
Process control – FX

◮ Computer control
◮ Industrial control systems
◮ Sampled systems
◮ Controller discretization

◮ Logic and sequence control
◮ Boolean algebra
◮ GRAFCET

Reading: Systems Engineering and Process Control: X.1–X.8
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Industrial control systems
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Control in several levels

Low level:

◮ Logic

◮ Simple control loops, often PI(D)

Mid level:

◮ Sequence control

◮ Coordination using different control structures

◮ Advanced MIMO control, e.g., Model Predictive Control

High level:

◮ Production planning

◮ Process optimization
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Sampled control systems
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Sampled control systems

◮ Mix of continuous and discrete time – hard to analyze
◮ Simplification: Only look at sampling time points

◮ Potential problems
◮ Lost information through sampling
◮ Quantization effects in D-A och A-D converters
◮ Effects on communication delays
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Lost information through sampling
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◮ Sampling: Discrete points with given time interval sampling

interval, h are measured.

Sampling frequency: ω s = 2π /h

◮ Aliasing: Higher frequencies are seen as lower frequencies

◮ The sampling theorem: At least two samples per period

needed to avoid aliasing
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Aliasing example 1

Rotating disc:

Sampling interval

Sampled sequence:
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Aliasing example 1
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Aliasing example 2
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Avoiding aliasing

All signal components above the Nyquist frequency

ω N = ω s/2 = π /h should be filtered away before sampling
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Mathematical system descriptions

◮ Continuous time systems:
◮ Differential equations, e.g.,: T dy

dt
+ y= Ku

◮ Laplace transform, e.g.,: Y(s) = K
1+TsU (s) = G(s)U (s)

◮ Sampled (discrete time) systems:
◮ Difference equations

y(kh+ h) + ay(kh) = bu(kh)

◮ Shift operator: qy(kh) = y(kh+ h)

y(kh) =
b

q+ a
u(kh) = H(q)u(kh)
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Process description sampling

◮ Linear continuous time process on state-space form:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

◮ How does x change between sample points t and t+ h?

(supposing input u is constant):

x(t+ h) = eAhx(t) +

∫ t+h

t

eA(t−τ )Bu(τ ) dτ

= eAhx(t) +

∫ h

0

eAτ B dτ u(t)

= Φx(t) + Γu(t)

◮ Linear difference equation
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Discrete approximation of continuous controller

e(t) u(t)e(kh) u(kh)

Hc(q) ( Gc(s)

Algorithm

Clock
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◮ Shorter sampling interval h enables for better approximation

◮ How to translate Gc(s) → Hc(q)?
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Discretization methods

Approximate derivatives with differences:

◮ Forward difference

dy(t)

dt
(
y(t+ h) − y(t)

h

◮ Backward difference

dy(t)

dt
(
y(t) − y(t− h)

h

Note! Many other (better) discretization methods exist
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Example

Discretize the continuous system
dy(t)

dt
= −3y(t) + 2u(t)

◮ Forward difference:

dy(t)

dt
(
y(kh+ h) − y(kh)

h
= −3y(kh) + 2u(kh)

y(kh+ h) = (1− 3h)y(kh) + 2hu(kh)

◮ Backward difference:

dy(t)

dt
(
y(kh) − y(kh− h)

h
= −3y(kh) + 2u(kh)

y(kh) =
1

1+ 3h
y(kh− h) +

2h

1+ 3h
u(kh)
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Stability analysis

Stability for a scalar difference equation:

y(kh+ h) = ay(kh) + bu(kh)

Suppose u(kh) = 0. y(kh) = aky(0)

◮ y(∞) = 0 if pap < 1

◮ py(∞)p = ∞ if pap > 1

○ (Generally: poles inside unit circle [ asymptotic stability)

Stability conditions for above example:

◮ Forward difference: p1− 3hp < 1 [ 0 < h < 2/3

◮ Backward difference: p 1
1+3h p < 1 [ h > 0
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Simulation of example with G(s) = 2
s+3

Exact solution (–) Forward difference (- -) Backward difference (-.)
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Discretization of PI controller

◮ PI controller with practical modifications (L9):

u(t) = K
(

β r(t) − y(t)
)

︸ ︷︷ ︸

P(t)

+

∫ t

0

(
K

Ti
e(τ ) +

1

Tt

(
u(τ ) − v(τ )

)
)

dτ

︸ ︷︷ ︸

I(t)

◮ P part static, no approximation needed:

P(kh) = K (β r(kh) − y(kh))
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Discretization of PI controller

◮ I part discretized with forward difference:

I(t) =

∫ t

0

(
K

Ti
e(τ ) +

1

Tt

(
u(τ ) − v(τ )

)
)

dτ

dI(t)

dt
=
K

Ti
e(t) +

1

Tt

(
u(t) − v(t)

)

I(kh+ h) − I(kh)

h
=
K

Ti
e(t) +

1

Tt

(
u(t) − v(t)

)

I(kh+ h) = I(kh) +
Kh

Ti
e(kh) +

h

Tt

(
u(kh) − v(kh)

)
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Implementation of PI controller – pseudo code

LOOP

WaitForClockTick();

r = ADIn(1);

y = ADIn(2);

P = K*(beta*r-y);

v = P + I;

IF v < umin

u = umin;

ELSEIF v > umax

u = umax;

ELSE

u = v;

END

DAOut(1,u);

I = I + K*h/Ti*(r-y) + h/Tt*(u-v);

END

Program

Clock
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Logic and discrete control

◮ Discrete signals
◮ Measurements: true or false
◮ Inputs: on or off

◮ Logical nets
◮ Static nets
◮ E.g.: Alarms

◮ Sequence nets
◮ Dynamic nets
◮ E.g.: Start-up, shutdown

batch process
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Operations and symbols

Three operations:

and: a ⋅ b a and b a ∧ b
or: a+ b a or b a ∨ b

not: ā not a ¬a

Symbols for and and or:
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Computing with logic

Boolean algebra:

◮ Ex: 1+ a = 1 och 0+ a = a

◮ Ex: 1 ⋅ a = a och 0 ⋅ a = 0

◮ Ex: a+ ā = 1 och a ⋅ ā = 0

Logic laws:

◮ Commutative

a ⋅ b = b ⋅ a, a+ b = b+ a

◮ Associative
a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c, a+ (b+ c) = (a+ b) + c

◮ Distributive
a ⋅ (b+ c) = a ⋅ b+ a ⋅ c

◮ de Morgan’s law
a+ b = ā ⋅ b̄, a ⋅ b = ā+ b̄
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Example

Alarm for a batch reactor, sound alarm if:

◮ temperature T in tank too high and cooling valve Q off

◮ temperature T is high and inflow valves is open V1

Q

T

V 1

L 1

L 0

V 2

Truth table:

T Q V1 y =alarm

0 0 0 0
1 0 0 1
0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 1
0 1 1 0
1 1 1 1
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Sequence control

Tasks should be done in sequence. Example:

◮ Elevator

◮ Washing machine

◮ Cake baking

◮ Start-up and shutdown of reactor

Requires memory (state), order is important

Sequence net

◮ Finite state machine (automata theory)

◮ Petri net

◮ GRAFCET (a kind of Petri net)
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GRAFCET – Steps and transitions

Steps:

◮ Active and inactive

S1

S1.x  = 1  when active

S1.T  = number of time units since the 
             step last became active

Initial step

Transitions:

fired when preceding step is active and transition condition satisfied

condition true and/or event occurred +
previous step active
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GRAFCET – Control structures

◮ Alternative ways:
1. Branches (mutually exclusive)

a a

mutually exclusive

2. Repetition

◮ Parallel ways with synchronized exit

(synchronization)

split

join 
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GRAFCET – Fundamental symbols

GRAFCET symbols. (a) Step (inactive); (b) Step (active); (c) Initial step; (d) Step with
action; (e) Transition; (f) Branching with mutually exclusive alternatives; (g) Branching into
parallel paths; (h) Synchronization.
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GRAFCET – Some Examples
Legal GrafcetIllegal Grafcet
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GRAFCET – Execution principles

Grafcet evolution rules:

◮ The initial step(s) is active when the function chart is initiated.

◮ A transition is firable if:

○ all steps preceding the the transition are active (enabled).
○ the receptivity (transition condition and/or event) of the

transition is true

A firable transition must be fired.

◮ all the steps preceding the transition are deactivated and all

the steps following the transition are activated when a

transition is fired

◮ all firable transitions are fired simultaneously

◮ when a step must be both deactivated and activated it remains

activated without interrupt
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GRAFCET – Examples of firing
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Example: Specifications

Q

T

V 1

L 1

L 0

V 2

Verbal description:

1. Start the sequence by pressing the button B. (not shown)

2. Fill water by opening the valve V1 until the upper level L1 is reached.

3. Heat the water until the temperature is greater than T . The heating

can start as soon as the water is above the level L0.

4. Empty the water by opening the valve V2 until the lower level L0 is
reached.

5. Close the valves and go to Step 1 and wait for a new sequence to

start.
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Example: Time functions
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Example: Sequence net

Wait for start
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Project

◮ Create sequential control program for a CSTR-process in

JGrafchart (Java-based implementation of GRAFCET)

◮ Digital implementation of PI controller for water level and

temperature
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