Systems Engineering/Process Control L2

> Process models
> Step-response models

» The PID controller

Reading: Systems Engineering and Process Control: 2.1-2.5
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Process models

We will primarily work with processes that are described by

continuous (as opposed to discrete — FX),
linear (as opposed to nonlinear — F3, F5),
time invariant (as opposed to time varying),

dynamic (as opposed to static)

systems



Static vs dynamic systems

X

—— System |——

Static system: y(t) = f(u(?))

> Output y right now depends only on input u right now

» New equilibrium is found instantaneously after input changes
Dynamic system:  y(¢) = f(u[o, 4, x(0))

> Output y(t) depends on all old inputs %[o, ;| and the system initial state x(0)

» For (stable) dynamical systems, there is a lag before a new equilibrium is
reached after an input change



Static or dynamic system?

X
u y
—] System |———

System Input (v) Output (y) S/D
Shower Temperature knob | Water temperature | D
Lamp Light switch Light S
Lamp Dimmer Light S
Water tank Inflow and outflow Water level D
Cruise control Throttle Speed D




Time invariant vs time varying systems

X

—] System |———

Time invariant system: The system dynamics does not change over time

Input delayed by T time units = output delayed by T time units:
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Examples of time invariant/varying systems

Time varying systems:

> Lamp with switch and timer: Different response depending on time

» Rockets: Decreasing fuel amount = system dynamics change
Time invariant systems:

> Lamp with switch without timer
» Water tank with inflows and outflows

» Cruise control in the car



Process models used in course

Step-response model (L2)

State-space model (L3)

Transfer function (L4)

Frequency-response function (L8)
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Step-response experiment

A simple method to learn the process dynamics

Is

—_— ]

u

Process

_/

——————

> Wait until process is in equilibrium

» Change input u with a step of size Au

> Record and analyze output y

(We assume here one input and one output)



Step-response example

Maitsignal

100 %
63 %

0% 1

by

Styrsignal

Au

» Dead time = L

> Time constant = T'

> Overshoot = a/Ay
> Damping=1—>b/a

> Static gain = K, = Ay/Au



Step-response for integrating process

Maitsignal

Styrsignal

» Dead time = L

> Velocity gain = K, = Ay/(Au - L)
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Step-response for some different process types

Enkapacitiv Flerkapacitiv

Integrerande Oscillativ

Dodtid Omvént svar
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Single-capacitive processes

Enkapacitiv
Example: RC circuit
R
o —1 J_ o
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time
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Single-capacitive processes

Example: Continuously stirred tank (CST) with constant flow

T;n =u Cin = U En
f~— o~~~ oL [l
T c — T
—k= k= u=Pp _§ k=
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Multi-capacitive processes

Flerkapacitiv
: Tin=u
Example: in CSTR.R— P
CRjin — U
Th _l
e
—
T CR| CP
[ )

cp=Yy
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Integrating processes

Integrerande

Example: ,_ﬁﬁ” U

Qut
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Oscillatory processes

Oscillativ

Example: Mechanical system with little damping

m |—=— F=uyu
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Dead time processes

Daodtid

Example:

Cin = U —_— Cut =Y
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Inverse response processes

Omvint svar

Examples:

> Parallel parking with car

> Input: steering wheel angle
» Measurement: (smallest) distance from front wheel to curb

» Bus turn

> Input: steering wheel angle
» Measurement: (smallest) distance from back of bus to curb
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The standard feedback loop

Controller Process

» Objective: measurement signal y should follow setpoint (reference) r

> Controller computes input u from control errore =r — y
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Simple feedback controllers

» On/off-controller
» The simplest feedback controller
» PID-controller

» The most common controller in industry
» P = proportional

> | =integral

> D = derivative
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Example: Oven

r=200°C e u

Controller

Oven

> 1y = measured temperature (output/measurement signal)

» r = desired temperature (setpoint/reference)

» u = heating effect (0 < u < 1) (control signal/input)
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On/off-control

Umin, ife(t) <O (i.e., y(¢) > r(¢))

u(t) _ {umax, if e(t) >0 (i.e., y(t) < r(t))

u

umax

Umin
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Simulation of oven with on/off-control

Measurement, setpoint

Control signal
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Drawbacks with on/off-control

» Oscillations

» Wear on actuators
» Works only for processes with:

> simple dynamics
> low performance requirements
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P-control

» Use proportional (to control error) control:

u(t) = uo + Ke(t)
» K = proportional gain

» (Simplest control structure except on/off)
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Simulation of oven with P-control (z¢y = 0)
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» Stationary control error (at stationarity y(t) # r(¢))
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Mini problem

Approximately what K-value is used in previous slide?
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Stationary error with P-control

The stationary error when using a P controller is:

u—uy
K

e =

Two ways to eliminate stationary error (i.e., get e = 0):

> Let K — o0

» Select ug such that e = 0 in stationarity (difficult to find such u)
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Simulation of P-control with increased K
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» Faster control but more oscillations
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Pl-control

> Are there other ways to remove stationary errors?

> Update ug automatically: Replace the constant term u¢ with integral part:

u(t) = K(e(t) + % fo

» T; = integral time

t

e('r)dT)

(Note: The Pl-controller is a dynamical system in itself!)
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Simulation of oven with Pl-control
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» Control error goes asymptotically towards zero

> Can prove that stationary error is always zero when using Pl-control
(provided closed loop system is stable)
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Simulation of oven with decreased 7;
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> More integral action
» Faster control but more oscillations
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Prediction

A Pl-controller does not predict future errors

The same control signal is obtained in both of the following cases:

t tid t tid

Want something that can react on predicted future errors
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PID-control

This can be achieved by adding a derivative (D) part to the Pl controller:

u(t) = K (e(t) + % fot e(t)dr + Ty dzl(tt)>

» Ty = derivative time

The derivative part tries to estimate the error change in T time units:

de(t)
dt

e(t + Td) — e(t) ~ +Ty
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Simulation of oven with PID-control
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Control signal

> Fast and well damped response, no stationary error
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Summary of PID

Control error Present
A Past l Future

The parameters to set: K, T;, Ty

| >
\ Time
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Laboration 1 — Empirical PID-control

)
]

Control of water level in upper/lower tank

» Open-loop and closed-loop control
» Manual and automatic control

» Empirical setting of K, T}, Ty
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Controller type selection

(On/off-controller)
P-controller
PD-controller
Pl-controller
PID-controller

|-controller
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P-controller

Is good enough in some cases:

» Control of single-capacitive and integrating processes
> big K gives small stationary error; no problems with stability
> Level control in buffer tanks

» small K as long as tank is not almost empty or almost full

> As controller in inner loop in cascade control structure (F9)
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PD-controller

Suitable in some cases:

» Control of some multi-capacitive processes, e.g., slow temperature
processes

» Big K and T; requires measurements with little noise
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Pl-controller

The most common choice of controller

> Eliminates stationary errors

> With cautious settings (small K big 7;) it works on all stable processes
including dead time processes and processes with inverted response
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PID-controller

» Can give improved performance compared to Pl-controller, especially for
multi-capacitive and integrating-capacitive processes

» K can be increased and T; decreased compared to Pl-control

» Derivative part is sensitive to measurement noise
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I-controller

A pure I-controller is given by
¢
u(t) = ki f e(r)dr
0
> k; = integral gain

Can be used for static processes or single-capacitive processes to eliminate
stationary errors
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