company Thomson Ramo Woodridge (TRW). The controlled process was a
polymerization unit. The system controlled 26 flows, 72 temperatures, 3 pressures,

and 3 compositions. The essential function of the computer was to make an opti-

mization of the feeds and recirculations of the process. During the pioneering period
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Figure X.1 Different ways to use computers. a) Operator guide; b) Set-point control; c) Direct
Digital Control (DDC).

the hardware reliability of the computers was very poor. The Mean Time Between

Failures (MTBF) for the central processing unit could be in the range 50–100 hours.
The task of the computer was instead to compute and suggest the set-point values

to the conventional analog controllers, see Figure X.1 a). The operator then changed
the set-points manually. This is called operator guide. With increased reliability it

became feasible to let the computers change the set points directly, see Figure X.1 b).
This is called set-point control. The major tasks of the computers were optimization,

reporting, and scheduling. The basic theory for sampled-data system was developed

during this period.

With increasing reliability of the computers it became possible to replace the con-

ventional controllers with algorithms in the computers. This is called Direct Digital

Control, (DDC), see Figure X.1 c). The first installation using DDC was made at
Imperial Chemical Industries (ICI) in England in 1962. A complete analog instru-
mentation was replaced by one computer, a Ferranti Argus. The computer measured

224 variables and controlled directly 129 valves. At this time a typical central process-

ing unit had a MTBF of about 1000 hours. Using DDC it also became more important

to consider the operator interfaces. In conventional control rooms the measured val-

ues and the controllers are spread out over a large panel, usually covering a whole
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Figure X.2 A standard microprocessor-based single-loop controller for process control. (By
courtesy of Satt Control Instruments, Stockholm, Sweden.)

wall in a room. Using video displays it became possible to improve the information

flow to the process operators.

Integrated circuits and the development of electronics and computers during the

end of the sixties lead to the concept of minicomputers. As the name indicates the

computers became smaller, faster, cheaper, and more reliable. Now it became cost-

effective to use computers in many applications. A typical computer from this time

is CDC 1700 with an addition time of 2 µs and a multiplication time of 7 µs. The
primary memory was in the range 8–124k words. The MTFB for the central processing

unit was about 20 000 hours. The computers were now equipped with hardware that

made it easy to connect them to the processes. Special real-time operating systems

were developed which made it easier to program the computers for process control

applications.

The development with very large scale integration (VLSI) electronics made it possible
to make a computer on one integrated circuit. Intel developed the first microproces-

sors in the beginning of the seventies. The microprocessors made it possible to have

computing power in almost any equipment such as sensors, analyzers, and controllers.

A typical standard single loop controller based on a microprocessor is shown in Fig-

ure X.2. This type of standard controllers are very common in the industry. Using a

microprocessor makes it possible to incorporate more features in the controller. For

instance, auto-tuning and adaptivity can be introduced.

From the beginning of the eighties the computers have come into more general use

and the development have continued both on the hardware and the software. Today

most control systems are built up as distributed systems. The system can be easily

expanded and the reliability has increased with the distributed computation and
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Figure X.3 Architecture of a distributed control system.
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Figure X.4 Computer control of a process.

communication. A typical architecture of a distributed control system is shown in

Figure X.3.

X.2 Sampled-Data Systems

In the context of control and communication, sampling means that a continuous time

signal is replaced by a sequence of numbers. Figure X.4 shows the signals in the

different parts of the system when a process is controlled using a computer. The

output of the process is sampled and converted into a number using a analog-to-

digital (A-D) converter. The sampler and converter are usually built into one unit. The
sampling times are determined by the real-time clock in the computer. The sampled
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Figure X.5 Illustration of aliasing. The sinusoidal signals have the frequencies 0.1 and 0.9

Hz respectively. The sampling frequency is 1 Hz.

signal is represented as a digital number. Typically the converter has a resolution

of 8–16 bits. This implies that the sampled signal is quantized both in time and

amplitude. The time between the sampling instances is called the sampling period.

The sampling is usually periodic, i.e. the times between the samples are equal. The

sampling frequency ω s and the sampling period h are related through

ω s =
2π

h

The controller is an algorithm or program in the computer that determines the se-

quence of control signals to the process. The control signals are converted into an

analog signal by using a digital-to-analog (D-A) converter and a hold-circuit. The
hold circuit converts the sequence of numbers to a time-continuous signal. The most

common hold circuit is the zero-order-hold, which keeps the signal constant between

the D-A conversions. The end result is that the process is controlled by a piece-wise

constant signal. This implies that the output of the system can be regarded as a

sequence of step responses for the open loop system. Due to the periodicity of the

control signal there will be a periodicity also in the closed loop system. This makes it

difficult to analyze sampled-data systems. The analysis will, however, be considerably

simplified if we only consider the behavior of the system at the sampling points. We

then only investigate how the output or the states of the system is changed from

sampling time to sampling time. The system will then be described by recursive or

difference equations.

Aliasing

When sampling the output of the process we must choose the sampling period. Intu-

itively it is clear that we may loose information if the sampling is too sparse. This is

illustrated in Figure X.5, where two sinusoidal signals are sampled. The sinusoidal

signals have the frequencies 0.1 and 0.9 Hz respectively. When sampling with a fre-

quency of 1 Hz the signals have the same value at each sampling instant. This implies

that we can’t distinguish between the signals after the sampling and information is

lost. The high frequency signal can be interpreted as a low frequency signal. This

is called aliasing or frequency folding. The aliasing problem may become serious in

control systems when the measured signal has a high frequency component. The sam-

pled signal will then contain a low frequency alias signal, which the controller may

try to compensate for.

EXAMPLE X.1—ALIASING

Figure X.6 is a process diagram of feedwater heating in a boiler of a ship. A valve

controls the flow of water. Unintentionally there is a backlash in the valve positioner
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Figure X.6 Process diagram for a feedwater heating system of a boiler.

due to wear. This causes the temperature to oscillate. Figure X.6 shows a sampled

recording of the temperature and a continuous time recording of the pressure. The

sampling period of the temperature is 2 min. From the temperature recording one

might believe that there is an oscillation with a period of 38 min. Due to the physical

coupling between the temperature and the pressure we can conclude that also the

temperature must have an oscillation of 2.11 min. The 38 min oscillation is the alias

frequency.

Can aliasing be avoided? The sampling theorem by Shannon answers this question.

To be able to reconstruct the continuous time signal from the sampled signal it is nec-

essary that the sampling frequency is at least twice as high as the highest frequency

in the signal. This implies that there must be at least two samples per period. To

avoid the aliasing problem it is necessary to filter all the signals before the sampling.

All frequencies above the Nyquist frequency

ω N =
ω s
2
= π

h

should ideally be removed.

EXAMPLE X.2—PREFILTERING

Figure X.7 a) shows a signal (the square wave) disturbed by high frequency sinusoidal
measurement noise. Figure X.7 c) shows the sample and hold of the signal. The
aliasing is clearly visible. The signal is then prefiltered before the sampling giving

the signal in Figure X.7 b). The measurement noise is eliminated, but some of the
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Figure X.7 Usefulness of a prefilter. a) Signal plus sinusoidal disturbance; b) The signal
filtered through a sixth-order Bessel filter; c) Sample and hold of the signal in a); d) Sample
and hold of the signal in b).

high frequency components in the desired signal are also removed. Sample and hold of

the filtered signal is shown in Figure X.7 d). The example shows that the prefiltering
is necessary and that we must compromise between the elimination of the noise and

how high frequencies that are left after the filtering. It important that the bandwidth

of the prefilter is adjusted to the sampling frequency.

X.3 Description of Sampled-Data Systems

In this section we will briefly discuss how to describe sampled-data systems. The idea

is to look at the signals only at the sampling points. Further, we will only discuss the

problem when the sampling interval h is constant. Let the process be described by

the continuous time state-space model

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) (X.1)

Assume that the initial value is given and that the input signal is constant over the

sampling interval. The solution of (X.1) is now given by (3.7). Let t and t+ h be two
consecutive sampling times.

x(t+ h) = eAhx(t) +
∫ t+h

t

eA(t−τ )Bu(τ ) dτ

= eAhx(t) +
∫ t+h

t

eA(t−τ )B dτ u(t)

= eAhx(t) +
∫ h

0

eAτ ′B dτ ′ u(t)

= Φx(t) + Γu(t)

In the second equality we have used the fact that the input is constant over the

interval [t, t + h]. The third equality is obtained by change of integration variable
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Figure X.8 Illustration of the difference equation y(t) + a1y(t − h) + a2y(t − 2h) = b1u(t −
h) + b2u(t− 2h).

τ ′ = t− τ . A difference equation is now obtained, which determines how the state is
changed from time t to time t+ h.

x(t+ h) = Φx(t) + Γu(t)
y(t) = Cx(t) (X.2)

The sampled data system is thus described by a difference equation. The solution of

the difference equation is obtained recursively through iteration. In the same way as

for continuous time systems it is possible to eliminate the states and derive an input

output model of the system. Transform theory plays the same role for sampled data

systems as the Laplace transform for continuous time systems. For sampled-data

systems the z-transform is used. We can also introduce the shift operator q, which is

defined as

qy(t) = y(t+ h)
i.e. multiplication by the operator q implies shift of the time argument one sampling

period ahead. Multiplication by q−1 is the same as backward shift. Using the shift
operator on (X.2) gives

qx(t) = Φx(t) + Γu(t)
Solving for x(t) gives

x(t) = (qI − Φ)−1 Γu(t)
Compare (4.2). The input-output model is thus

y(t) = C (qI − Φ)−1 Γu(t) = H(q)u(t) (X.3)

where H(q) is called the pulse transfer function. Equation (X.3) corresponds to a
higher order difference equation of the form

y(t) + a1y(t− h) + a2y(t− 2h) + ⋅ ⋅ ⋅ + any(t− nh)
= b1u(t− h) + ⋅ ⋅ ⋅ + bnu(t− nh)

(X.4)

The output of the difference equation (X.4) is thus a weighted sum of previous inputs
and outputs. See Figure X.8.
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EXAMPLE X.3—RECURSIVE EQUATION

Assume that a sampled-data system is described by the recursive equation

y(t+ 1) − 0.6y(t) = 0.5u(t) (X.5)

where y(0) = 0 and u(t) = 1 when t ≥ 0. We can now compute the output of (X.5).
t u(t) y(t)
0 1 0

1 1 0.5

2 1 0.8

3 1 0.98

4 1 1.088

5 1 1.153

6 1 1.192

7 1 1.215

8 1 1.229

9 1 1.237

10 1 1.242
...

...
...

∞ 1 1.25

The stationary value can be obtained by assuming that y(t + 1) = y(t) = y(∞) in
(X.5). This gives

y(∞) = 0.5

1− 0.6 = 1.25

Given a continuous time system and assuming that the control signal is constant

over the sampling period is is thus easy to get a representation that describes how

the system behaves at the sampling instants. Stability, controllability, observability,

etc can then be investigated very similar to continuous time systems. There are also

design methods that are the same as for continuous time systems. This is, however,

outside the scope of this book.

X.4 Discrete-Time Approximations

It is sometimes of interest to make a transformation of a continuous time controller

or a transfer function into a discrete time implementation. This can be done using

approximations of the same kind as when making numerical integration. This can be

of interest when a good continuous time controller is available and we only want to

replace the continuous time implementation by a sampled-data implementation. See

Figure X.9.

The simplest ways are to approximate the continuous time derivative using simple

difference approximations. We can use forward difference (Euler’s approximation)

dy

dt
( y(t+ h) − y(t)

h
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Figure X.9 Approximating a continuous time transfer function, G(s), using a computer.

or backward difference
dy

dt
( y(t) − y(t− h)

h

Higher order derivatives are obtained by taking the difference several times. These

types of approximations are good only if the sampling period is short. The forward

difference approximation corresponds to replacing each s in the transfer function

by (q − 1)/h. This gives a discrete time pulse transfer function H(q) that can be
implemented as a computer program. Using backward difference we instead replace

all s by (1− q−1)/h.

EXAMPLE X.4—DIFFERENCE APPROXIMATION

Assume that we want to make a difference approximation of a transfer function

G(s) = 2

s+ 3

The system is thus described by the differential equation

dy(t)
dt

= −3y(t) + 2u(t)

Using forward difference approximation we get

dy

dt
( y(t+ h) − y(t)

h
= −3y(t) + 2u(t)

Rearrangement of the terms gives the difference equation

y(t+ h) = (1− 3h)y(t) + 2hu(t)

Using backward difference approximation we instead get

dy

dt
( y(t) − y(t− h)

h
= −3y(t) + 2u(t)

or

y(t) = 1

1+ 3h (y(t− h) + 2hu(t))
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Figure X.10 Level control of a two-tank system.

The choice of the sampling interval depends on many factors. For the approximations

above one rule of thumb is to choose

hω c ( 0.15 – 0.5

where ω c is the crossover frequency (in rad/s) of the continuous time system. This
rule gives quite short sampling periods. The Nyquist frequency will be about 5–20

time larger than the crossover frequency.

EXAMPLE X.5—APPROXIMATION OF A CONTINUOUS TIME CONTROLLER

Consider the process in Figure X.10. There are two tanks in the process and the outlet

of the second tank is kept constant by a pump. The control signal is the inflow to the

first tank. The process can be assumed to have the transfer function

Gp(s) =
1

s(s+ 1) (X.6)

i.e. there is an integrator in the process. Assume that the system is satisfactorily

controlled by a continuous time controller

Gc(s) = 4
s+ 0.8
s+ 3.2 (X.7)

We now want to implement the controller using a computer. Using Euler approxima-

tion gives the approximation

H(q) = 4
q− 1
h

+ 0.8
q− 1
h

+ 3.2
= 4 q− 1+ 0.8h

q− 1+ 3.2h (X.8)

The crossover frequency of the continuous time system (X.6) in cascade with (X.7) is
ω c = 1.7 rad/s. The rule of thumb above gives a sampling period of about 0.1 – 0.3.
Figure X.11 shows the output and the input of the system when it is controlled by the

continuous time controller (X.7) and the sampled-data controller (X.8) for different
sampling times.
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Figure X.11 Process output and input when the process (X.6) is controlled by (X.7) and the
sampled-data controller (X.8) when a) h = 0.1; b) h = 0.2; c) h = 0.5. The dashed signals are
the output and input when the continuous time controller is used.

X.5 Sampled-Data PID Controllers

A digital computer can neither take derivatives nor compute integrals exactly. To

implement a PID controller using a digital computer, it is therefore necessary to

make some approximations. As a starting point, we take the modified PID algorithm

derived in Section 9.5 (with derivative set-point weighting γ = 0):

U(s) = K
(

βR(s) − Y(s) + 1

sTi
(R(s) − Y(s)) − sTd

1+ sTd/N
Y(s)

)

The proportional part

P(t) = K (β r(t) − y(t)) (X.9)
requires no approximation since it is a purely static relation. The integral term

I(t) = K
Ti

t∫

e(τ ) dτ

is approximated by a rectangular approximation, i.e.

I(kh+ h) = I(kh) + Kh
Ti
e(kh) (X.10)

The derivative part given by

Td

N

dD

dt
+ D = −KTd

dy

dt
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Program

Clock

Figure X.12 A simple operating system.

is approximated by taking backward differences. This gives

D(kh) = Td

Td + Nh
D(kh− h) − KTdN

Td + Nh
(y(kh) − y(kh− h)) (X.11)

This approximation has the advantage that it is always stable and that the sampled

data pole goes to zero when Td goes to zero. The control signal is given as

u(kh) = P(kh) + I(kh) + D(kh)

This approximation has the pedagogical advantage that the proportional, integral,

and derivative terms are obtained separately. There are many other approximations,

which are described in detail in textbooks on digital control.

To introduce a digital version of the anti-windup scheme, we simply compute a signal

v(kh) = P(kh) + I(kh) + D(kh)

The controller output is then given by

u = sat(v,umin,umax) =







umin v < umin
v umin ≤ v ≤ umax
umax u > umax

(X.12)

and the updating of the integral term given by Equation (X.10) is replaced by

I(kh+ h) = I(kh) + Kh
Ti
e(kh) + h

Tr
(u(kh) − v(kh)) (X.13)

To implement the controller using a digital computer, it is also necessary to have

analog to digital converters that convert the set point r and the measure value y

to a digital number. It is also necessary to have a digital to analog converter that

converts the computed output u to an analog signal that can be applied to the process.

To ensure that the control algorithm gets synchronized, it is also necessary to have

a clock so that the control algorithm is executed once every h time units. This is

handled by an operating system. A simple form of such a system is illustrated in

Figure X.12.

The system works like this. The clock gives an interrupt signal each sampling instant.

When the interrupt occurs, the following program is executed:
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Analog to digital (AD) conversion of r and y
Compute P from (X.9)
Compute D from (X.11)
Compute v = P+ I + D
Compute u from (X.12)
Digital to analog (DA) conversion of u
Compute I from (X.13)
Wait for next clock pulse

When the interrupt occurs, digital representations of set point r and measured value

y are obtained from the analog to digital conversion. The control signal u is computed

using the approximations described earlier. The numerical representation of u is

converted to an analog signal using the DA converter. The program then waits for

the next clock signal.

Selection of Sampling Interval and Word Length

The sampling interval is an important parameter in a digital control system. The

parameter must be chosen sufficiently small so that the approximations used are

accurate, but not so small that there will be numerical difficulties.

Several rules of thumb for choosing the sampling period for a digital PID controller

are given in the literature. There is a significant difference between PI and PID

controllers. For PI controllers the sampling period is related to the integration time.

A typical rule of thumb is
h

Ti
( 0.1− 0.3

when Ziegler-Nichols tuning is used this implies

h

L
( 0.3− 1

where L is the apparent dead-time or equivalently

h

Tu
( 0.1− 0.3

where Tu is the ultimate period.

With PID control the critical issue is that the sampling period must be so short

that the phase lead is not adversely affected by the sampling. This implies that the

sampling period should be chosen so that the number hN/Td is in the range of 0.2
to 0.6. With N = 10 this means that for Ziegler-Nichols tuning we have

h

L
( 0.01− 0.03

or
h

Tu
( 0.0025− 0.0075

Controllers with derivative action thus require significantly shorter sampling periods

than PI controllers.
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Commercial digital controllers for few loops often have a short fixed sampling interval

on the order of 200 ms. This implies that PI control can be used for processes with

ultimate periods larger than 0.6 s but that PID controllers can be used for processes

with ultimate periods larger than 25 s.

From the above discussion it may appear advantageous to select the sampling inter-

val as short as possible. There are, however, also drawbacks by choosing a very short

sampling period. Consider calculation of the integral term. Computational problems,

such as integration offset may occur due to the finite precision in the number repre-

sentation used in the computer. Assume that there is an error, e(kh). The integrator
term is then increased at each sampling time with

Kh

Ti
e(kh)

Assume that the gain is small or that the reset time is large compared to the sampling

time. The change in the output may then be smaller than the quantization step in

the DA-converter. For instance, a 12-bit DA converter (i.e., a resolution of 1/4096)
should give sufficiently good resolution for control purposes. Yet if K = h = 1 and
Ti = 3600, then any error less than 90% of the span of the DA converter gives a
calculated change in the integral part less than the quantization step. There will

be an offset in the output if the integral part is stored with the same number of

digits as used in the DA converter. One way to avoid this is to use higher precision

in the internal calculations that are less than the quantization level of the output.

Frequently at least 24 bits are used to implement the integral part in a computer, in

order to avoid integration offset. It is also useful to use a longer sampling interval

when computing the integral term.

X.6 Logical Nets and Sequence Control

The history of logical nets and sequential processes starts with batch processing,

which is very important in many process industries. This implies that control actions

are done in a sequence where the next step depends on some conditions. Simple

examples are recipes for cooking and instructions or manuals for equipment. Washing

machines, dish washers, and batch manufacturing of chemicals are other examples.

The recipes or instructions can be divided into a sequence of steps. The transition

from one step to the next can be determined by a logical expression. In this chapter

logical and sequence controllers are presented.

Sequence control is an integrated part of many control systems, and can be used

for batch control, start-up and shut-down procedures, interlooks, and alarm supervi-

sion. When implementing such systems it is useful to be aware of the notations and

traditions in sequence control as it developed before it started to be integrated with

automatic control.

Logical nets can be implemented in many different ways, for instance, using clever

mechanical constructions, relays, transistors, or computers. The computer implemen-

tations are often called PLC (Programmable Logical Controller) systems. An earlier
notation was PC (Programmable Controller) systems. This was used before PC be-
came synonymous with personal computer. Logical systems are built up by variables

that can be true or false, i.e. the variables can only take one of two values. For in-

stance, a relay may be drawn or not, an alarm may be set or not, a temperature may
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Figure X.13 Different ways to represent the logical expressions a ⋅ b and a + b: (a) Boolean
algebra; (b) Relay symbols; (c) Ladder symbols; (d) Logical circuit symbols (American standard);
(e) Logical circuit symbols (Swedish standard).

be over a limit or not. The output of a logical net is also a two-valued variable, a mo-

tor may be started or not, a lamp is turned on or off, a contactor is activated or not.

The mathematical basis for handling this type of systems is Boolean algebra. This

algebra was developed by the English mathematician George Boole in the 1850’s. It

was, however, not until after about a century that it became a widely used tool to

analyze and simplify logical circuits.

Logical variables can take the values true or false. These values are often also denoted

by 1 (true) or 0 (false). Boolean algebra contains three operations or, and, and not.

We have the following notations:

and: a ⋅ b a and b a ∧ b
or: a+ b a or b a ∨ b
not: ā not a ¬a

The expression a ⋅ b is true only if both a and b are true at the same time. The
expression a+b is true if either a or b or both a and b are true. Finally the expression
ā is true only if a is false. In the logical circuit symbols a ring on the input denotes

negation of the signal and a ring on the output denotes negation of the computed

expression. The and and or expressions can also be interpreted using relay symbols

as in Figures X.13 and X.14. The and operator is the same as series connection of

two relays. There is only a connection if both relays are drawn. The or operator is

the same as parallel connection of two relays. There is a connection whenever at

least one of the relays are drawn. The relay or ladder representation of logical nets

is often used for documentation and programming of PLCs. We will use the more

programming or computer oriented approach with ⋅ and +. This usually gives more
compact expressions and is also more suited for algebraic manipulations. Exactly as

in ordinary algebra we may simplify the writing by omitting the and-operator, i.e. to

write ab instead of a ⋅ b.

To make the algebra complete we have to define the unit and zero elements. These
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Figure X.14 Different ways to represent the logical expression a ⋅ b̄: (a) Boolean algebra; (b)
Relay symbols; (c) Ladder symbols; (d) Logical circuit symbols (American standard); (e) Logical
circuit symbols (Swedish standard).

are denoted by 1 and 0 respectively. We have the following axioms for the Boolean

algebra:

0̄ = 1
1̄ = 0
1+ a = 1
0+ a = a
1 ⋅ a = a
0 ⋅ a = 0
a+ a = a
a+ ā = 1
a ⋅ ā = 0
a ⋅ a = a
¯̄a = a

We further have the following rules for calculation:

a+ b = b+ a Commutative law

a ⋅ b = b ⋅ a Commutative law

a ⋅ (b+ c) = a ⋅ b+ a ⋅ c Distributive law

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c Associative law

a+ (b+ c) = (a+ b) + c Associative law

a+ b = ā ⋅ b̄ de Morgan’s law

a ⋅ b = ā+ b̄ de Morgan’s law
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A logical net can be regarded as a static system. For each combination of the input

signals there is only one output value that can be obtained.

In many applications it can be easy to write down the logical expressions for the

system. In other applications the expressions can be quite complicated and it can

be desirable to simplify the expressions. One reason for making the simplification is

that the simplified expressions give a clearer understanding of the operation of the

network. The rules above can be used to simplify logical expressions. One very useful

rule is the following

a+ a ⋅ b = a ⋅ 1+ a ⋅ b = a ⋅ (1+ b) = a ⋅ 1 = a (X.14)

One way to test equality between two logical expressions is a truth table. The truth

table consists of all combinations of the input variables and the evaluation of the two

expressions. Since the inputs only can take two values there will be 2n combinations,

where n is the number of inputs. The expressions are equal if they have the same

value for all combinations.

EXAMPLE X.6—TRUTH TABLE

For instance (X.14) is proved by using the table

a b a+ ab a

0 0 0 0

0 1 0 0

1 0 1 1

1 1 1 1

To the left we write all possible combinations of the input variables. To the right we

write the value of the expressions of the left and right hand sides of (X.14). The last
two columns are the same for all possible combinations of a and b, which proves the

equality.

There are systematic methods to make an automatic reduction of a logical expression.

The methodologies will only be illustrated by an example.

EXAMPLE X.7—SYSTEMATIC SIMPLIFICATION OF A LOGICAL NETWORK

Consider a logical network that has three inputs a, b, and c and one output y. The

network is defined by the following truth table:

a b c y

v0 0 0 0 0

v1 0 0 1 0

v2 0 1 0 0

v3 0 1 1 1

v4 1 0 0 1

v5 1 0 1 1

v6 1 1 0 1

v7 1 1 1 1
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The different combinations of the inputs are denoted vi, where the index i corre-

sponds to the evaluation of the binary number abc. I.e. the combination abc = 101
corresponds to the number 1 ⋅ 22 + 0 ⋅ 21 + 1 ⋅ 20 = 5. The expression for the output
y can be expressed in two ways: either as the logical or of the combinations when

the output is true or as the negation of the logical or of the combinations when the

output is false. Using the first representation we can write

y= v3 + v4 + v5 + v6 + v7
= ābc+ ab̄c̄+ ab̄c+ abc̄+ abc
= bc(ā+ a) + ab̄(c̄+ c) + ab(c̄+ c)
= bc+ ab̄+ ab = bc+ a(b̄+ b)
= a+ bc

The first equality is obtained from the truth table. The second equality is obtained by

combining the terms v3 with v7, v4 with v5, and v6 with v7. It is possible to use v7 two

times since v7 + v7 = v7. The simplifications are then given from the computational
rules listed above.

The second way to do the simplification is to write

ȳ= v0 + v1 + v2
= āb̄c̄+ āb̄c+ ābc̄
= āb̄(c̄+ c) + āc̄(b̄+ b)
= āb̄+ āc̄ = ā(b̄+ c̄)

This gives

y= ¯̄y= ā(b̄+ c̄) = a+ bc
which is the same as before.

Using the methodology described in the example above it is possible to reduce a

complicated logical expression into its simplest form. A more formal presentation of

the methods are outside the scope of this book.

PLC Implementation

Most PLC units are implemented using microprocessors. This implies that the logical

inputs must be scanned periodically. A typical block diagram is shown in Figure X.15.

The execution of the PLC program can be done in the following way:

1. Input-copying. Read all logical input variables and store them in I/O memory.
2. Scan through the program for the logical net and store the computed values of

the outputs in the I/O memory.
3. Output-copying. Send the values of output signals from the I/O memory to the
process.

4. Repeat from 1.

The code for the logical net is executed as fast as possible. The time for execution

will, however, depend on the length of the code. The I/O-copying in Step 1 is done to
prevent the logical signals to change value during the execution of the code. Finally

all outputs are changed at the same time. The programming of the PLC-unit can be
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Figure X.15 Block diagram for a PLC system.

done from a small programming module or by using a larger computer with a more

effective editor.

The programming is done based on operations such as logical and, logical or, and

logical not. Also there are typically combinations such as nand and nor, which are

defined as
a nand b = a ⋅ b = ā+ b̄
a nor b = a+ b = ā ⋅ b̄

Further there are operations to set timers, to make conditional jumps, to increase and

decrease counters etc. The specific details differ from manufacturer to manufacturer.

X.7 Sequence Controllers

The logical nets in the previous section are static systems in the sense that the same

values of the input signals all the time give the same output signals. There are,

however, situations where the outputs should depend on the previous history of the

input signals. To describe such systems we introducememory or states. We then obtain

a sequential net or a sequential process. Sequences can either be serial or parallel.

As the name indicates the serial sequences are run through one step at a time in

a series. In parallel sequences we allow several things to happen in parallel with

occasional synchronization between the different lines of action. A typical example of

a parallel sequence is the assembly of a car. Different subparts of the car, for instance,

motor and gearbox, can be assembled in parallel, but the final assembly cannot be

done before all subparts are ready.

A sequence can be driven in different ways, by time or by events. A typical time driven

sequence is a piece of music. Time driven sequences can be regarded as feedforward

control. The chain of events is triggered by the clock and not by the state of the

system. An event-driven sequence is a feedback system, where the state of the system

determines what will happen next.
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Input: Bell
Output: Leave class room

Input: Bell
Output: Go to class room

Input: No bell
Output: Study

Input: No bell
Output: Play

Break Lesson

Figure X.16 Simple sequential net for describing a school day.

EXAMPLE X.8—SIMPLE EVENT-DRIVEN SEQUENTIAL NET

Consider the system described in Figure X.16. It can describe a school day. It has two

states ’break’ and ’lesson’. When the bell rings we get a transition from one state to

the other. Which output we get depends on the current state and the input signal. If

starting in the state ’break’ and there is no bell ringing we stay in the state break.

When the bell calls we get transition to the state ’lesson’.

A sequential net can be described by a state graph such as in Figure X.16. The state

graph shows the transitions and the outputs for different input signals. The sequential

net can also be described by a truth table, which must include the states and also

the conditions for transitions. The sequential net is thus described by the maps

new state = f (state, inputs)
output = �(state, inputs)

Notice the similarity with the state equations for continuous time and discrete time

systems. The difference is that the states, inputs, and outputs only can take a finite

number of values. Sequential nets can be divided into synchronous and asynchronous

nets. In synchronous nets a transition from one state to another is synchronized by

a clock pulse, which is the case when the nets are implemented in a computer. A

synchronous sequential net can be implemented as shown in Figure X.17. In asyn-

chronous nets the system goes from one state to the other as soon as the conditions

for transition are satisfied. The asynchronous nets are more sensitive to the timing

when the inputs are changing. In the sequel we will only discuss the synchronous

nets.

There are many ways to describe sequences and sequential nets. A standard is now de-

veloping based on GRAFCET, developed in France. GRAFCET stands for “Graphe de

Commande Etape-Transition” (Graph for Step-Transition Control). GRAFCET with
minor modifications is passed as an IEC (International Electrotechnical Commission)
standard, IEC 848. The way to describe sequential nets is called function charts.

GRAFCET is a formalized way of describing sequences and functional specifications.

This can be done without any consideration of how to make the hardware implemen-

tation. The functional specifications are easy to interpret and understand. Comput-

erized aids to program and present sequences have also been developed.

Another way to describe sequences and parallel actions is Petri nets. Petri nets are

directed graphs that can handle sequential as well as parallel sequences. Sometimes

the formalism for Petri nets makes it possible to investigate for instance reachabil-

ity. It is then possible to find out which states that can be reached by legitimate

transitions. This knowledge can be used to test the logic and to implement alarms.

132



X.8 GRAFCET

Delay

Delay

Delay

Input

State

Output

New state

Logical net

Figure X.17 Synchronous sequential net as combination of logical net and delay or memory
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Figure X.18 Process for batch water heating.

X.8 GRAFCET

The objective of GRAFCET is to give a tool for modeling and specification of sequences.

The main functions and properties of GRAFCET will be described in this section. A

simple example is used to illustrate the concepts.

EXAMPLE X.9—HEATING OF WATER

Consider the process in Figure X.18. It consists of a water tank with two level in-

dicators, a heater, and two valves. Assume that we want to perform the following

sequence:

0. Start the sequence by pressing the button B. (Not shown in Figure X.18.)
1. Fill water by opening the valve V1 until the upper level L1 is reached.

2. Heat the water until the temperature is greater than T . The heating can start as

soon as the water is above the level L0.
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p p

a) b)

c) d)

e) f)

g) h)

p

Figure X.19 GRAFCET symbols. (a) Step (inactive); (b) Step (active); (c) Initial step; (d) Step
with action; (e) Transition; (f) Branching with mutually exclusive alternatives; (g) Branching
into parallel paths; (h) Synchronization.

3. Empty the water by opening the valve V2 until the lower level L0 is reached.

4. Close the valves and go to Step 0 and wait for a new sequence to start.

From the natural language description we find that there is a sequence of waiting,

filling, heating, and emptying. Also notice that the filling and heating must be done

in parallel and then synchronized, since we don’t know which will be finished first.

GRAFCET Specifications

A function chart in GRAFCET consists of steps and transitions. A step corresponds

to a state and can be inactive, active, or initial. See Figure X.19(a)–(c). Actions as-
sociated with a step can also be indicated, see Figure X.19(d). A transition is denoted
by a bar and a condition when the transition can take place, see Figure X.19(e). A
step is followed by a transition, branching with mutually exclusive alternatives, or

branching into parallel sequences. Parallel sequences can be synchronized, see Fig-

ure X.19(h). The synchronization takes place when all the preceding steps are active
and when the transition condition is fulfilled. The function chart in GRAFCET for
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Figure X.20 GRAFCET for the process and sequences in Example X.9.

the process in Example X.9 is shown in Figure X.20. The sequence starts in the step

Initial. When B = 1 we get a transition to Fill 1, where the valve V1 is opened until
the level L0 is reached. Now two parallel sequences starts. First the heating starts

and we get a transition to Temp when the correct temperature is reached. At this

stage the other branch may be finished or not and we must wait for synchronization

before the sequence can be continued. In the other branch the filling continues until

level L1 is reached. After the synchronization the tank is emptied until level L0 is

reached thereafter we go back to the initial state and wait for a new sequence to

start.

The example can be elaborated in different ways. For instance, it may happen that

the temperature is reached before the upper level is reached. The left branch is then

in step Temp. The water may, however, become too cool before the tank is full. This

situation can be taken into account making it possible to jump to the step Heat if the

temperature is low. In many applications we need to separate between the normal

situation, and emergency situations. In emergency situations the sequence should be

stopped at a hazardous situation and started again when the hazard is removed. In

simple sequential nets it can be possible to combine all these situations into a single

function chart. To maintain simplicity and readability it is usually better to divide

the system into several function charts.
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Figure X.21 Illustration of Rule 2.

GRAFCET Rules

To formalize the behavior of a function chart we need a set of rules how steps are

activated and deactivated etc. We have the following rules:

Rule 1: The initialization defines the active step at the start.

Rule 2: A transition is firable if:

i: All steps preceding the transition are active (enabled).
ii: The corresponding receptivity (transition condition) is true.

A firable transition must be fired.

Rule 3: All the steps preceding the transition are deactivated and all the steps fol-

lowing the transition are activated.

Rule 4: All firable transitions are fired simultaneously.

Rule 5: When a step must be both deactivated and activated it remains active with-

out interrupt.

For instance, Rule 2 is illustrated in Figure X.21. One way to facilitate the under-

standing of a functional specification is to introduce macro steps. The macro step can

represent a new functional specification, see Figure X.22. The macro steps make it

natural to use a top-down approach in the construction of a sequential procedure.

The overall description is first broken down into macro steps and each macro step

can then be expanded. This gives well structured programs and a clearer illustration

of the function of a complex process.
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Macro step

Figure X.22 Zooming of a macro step in GRAFCET.
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Y. Control of Multivariable

Processes

Y.1 Introduction

So far we have mainly discussed how to analyze simple control loops. I.e., control loops

with one input and one output (SISO systems). Most chemical processes contain,
however, many control loops. Several hundred control loops are common in larger

processes. Fortunately, most of the loops can be designed from a single-input single-

output

point of view. This is because there is no or weak interaction between the different

parts of the process. Multiloop controllers, such as cascade control, were discussed in

Chapter 6. In cascade control there are several measurements, but there is still only

one input signal to the process.

In many practical cases it is necessary to consider several control loops and actuators

at the same time. This is the case when there is an interaction between the different

control loops in a process. A change in one input may influence several outputs in a

complex way. If the couplings or interactions are strong it may be necessary to make

the design of several loops at the same time. This leads to the concept of multi-input

multi-output systems (MIMO systems). We will in this chapter generalize the mul-
tiloop control into multivariable control. The distinction is not well defined, but we

will with multivariable control mean systems with two or more actuators and where

all the control loops are design at the same time. A fundamental problem in multi-

variable control is how the different measurements should be used by the different

actuators. There are many possible combinations. We have so far only discussed sim-

ple systems where the use of the measurements has been “obvious”. The controllers

have typically been PID controllers with simple modifications.

Multivariable systems will be introduced using a couple of examples.

EXAMPLE Y.1—SHOWER

A typical example of a coupled system is a shower. The system has two inputs, flow

of hot and cold water, and two outputs, total flow and temperature. Changing either

of the flows will change the total flow as well as the temperature. In this case the

coupling is “strong” between the two input signals and the two output signals. In the

daily life we have also seen that the control of flow and temperature in a shower can

be considerably simplified by using a thermostat mixer. This will reduce the coupling

and make it easier to make the control.

EXAMPLE Y.2—LEVEL AND TEMPERATURE CONTROL IN A TANK

Consider the heated tank in Figure Y.1. The flow and temperature of the feed are the

disturbances of the process. The level is controlled by the outlet valve. The tempera-

ture in the tank is controlled by the steam flow through the heating coil. A change in

feed temperature Ti or the temperature setpoint Tr will change the steam flow, but

this will not influence the level in the tank. A change in the feed flow Fi or the level

setpoint Lr will change the output flow F and thus the content in the tank. This will
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Figure Y.1 Level and temperature control in a tank.
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Figure Y.2 Level and temperature control in an evaporator.

also influence the temperature controller that has to adjust the steam flow. There is

thus a coupling between the level control and the temperature control, but there is

no coupling from the temperature loop to the level loop.

EXAMPLE Y.3—LEVEL AND TEMPERATURE CONTROL IN AN EVAPORATOR

Consider the evaporator in Figure Y.2. In this process there is an interaction between

the two loops. The temperature control loop will change the steam flow to the coil.

This will influence both the produced steam and the level. In the same way a change

in the output flow will change both the level and the temperature. In the evaporator

there is an interaction between both loops.

One-way interaction has in previous chapters been handled by using feedforward. In

this chapter we will discuss how more complex interactions can be handled. Design

of MIMO systems can be quite complex and is outside the main theme of this course.

It is, however, of great importance to be able to judge if there is a strong coupling

139



Lecture Y. Control of Multivariable Processes

Σ

Σ

u1

u2

y1

y2

G11

G12

G21

G22

Figure Y.3 Coupled system with two inputs and two outputs.

between different parts of the process. Also it is important to have a method to pair

input and output signals. In this chapter we will discuss three aspects of coupled

systems:

• How to judge if the coupling in the process will cause problems in the control
of the process?

• How to determine the pairing of the inputs and outputs in order to avoid the
coupling?

• How to eliminate the coupling in the process?

An example of a coupled system is given in Figure Y.3. The system has two input

signals and two output signals. Let Gi j be the transfer function from input j to output

i and introduce the vector notations for the Laplace transforms of the outputs and

inputs

Y(s) =



Y1(s)
Y2(s)



 U(s) =



U1(s)
U2(s)





then

Y(s) =



G11(s) G12(s)
G21(s) G22(s)



U(s) = G(s)U(s)

G(s) is called the transfer function matrix of the system. This representation can be
generalized to more inputs and outputs. Another way of describing a multivariable

system is by using the state space model

dx

dt
= Ax + Bu

y= Cx + Du

where the input u and output y now are vectors.

Y.2 Stability and Interaction

To understand some of the problems with coupled systems we will discuss the process

in Figure Y.4. This can be a block diagram of the evaporator in Figure Y.2. The process
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Figure Y.4 Block diagram of a system with two inputs and outputs. The system is controlled

by two simple controllers Gc1 and Gc2.
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Figure Y.5 The system in Figure Y.4 when only the first loop is closed.

is described by

Y1(s) = G11U1(s) + G12U2(s)
Y2(s) = G21U1(s) + G22U2(s)

(Y.1)

and the controllers by

U1(s) = Gc1 (Yr1(s) − Y1(s)) (Loop 1)
U2(s) = Gc2 (Yr2(s) − Y2(s)) (Loop 2) (Y.2)

The situation with only Loop 1 closed is shown in Figure Y.5. The closed loop system

is now described by

Y1 =
G11Gc1

1+ G11Gc1
Yr1

Y2 = G21U1 =
G21Gc1

1+ G11Gc1
Yr1

With obvious changes we can also write down the expressions when Loop 2 is closed
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Figure Y.6 Illustration of the influence of u1 on y1 through the second loop.

and Loop 1 open. The characteristic equations for the two cases are

1+ G11Gc1 = 0 (Y.3)

and

1+ G22Gc2 = 0 (Y.4)
Now consider the case in Figure Y.4 with both loops closed. Using (Y.2) to eliminate
U1 and U2 from (Y.1) gives

(1+ G11Gc1)Y1 + G12Gc2Y2 = G11Gc1Yr1 + G12Gc2Yr2
G21Gc1Y1 + (1+ G22Gc2)Y2 = G21Gc1Yr1 + G22Gc2Yr2

Using Cramer’s rule to solve for Y1 and Y2 gives

Y1 =
G11Gc1 + Gc1Gc2(G11G22 − G12G21)

A
Yr1 +

G12Gc2

A
Yr2

Y2 =
G21Gc1

A
Yr1 +

G22Gc2 + Gc1Gc2(G11G22 − G12G21)
A

Yr2

where the denominator is

A(s) = (1+ G11Gc1)(1+ G22Gc2) − G12G21Gc1Gc2 (Y.5)

If G12 = G21 = 0 then there is no interaction and the closed loop system is described
by

Y1 =
G11Gc1

1+ G11Gc1
Y1r

Y2 =
G22Gc2

1+ G22Gc2
Y2r

The closed loop system is in this case stable if each loop is stable, i.e. if all the roots of

(Y.3) and (Y.4) are in the left half plane. With interaction the stability of the closed
loop system is determined by the polynomial A(s) in (Y.5). Notice that the stability
of the closed loop system depends on both the controllers and the four blocks in G.

The interaction through the second loop is illustrated in Figure Y.6. The bold lines

indicate the influence of u1 on y1 through the second loop.

The controllers must be tuned such that the total system is stable. Since any of the

loops may be switched into manual control, i.e. the loop is open, it is also necessary
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that each loop separately is stable. The closed loop system may be unstable due to the

interaction even if each loop separately is stable. The interaction in the system may

destabilize the closed loop system and this makes it more difficult to do the tuning.

The following example points out some of the difficulties of tuning multivariable

controllers.

EXAMPLE Y.4—STABILITY OF MULTIVARIABLE SYSTEM

Assume that the process in Figure Y.4 has the transfer functions

G11 =
1

0.1s+ 1 G12 =
5

s+ 1
G21 =

1

0.5s+ 1 G22 =
2

0.4s+ 1

and the proportional controllers Gc1 = Kc1 and Gc2 = Kc2. Tuning each loop sepa-
rately each loop will be stable for any positive gain. The characteristic equation for

the total system is

0.02s4 + 0.1(3.1+ 2Kc1 + Kc2)s3

+ (1.29+ 1.1Kc1 + 1.3Kc2 + 0.8Kc1Kc2)s2

+ (2+ 1.9Kc1 + 3.2Kc2 + 0.5Kc1Kc2)s
+ (1+ Kc1 + 2Kc2 − 3Kc2Kc2) = 0

A necessary condition for stability is that all coefficients are positive. The only one

that may become negative is the last one. This implies that a necessary condition for

stability of the closed loop system is

1+ Kc1 + 2Kc2 − 3Kc1Kc2 > 0

This condition is violated when the gains are sufficiently high.

Generalization

The computations above were done for a 2$ 2 system with simple proportional con-
trollers. We will now consider a system with a general transfer function matrix and

a general controller matrix. Let the system be described by

Y(s) = Go(s)U(s)

and the controller by

U(s) = Gr(s) (Yr(s) − Y(s))
Both Go and Gr are transfer function matrices of appropriate orders. Eliminating

U(s) gives
Y(s) = Go(s)Gr(s)(Yr(s) − Y(s))

Solving for Y(s) gives

Y(s) = (I + Go(s)Gr(s))−1 Go(s)Gr(s)Yr(s) = Gcl(s)Yr(s) (Y.6)

where I is the unit matrix. The closed loop transfer function matrix is Gcl(s). When
evaluating the inverse in (Y.6) we get the denominator

A(s) = det (I + Go(s)Gr(s))
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Figure Y.7 A controlled multivariable system.

The characteristic equation of the closed loop system is thus

A(s) = det (I + Go(s)Gr(s)) = 0 (Y.7)

This is in analogy with the SISO case.

The closed loop system is thus stable if the roots of (Y.7) are in the left hand plane.

Y.3 Relative Gain Array

There are many ways to determine the coupling or interaction in a MIMO system. The

Relative Gain Array (RGA) was introduced by Bristol in 1966 as a way to determine
the static coupling in a system. The RGA can be used to find an appropriate pairing of

inputs and outputs. The drawback of RGA is that only the coupling for reference value

changes is investigated. In process control it is often more important to consider load

disturbances. The Relative Disturbance Gain (RDG) introduced by McAvoy is one
way to change the focus to the disturbances. The idea behind the RGA is to study

the stationary gain K = G(0) of the process and to introduce a normalization. The
normalization is necessary to eliminate the effect of scaling of the variables in the

process.

Consider Figure Y.7, which is a multivariable system with the same number of inputs

as outputs. All inputs except u j are controlled. We will now investigate the stationary

changes in the outputs yi, when u j is changed. I.e. we will study the stationary value

of
∆yi
∆u j

where the ∆ denotes the change in the variable. Introduce

ki j = Gi j(0) =
∆yi
∆u j

when ∆uk = 0 k ,= j

The steady state gain K = G(0) is a matrix with the elements ki j .
To obtain a normalization we also study a second situation. Consider the situation in

Figure Y.7. Assume that the control of the system is so good that only yi is changed

when u j is changed. Introduce

li j =
∆yi
∆u j

when ∆yk = 0 k ,= i
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The coupling through the static gain G(0) is easy to obtain, when the transfer function
matrix is known. The normalization through li j is more difficult to determine. We

will derive the normalization for a system with two inputs and outputs and then give

the general expression.

EXAMPLE Y.5—THE NORMALIZATION FOR A SYSTEM WITH TWO INPUTS AND OUTPUTS

Assume that the steady state behavior of the system is described by

∆y1 = k11∆u1 + k12∆u2
∆y2 = k21∆u1 + k22∆u2

We first determine l21. In this case ∆y1 = 0, which gives

∆u2 = −
k11

k12
∆u1

Using this in the second equation above gives

∆y2 =
(

k21 −
k22k11

k12

)

∆u1

or

l21 =
∆y2
∆u1

= −k11k22 − k12k21
k12

= −det K
k12

where det K is the determinant of the matrix with the elements ki j . In the same way

we can determine

l22 =
det K

k11

l11 =
det K

k22

l12 = −
det K

k21

The matrix with the elements 1/li j is thus given by

1

det K




k22 −k21
−k12 k11



 =
(

K−1
)T

The relative gain array (RGA) is now defined as a matrix Λ with the elements

λ i j =
ki j

li j

The example above can be generalized. The relative gain array is defined as

Λ = K .∗
(

K−1
)T

(Y.8)

where .∗ denotes the element-by-element (Schur) product of the elements in K and
(K−1)T . Note that it is not a conventional matrix multiplication that is performed.
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From (Y.8) it follows that it is sufficient to determine the stationary gain K = G(0) of
the open loop system. The relative gain array matrix Λ is the given through (Y.8) and
an element by element multiplication of two matrices. The RGA has the properties

n∑

i=1
λ i j =

n∑

j=1
λ i j = 1

I.e. the row and the column sums are equal to unity. This implies that for a 2 $ 2
system only one element has to be computed. The rest of the elements are uniquely

determined. For a 3$3 system four elements are needed to determine the full matrix.
A system is easy to control using single-loop controllers if Λ is a unit matrix or at
least diagonal dominant after possible permutations of rows and/or columns.

EXAMPLE Y.6—NON-INTERACTING SYSTEM

Assume that

K =



0 a

b c





then
(

K−1
)T

= − 1
ab




c −b
−a 0





and

Λ =



0 1

1 0





By interchanging the rows or the columns we get a unit matrix. The system is thus

easy to control using two non-interacting controllers.

A system has difficult couplings if Λ has elements that are larger than 1. This implies
that some elements must be negative since the row and column sums must be unity.

Pairing of Inputs and Outputs

By determining the relative gain array Λ is is possible to solve the first problem stated
in the Section Y.1. The RGA matrix can also be used to solve the second problem. I.e.

it can be used to pair inputs and outputs. The inputs and outputs should be paired

so that the corresponding relative gains are positive and as close to one as possible.

EXAMPLE Y.7—PAIRING 1

Let the RGA be

Λ =



λ 1− λ

1− λ λ





The RGA and the pairing for different values of λ are shown in Table Y.1. The in-
teraction when λ = 2 is severe and the system will be difficult to control with two
single loops.

EXAMPLE Y.8—PAIRING 2

Assume that a system has the transfer function matrix

G(s) =





1

s+ 1
2

s+ 3
1

s+ 1
1

s+ 1




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Y.3 Relative Gain Array

Table Y.1 The RGA for a 2$ 2 system.

λ Λ Pairing Remark

1




1 0

0 1




u1 − y1
u2 − y2

No interaction

0




0 1

1 0




u1 − y2
u2 − y1

No interaction

0.85




0.85 0.15

0.15 0.85




u1 − y1
u2 − y2

Weak interaction

2




2 −1
−1 2




u1 − y1
u2 − y2

Difficult interaction

The static gain is given by

K =



1 2/3
1 1





and we get
(

K−1
)T

=



3 −3
−2 3





Λ =



3 −2
−2 3





Since Λ has elements that are larger than one we can expect difficulties when con-
trolling the system using single-input single-output controllers.

EXAMPLE Y.9—PAIRING 3

Assume that a system has the transfer function matrix

G(s) = 1

(s+ 1)(s+ 2)




s− 1 s

−6 s− 2





The static gain is given by

K =



−0.5 0

−3 −1





and we get
(

K−1
)T

=



−2 6

0 −1





Λ =



1 0

0 1





This system should be possible to control using two simple controllers, since Λ is a
unit matrix.
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Lecture Y. Control of Multivariable Processes

F
1 , x

1
= 0.8

F
2 , x

2
= 0.2

F, x

Mixing

process

Figure Y.8 Mixing process, where total flow and mixture should be controlled.

EXAMPLE Y.10—MIXING PROCESS

Consider the mixing process in Figure Y.8. The purpose is to control the total flow F

and the composition x at the outlet. The inputs are the flows F1 and F2. The desired

equilibrium point is F = 200 and x = 0.6. The input compositions are x1 = 0.8 and
x2 = 0.2. Which inputs should be used to control F and x respectively?
The mass balances give

F = F1 + F2
Fx = F1x1 + F2x2

Solving for the unknown flows give F1 = 133.33 and F2 = 66.67. The system is
nonlinear and we can’t directly determine the gain matrix at the desired equilibrium

point. One way is to calculate the RGA using perturbation. Assume that F1 is changed

one unit and assume that F2 is kept constant. This gives F = 201 and x = 0.6009
and (

∆F

∆F1

)

F2

= 1
1
= 1

In the same way we change F1 by one unit but is keeping x constant. This gives

(
∆F

∆F1

)

x

= 1.50
1

= 1.50

Using the definition of the RGA we get

λ11 =

(
∆F
∆F1

)

F2(
∆F
∆F1

)

x

= 1

1.50
= 2
3

and the full relative gain matrix becomes

Λ =



0.69 0.31

0.31 0.69





where we have assumed that the inputs are in the order F1, F2 and the outputs F,

x. The interaction will be minimized if we choose the pairing F–F1 and x–F2. There

will, however, be a noticeable coupling since the elements are close in size.

The relative gain array method only considers the static coupling in a system. There

may very well be difficult dynamic couplings in the process that is not detected

through the RGA methods. Different ways to circumvent this problem have been

discussed in the literature. The Relative Dynamic Array (RDA) method is one way to
also consider the dynamic coupling in some frequency ranges.
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Y.4 Decoupling

m
D(s)

u
G(s)

y

T(s)

Figure Y.9 A system with decoupling matrix D.

Y.4 Decoupling

In this section we will give a short discussion of how to improve the control of a mul-

tivariable system with coupling. One way is to use theory for design of multivariable

systems. This is, however, outside the scope of this course. A second way that can be

effective is to introduce decoupling in a MIMO system. This is done by introducing

new signals that are static or dynamic combinations of the original control signals.

After the introduction of a decoupling matrix it can be possible to design the con-

trollers from a single-input single-output point of view. Consider the system in Figure

Y.9. The matrix D(s) is a transfer function matrix that will be used to give decoupling
by introducing new control signals m(t). We have

Y(s) = G(s)U(s) = G(s)D(s)M(s) = T(s)M(s)

The idea is to determine D(s) such that the total transfer function matrix T(s) =
G(s)D(s) has a decoupled structure. Ideally T(s) should be a diagonal matrix. By
specifying T we may solve for D provided the matrix G is invertible. We will make

the computations for a system with two inputs and two outputs. Assume that T and

G are given as

T =



T11 0

0 T22



 G =



G11 G12

G21 G22





The decoupling matrix is now given by

D =



D11 D12

D21 D22



 = 1

detG




G22T11 −G12T22
−G21T11 G11T22



 (Y.9)

Equation (Y.9) can give quite complicated expressions for D. One choice is obtained
by considering the diagonal elements D11 and D22 as parts of the controller and

interpret D12 and D21 as feedforward terms in the controller. We may then choose

D =



1 −G12/G11

−G21/G22 1





This gives

T = GD =



G11 − G12G21/G22 0

0 G22 − G21G12/G11





With this special choice we have obtained a complete decoupling of the system. There

may, however, be difficulties to make a realization of the decoupling. There may be

pure derivations in D.

An other solution to the decoupling problem is obtained by the choice

D(0) = G−1(0)T(0)

This results in a decoupling in steady state.
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Figure Y.10 The process in Example Y.8 controlled by two PI controllers. (a) y1, y2 and the
control signals u1 and u2, when the reference value of y1 is changed. (b) Same as (a) when the
reference value of y2 is changed.

EXAMPLE Y.11—DECOUPLING

Consider the system in Example Y.8. Figure Y.10 shows the outputs and control

signals when the system is controlled by two PI controllers without any decoupling.

The output y2 changes much, when the reference value to y1 is changed. Figure

Y.11 shows the same experiment as in the previous figure, but when a stationary

decoupling is done using

D =



1 −2

3

−1 1





This gives

T(s) =





1− s
(s+ 1)(s+ 3)

4s

3(s+ 1)(s+ 3)

0
1

3(s+ 1)





The RGA matrix of the decoupled system is

Λ =



1 0

0 1





The system should now be possible to control using two separate controllers. This

is also verified in the simulation shown in Figure Y.11. There is, however, still a

dynamic coupling between the two loops. A complete dynamic decoupling is shown in

Figure Y.12. In this case we use

D =





1 −2s+ 1
s+ 3

−1 1




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Figure Y.11 Same as Figure Y.10 but with stationary decoupling.

which gives

T(s) =





1− s
(s+ 1)(s+ 3) 0

0
1− s

(s+ 1)(s+ 3)




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Figure Y.12 Same as Figure Y.11 but with dynamic decoupling.
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Dictionary

Dictionary

A

actual value ärvärde

actuator ställdon, aktuator

A-D converter A-D-omvandlare

adaptive control adaptiv reglering

aliasing vikning

amplitude function amplitudfunktion

amplitude margin amplitudmarginal

argument function argumentfunktion

asymptotic stability asymptotisk stabilitet

asynchronous net asynkronnät

B

backward difference bakåtdifferens

bandwidth bandbredd

basis bas

batch process satsvis process

bias avvikelse, nollpunktsförskjutning

block diagram blockdiagram, blockschema

block-diagram algebra blockdiagramal-

gebra

Bode plot Bodediagram

Boolean algebra Boolesk algebra

break frequency brytfrekvens

bumpless transfer stötfri övergång

C

canonical form kanonisk form

cascade control kaskadreglering

causality kausalitet

characteristic equation karakteristisk ek-

vation

characteristic polynomial karateristiskt

polynom

chattering knatter

closed-loop system slutet system

combinatory network kombinatoriskt nät

complementary sensitivity function kom-

plementär känslighetsfunktion

computer control datorstyrning

computer-controlled system datorstyrt

system

control styrning, reglering

control error reglerfel

control signal styrsignal

controllability styrbarhet

controller regulator

controller gain regulatorförstärkning

controller structure regulatorstruktur

coupled systems kopplade system

cross-over frequency skärfrekvens

D

D-A converter D-A omvandlare

damped frequency dämpad frekvens

damping dämpning

dead time dödtid

decade dekad

decoupling särkoppling

delay tidsfördröjning, dödtid

delay margin dödtidsmarginal

derivative term derivataterm

derivative time derivatatid

determinant determinant

difference equation differensekvation

differential equation differentialekvation

differential operator differentialoperator

direct-digital control direkt digital styrn-

ing

discrete-time system tidsdiskret system

disturbance störning

dynamic relation dynamiskt samband

dynamic system dynamiskt system

E

eigenvalue egenvärde

eigenvector egenvektor

equilibrium jämvikt

error fel

error signal felsignal

F

feedback återkoppling

feedback control reglering, sluten styrn-

ing

feedback system återkopplat system

feedforward framkoppling

filtering filtrering

final-value theorem slutvärdessatsen

floating control flytande reglering

forward difference framåtdifferens

free system fritt system

frequency analysis frekvensanalys

frequency-domain model frekvensdomän-

modell

frequency function frekvensfunktion

function chart funktionsschema

fundamental matrix fundamentalmatrix

G

gain förstärkning

gain function förstärkningsfunktion

gain margin amplitudmarginal

gain scheduling parameterstyrning

H

high-frequency asymptote högfrekven-

sasymptot

hold circuit hållkrets

homogeneous system homogent system

hysterises hysteres

I

identification identifiering
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Dictionary

implementation implementering, förverk-

ligande

impulse impuls

impulse response impulssvar

initial value initialvärde, begynnelsevärde

initial-value theorem begynnelsevärdessat-

sen

input insignal

input-output model insignal-utsignal-modell

instability instabilitet

integral control integrerande reglering

integral term integralterm

integral time integraltid

integrating controller integrerande reg-

ulator

integrator integrator

integrator windup integratoruppvridning

interaction växelverkan

interlock förregling

internal model intern modell

inverse invers

inverse-response system systemmed omvänt

svar

L

lag compensation fasretarderande kom-

pensering

Laplace transform Laplace-transform

lead compensation fasavancerade kom-

pensering

limiter begränsare, mättningsfunktion

linear dependent linjärt beroende

linear indedendent linjärt oberoende

linear-quadratic controller linjärkvad-

ratisk regulator

linear system linjärt system

linerarization linjärisering

load disturbance belastningsstörning

logical control logikstyrning

logical expression logiskt uttryck

loop gain kretsförstärkning

low-frequency asymptote lågfrekvensasymp-

tot

M

manipulated variable styrd variabel

manual control manuell styrning

marginal stability marginell stabilitet

matrix matris

measurement noise mätbrus

measurement signal mätsignal

microcontroller styrkrets

mid-range control mitthållningsreglering

minimum-phase system minimumfassys-

tem

mode mod

model-based control modellbaserad reg-

lering

modeling modellering, modellbygge

multi-capacitive process flerkapacitiv pro-

cess

multiplicity multiplicitet

multivariable system flervariabelt sys-

tem

N

natural frequency naturlig frekvens

noise brus

nonlinear coupling olinjär koppling

nonlinear system olinjärt system

non-minimum-phase system icke-minimumfassystem

Nyquist plot Nyquistdiagram

the Nyquist stability theorem Nyquists

stabilitetssats

O

observability observerbarhet

observer observerare

on-off control till-från-reglering, tvåläges-

reglering

open-loop control öppen styrning

open-loop system öppet system

operational amplifier operationsförstärkare

operator guide operatörshjälp

ordinary differential equation ordinär

differentialekvation

oscillation svängning

output utsignal, ärvärde

overshoot översläng

P

paralell connection parallellkoppling

Petri net Petrinät

phase function fasfunktion

phase margin fasmarginal

PI control PI-reglering

PID control PID-reglering

PLC programmerbart logiksystem, styrda-

tor

pole pol

pole placement polplacering

pole-zero plot pol-nollställe-diagram, sin-

gularitetsdiagram

polynomial polynom

position algorithm positionsalgoritm

practical stability praktisk stabilitet

prediction prediktion

prediction horizon prediktionshorisont

prediction time prediktionstid

prefiltering förfiltrering

process process

proportional band proportionalband

proportional gain proportionell förstärkn-

ing

proportional control proportionell reg-

lering
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Dictionary

pulse-transfer function pulsöverförings-

funktion

Q

quantization kvantisering

R

ramp ramp

ramp response rampsvar

rank rang

ratio control kvotreglering

reachability uppnåelighet

real-time programming realtidsprogram-

mering

recursive equation rekursiv ekvation

reference value referensvärde

relative damping relativ dämpning

relative gain array relativa förstärknings-

matrisen

relay relä

reset time integraltid

reset windup integratoruppvridning

return difference återföringsdifferens

return ratio återföringskvot

rise time stigtid

robustness robusthet

root locus rotort

Routh’s algorithm Rouths algoritm

S

sampled-data system samplat system

sampler samplare

sampling sampling

sampling frequency samplingsfrekvens

sampling interval samplingsintervall

sampling period samplingsperiod

saturation mättning

selector väljare

sensitivity känslighet

sensitivity function känslighetsfunktion

sensor mätgivare, sensor

sequential control sekvensreglering

sequential net sekvensnät

series connection seriekoppling

setpoint börvärde

setpoint control börvärdesreglering

settling time lösningstid

shift operator skiftoperator

single-capacitive process enkelkapacitiv

process

single-loop controller enloopsregulator

singular value singulärt värde

singularity diagram singularitetsdiagram

sinusoidal sinusformad

smoothing utjämning

solution time lösningstid

split-range control uppdelat utstyrning-

sområde

stability stabilitet

stability criteria stabilitetskriterium

state tillstånd

state graph tillståndsgraf

state-space model tillståndsmodell

state-transition matrix tillståndsöverförings-

matris

state variable tillståndsvariabel

static gain statisk förstärkning

static system statiskt system

stationary error stationärt fel

steady state jämvikt

steady-state error stationärt fel

steady-state gain stationär förstärkning

steady-state value stationärvärde

step steg

step response stegsvar

superposition principle superpositionsprincipen

synchronous net synkonnät

synthesis syntes, dimensionering

system matrix systemmatris

T

time constant tidskonstant

time delay tidsfördröjning

time-domain approach tidsdomänmetod

time-invariant system tidsinvariant sys-

tem

trace spår

tracking följning

transfer function överföringsfunktion

transient transient

transient analysis transientanalys

translation principle translationsprincip

transpose transponat

truth table sanningstabell

tuning inställning

U

ultimate-sensitivity method självsvängn-

ingsmetoden

undamped frequency naturlig frekvens

unit element enhetselement

unit step enhetssteg

unmodeled dynamics omodellerad dynamik

unstable system instabilt system

V

vector vektor

velocity algorithm hastighetsalgoritm

W

weigting function viktfunktion

windup uppvridning

Z

zero nollställe

zero element nollelement

zero-order hold nollte ordningens hållkrets
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Index

A-D converter, 115

active step, 134

aliasing, 116

analog-to-digital converter, 115

anti-windup, 94

asymptotic stability, 28

asynchronous net, 132

automatic reset, 86, 87

backward difference, 121

backward method, 38

balance equations, 21

bias, 86

block diagram, 5, 37

block diagram algebra, 37

Bode plot, 75

cascade control, 100

cascade control, 100

characteristic equation, 27, 36

of multivariable system, 144

characteristic polynomial, 27, 35

closed loop, 5

compartment model, 25

conditional integration, 94

continuous stirred tank reactor, 22

control error, 15

control signal, 3

controller, 3

corner frequency, 77

cross-over frequency, 83

CSTR, 22

D-A converter, 116

damping, 11

DDC, 113

dead time, 10

dead-time process, 14

deadtime compensation, 107

decoupling, 149

delay, 78

delay margin, 84

derivative action, 17, 88

derivative time, 89

difference equation, 116

differential pressure sensor, 50

digital-to-analog converter, 116

direct digital control, 113

disturbance, 3

dominant time constant, 11

DPID controller, 85

dynamical system, 7

eigenvalue, 27

equilibrium, 55

error feedback, 92

Euler’s approximation, 120

feedback, 4

feedback control system, 3

feedback system, 66

feedforward, 5, 105

final value theorem, 33

firable transition, 136

first-order system, 42

floating control, 88

flow measurement, 50

forward difference, 120

free system, 27

frequency folding, 116

frequency response, 71, 72

function chart, 132

fundamental matrix, 27

gain margin, 82

gain scheduling, 52

GRAFCET, 132

heating processes, 50

homogeneous system, 27

I controller, 20, 85, 88

impulse response, 39

inactive step, 134

initial step, 134

initial value theorem, 33

input–output stable, 13

instability, 28

integral action, 16, 86, 88

integral time, 87

integrating process, 13

integrator windup, 94

interaction, 140

inverse response process, 14

lambda method, 98

Laplace transform, 31

limitation of derivative gain, 92

linear state-space model, 25

linearity, 32

linearization, 56

loop transfer function, 80

macro step, 136

manipulated variable, 3

marginal stability, 29
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Index

master controller, 101

mathematical model, 21

matrix exponential, 27

maximum derivative gain, 92

measurement signal, 3

mid-range control, 102

MIMO system, 138

multi-capacitive process, 13

multiplicity, 27

multivariable control, 138

multivariable system, 138

nand, 131

nonlinear actuators, 48

nonlinear process dynamics, 50

nonlinear sensors, 49

nonlinear state-space model, 24

nor, 131

Nyquist curve, 74

Nyquist frequency, 117

Nyquist’s stability criterion, 80

On/Off controller, 15, 18
open loop, 5

open-loop response, 60

operator guide, 113

oscillating process, 14

overshoot, 11

P controller, 15, 19, 60, 85

P/I diagram, 6
pairing of signals, 146

parallel form, 90

PD controller, 19, 85, 89

Petri net, 132

pH control, 49

phase margin, 82

PI controller, 16, 19, 61, 85, 86

PID controller, 15, 17, 20, 85

parallel form, 90

sampled data, 123

series form, 90

PIDD controller, 85

PLC, 126

implementation, 130

pole, 35

pole placement, 61

pole/zero map, 36
population dynamics, 50

prediction, 89

prediction horizon, 89

primary controller, 101

process output, 3

process and instrumentation diagram, 6

process dynamics, 7

process flow sheet, 6

process input, 3

programmable logical controller, 126

proportional action, 86

proportional band, 86

proportional control, 60, 86

pulse transfer function, 119

ramp function, 32

ratio control, 103

RDA, 148

RDG, 144

recursive equation, 116

reference value, 3

relative damping, 45

relative disturbance gain, 144

relative dynamic array, 148

relative gain array, 144

reset, 86

reset time, 87

reset windup, 94

resonance peak, 78

RGA, 144

robustness, 62, 81

Routh–Hurwitz stability criteria, 30

sampled-data PID controller, 123

sampled-data system, 118

approximation of, 120

sampling frequency, 116

sampling period, 116

second-order system

complex poles, 45

real poles, 44

secondary controller, 101

sensitivity, 62

sequence controller, 131

sequential net, 131

sequential process, 131

series form, 90

set-point control, 113

setpoint, 3

shift operator, 119

single-capacitive process, 12

singularity diagram, 36

slave controller, 101

Smith predictor, 108

stability, 28, 36

of multivariable systems, 140

stability margins, 81

state equation, 24

state graph, 132

state transition matrix, 27

state variable, 21

state-space model, 23

static gain, 11, 41

stationary error, 16, 66, 86, 88

stationary point, 55

step, 134

157



Index

step function, 31

step response, 10, 40, 96

synchronous net, 132

time constant, 10, 43

tracking, 95

transfer function, 34, 35

transfer function matrix, 140

transition, 134

truth table, 129

undamped frequency, 45

unit element, 127

unmodeled dynamics, 64

valves, 48

weighting function, 40

windup, 94

z-transform, 119

zero, 36

zero element, 127

zero-order-hold, 116

Ziegler–Nichols’ methods

step response method, 96

ultimate-sensitivity method, 97
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