Process control – FX

Computer control

- Industrial control systems
- Sampled systems
- Controller discretization
- Logic and sequence control
 - Boolean algebra
 - GRAFCET

Reading: Systems Engineering and Process Control: X.1–X.8

Industrial control systems

Control in several levels

Low level:

- Logic
- Simple control loops, often PI(D)

Mid level:

- Sequence control
- Coordination using different control structures
- Advanced MIMO control, e.g., Model Predictive Control

High level:

- Production planning
- Process optimization

Sampled control systems

Sampled control systems

- Mix of continuous and discrete time hard to analyze
 - Simplification: Only look at sampling time points
- Potential problems
 - Lost information through sampling
 - Quantization effects in D-A och A-D converters
 - Effects on communication delays

Lost information through sampling

Sampling: Discrete points with given time interval sampling interval, h are measured.

Sampling frequency: $\omega_s = 2\pi/h$

- Aliasing: Higher frequencies are seen as lower frequencies
- The sampling theorem: At least two samples per period needed to avoid aliasing

Aliasing example 1

Rotating disc:

Sampling interval

 $(\mathbf{n}_{1},\mathbf{n}_{2},\mathbf{n}_{2},\mathbf{n}_{3},$ \nearrow

Aliasing example 1

Aliasing example 2

Avoiding aliasing

All signal components above the *Nyquist frequency* $\omega_N = \omega_s/2 = \pi/h$ should be filtered away before sampling

a) not filtered signal, b) filtered signal, c) sampled not filtered signal,d) sampled filtered signal

Mathematical system descriptions

Continuous time systems:

- Differential equations, e.g.,: $T\frac{dy}{dt} + y = Ku$
- ► Laplace transform, e.g.,: $Y(s) = \frac{K}{1+Ts}U(s) = G(s)U(s)$
- Sampled (discrete time) systems:

Difference equations

$$y(kh+h) + ay(kh) = bu(kh)$$

Shift operator:
$$qy(kh) = y(kh + h)$$

 $y(kh) = \frac{b}{q+a}u(kh) = H(q)u(kh)$

Process description sampling

Linear continuous time process on state-space form:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

How does x change between sample points t and t + h? (supposing input u is constant):

$$\begin{aligned} x(t+h) &= e^{Ah}x(t) + \int_t^{t+h} e^{A(t-\tau)}Bu(\tau) \, d\tau \\ &= e^{Ah}x(t) + \int_0^h e^{A\tau}B \, d\tau \, u(t) \\ &= \Phi x(t) + \Gamma u(t) \end{aligned}$$

Linear difference equation

Discrete approximation of continuous controller

- Shorter sampling interval h enables for better approximation
- How to translate $G_c(s) \rightarrow H_c(q)$?

Discretization methods

Approximate derivatives with differences:

Forward difference

$$rac{dy(t)}{dt} pprox rac{y(t+h) - y(t)}{h}$$

Backward difference

$$\frac{dy(t)}{dt} \approx \frac{y(t) - y(t-h)}{h}$$

Note! Many other (better) discretization methods exist

Example

Discretize the continuous system $\frac{dy(t)}{dt} = -3y(t) + 2u(t)$

Forward difference:

$$\frac{dy(t)}{dt} \approx \frac{y(kh+h) - y(kh)}{h} = -3y(kh) + 2u(kh)$$
$$y(kh+h) = (1-3h)y(kh) + 2hu(kh)$$

Backward difference:

$$\frac{dy(t)}{dt} \approx \frac{y(kh) - y(kh - h)}{h} = -3y(kh) + 2u(kh)$$
$$y(kh) = \frac{1}{1+3h}y(kh - h) + \frac{2h}{1+3h}u(kh)$$

Stability analysis

Stability for a scalar difference equation:

$$y(kh+h) = ay(kh) + bu(kh)$$

Suppose u(kh) = 0. $y(kh) = a^k y(0)$

•
$$y(\infty) = 0$$
 if $|a| < 1$

•
$$|y(\infty)| = \infty$$
 if $|a| > 1$

• (Generally: poles inside unit circle \Rightarrow asymptotic stability)

Stability conditions for above example:

- Forward difference: $|1 3h| < 1 \Rightarrow 0 < h < 2/3$
- ► Backward difference: $\left|\frac{1}{1+3h}\right| < 1 \Rightarrow h > 0$

Simulation of example with $G(s) = \frac{2}{s+3}$

Exact solution (-) Forward difference (- -) Backward difference (-.)

Discretization of PI controller

PI controller with practical modifications (L9):

$$u(t) = \underbrace{K\Big(\beta r(t) - y(t)\Big)}_{P(t)} + \underbrace{\int_{0}^{t} \left(\frac{K}{T_{i}}e(\tau) + \frac{1}{T_{t}}(u(\tau) - v(\tau)\right)\right) d\tau}_{I(t)}$$

P part static, no approximation needed:

$$P(kh) = K \left(\beta r(kh) - y(kh)\right)$$

Discretization of PI controller

I part discretized with forward difference:

$$\begin{split} I(t) &= \int_0^t \left(\frac{K}{T_i} e(\tau) + \frac{1}{T_t} \big(u(\tau) - v(\tau) \big) \right) d\tau \\ &\frac{dI(t)}{dt} = \frac{K}{T_i} e(t) + \frac{1}{T_t} \big(u(t) - v(t) \big) \\ \frac{I(kh+h) - I(kh)}{h} &= \frac{K}{T_i} e(t) + \frac{1}{T_t} \big(u(t) - v(t) \big) \\ I(kh+h) &= I(kh) + \frac{Kh}{T_i} e(kh) + \frac{h}{T_t} \big(u(kh) - v(kh) \big) \end{split}$$

Implementation of PI controller – pseudo code

Logic and discrete control

Operations and symbols

Three operations:

and: $a \cdot b$ a and b $a \wedge b$ or: a + b a or b $a \vee b$ not: \bar{a} not a $\neg a$

Symbols for and and or:

Computing with logic

Boolean algebra:

• Ex: 1 + a = 1 och 0 + a = a

Ex:
$$1 \cdot a = a \operatorname{och} 0 \cdot a = 0$$

Ex: $a + \bar{a} = 1$ och $a \cdot \bar{a} = 0$

Logic laws:

- Commutative $a \cdot b = b \cdot a, a + b = b + a$
- Associative $a \cdot (b \cdot c) = (a \cdot b) \cdot c, a + (b + c) = (a + b) + c$
- Distributive $a \cdot (b + c) = a \cdot b + a \cdot c$
- de Morgan's law $\overline{a+b} = \overline{a} \cdot \overline{b}, \ \overline{a \cdot b} = \overline{a} + \overline{b}$

Example

Alarm for a batch reactor, sound alarm if:

- temperature T in tank too high and cooling valve Q off
- temperature T is high and inflow values is open V_1

T	Q	V_1	y = a larm
0	0	0	0
1	0	0	1
0	1	0	0
1	1	0	0
0	0	1	0
1	0	1	1
0	1	1	0
1	1	1	1

Sequence control

Tasks should be done in sequence. Example:

- Elevator
- Washing machine
- Cake baking
- Start-up and shutdown of reactor

Requires memory (state), order is important

Sequence net

- Finite state machine (automata theory)
- Petri net
- GRAFCET (a kind of Petri net)

GRAFCET – Steps and transitions

Steps:

Active and inactive

Transitions:

fired when preceding step is active and transition condition satisfied

GRAFCET – Control structures

- Alternative ways:
 - 1. Branches (mutually exclusive)

- 2. Repetition
- Parallel ways with synchronized exit

GRAFCET – Fundamental symbols

GRAFCET symbols. (a) Step (inactive); (b) Step (active); (c) Initial step; (d) Step with action; (e) Transition; (f) Branching with mutually exclusive alternatives; (g) Branching into parallel paths; (h) Synchronization.

GRAFCET – Some Examples

GRAFCET – Execution principles

Grafcet evolution rules:

- ► The initial step(s) is active when the function chart is initiated.
- A transition is firable if:
 - all steps preceding the the transition are active (enabled).
 - the receptivity (transition condition and/or event) of the transition is true

A firable transition must be fired.

- all the steps preceding the transition are deactivated and all the steps following the transition are activated when a transition is fired
- all firable transitions are fired simultaneously
- when a step must be both deactivated and activated it remains activated without interrupt

GRAFCET – Examples of firing

c) Firable

d) After the change from c)

Example: Specifications

Verbal description:

- 1. Start the sequence by pressing the button *B*. (not shown)
- 2. Fill water by opening the value V_1 until the upper level L_1 is reached.
- 3. Heat the water until the temperature is greater than T. The heating can start as soon as the water is above the level L_0 .
- 4. Empty the water by opening the valve V_2 until the lower level L_0 is reached.
- 5. Close the valves and go to Step 1 and wait for a new sequence to start.

Example: Time functions

Example: Sequence net

Project

- Create sequential control program for a CSTR-process in JGrafchart (Java-based implementation of GRAFCET)
- Digital implementation of PI controller for water level and temperature

