
Institutionen för

REGLERTEKNIK

Automatic Control, Basic Course (FRTF05)

Exam December 18, 2018, 13:00-18:00
in room F102 of New Main Building, BUAA

Points and grades
All answers must include a clear motivation. The maximal number of points is 25.
The maximal number of points is specified for each subproblem, and the grades are
shown below.

3: minimum 12 points

4: minimum 17 points

5: minimum 22 points

Accepted aids
Mathematical collections of formulae (e.g. TEFYMA); ’Collections of formulae in
automatic control’; calculator that is not programmed in advance.

Results
The results will be posted on the course home page and the graded exam will be
displayed on Tuesday January 8, in lab C, Dept of Automatic Control. at 12.30-
13.00. Thereafter, exams will be archived at the Automatic Control Department in
Lund and at BUAA, Beijing, respectively.
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Solutions

1. Study the system

ẋ =
[
−1 3
a −2

]
x+

[
1
1

]
u

y = [ 0 1 ]x

a. How many inputs, outputs and states does this system have? (1 p)

b. For which a ∈ R is the system not controllable? (1.5 p)

c. For this a, which states can not be reached from the origin with any control
signal? (1.5 p)

Solution

a. One input, one output and two states.

b. The system is not controllable if the controllability matrix Wc = [B AB] is not
of full rank. This is the same as the determinant of the matrix is equal to zero.

det([B AB]) = det
([

1 2
1 a− 2

])
= a− 2− 2 = 0

a = 4

c. The states we can reach are all linear combinations of the columns in the
controllability matrix. For a = 4 we get

Wc =
[

1 2
1 2

]

which tells us that the reachable states are on the form

x = α

[
1
1

]

so any states not on this form cannot be reached, i.e. any state where x1 6= x2.

2. Consider the system that you studied in the previous problem,

ẋ =
[
−1 3
a −2

]
x+

[
1
1

]
u,

y = [ 0 1 ]x.

a. Find a linear state feedback, u = Lx, where L = [l1, l2] ∈ R1×2, such that the
poles of the closed loop system are placed in s = −1 ± i for every a at which
the system is controllable. (2.5 p)
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b. What happens with the feedback gain and the resulting control signals as the
parameter a approaches a value for which the system is uncontrollable?

(0.5 p)

Solution

a. Assume a positive feedback interconnection u = Lx, where L = [l1, l2] ∈ R1×2.
The closed loop dynamics can be written,

ẋ = Ax+Bu = (A+BL)x, (1)

with a corresponding characteristic polynomial

p(s) = det(sI − (A+BL)) (2)

= det
( [ s+ 1− l1 −3− l2
−a− k1 s+ 2− l2

] )
(3)

= (s+ 1− l1)(s+ 2− l2)− (−3− l2)(−a− l1) (4)
= s2 + (3− l1 − l2)s+ 2− (1 + a)l2 − 5l1 − 3a. (5)

In order to satisfy the specifications, the closed loop polynomial should be

pm(s) = (s+ 1 + i)(s+ 1− i) = s2 + 2s+ 2. (6)

To choose L, simply let p(s) = pm(s), whereby
s2 : 1 = 1
s1 : 2 = 3− l1 − l2
s0 : 2 = 2− (1 + a)l2 − 5l1 − 3a

(7)

which can be written as a linear system in k, and subsequently solved[
−1 −1
−5 −(1 + a)

] [
l1

l2

]
=
[
−1
3a

]
(8)

m[
l1

l2

]
= 1
a− 4

[
−(1 + a) 1

5 −1

] [
−1
3a

]
(9)

m[
l1

l2

]
= 1
a− 4

[
4a+ 1
−3a− 5

]
. (10)

b. From the previous problem, we know that the system is uncontrollable at a = 4.
And it is clear that we require more and more control effort to steer the system
when a→ 4, as for any x1 6= x2, x 6= 0, the control signal becomes lim

a→4
|u| =∞.

3. Figure 1 depicts the Bode diagram of a third order process.

a. Determine the output y(t) of the system if the control signal is given by u(t) =
2 sin(3t) for −∞ < t <∞. (2 p)
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Figur 1: Bode diagram for Problem 3.

b. We close the loop by adding feedback and a P-controller with K = 0.33. What
is the delay margin for the closed loop system? (2 p)

c. Create a closed loop by adding a PI-controller, and calibrate the system with
Ziegler-Nichol’s method. (2 p)

Solution

a. We have a control signal with an angular frequency of 3 rad/s. The Bode
diagram gives us |G(3i)| ≈ 3 and arg(G(3i)) ≈ −160◦ (exact values are

√
10

and −180◦ + arctan(1/3)). This results in the output

u(t) = 6 sin(3t− 160π/180).

b. For a P-controller with K = 0.33 we want to find what ωc that gives us
|KG(iωc)| = 1, i.e. the angular frequency that gives an amplitude of ∼ 3.
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In the Bode diagram we can see that this happens around ωc ≈ 3 rad/s and
then we get φm = 180◦ + arg(G(iωc)) ≈ 20◦.

Lm = φm
ωc

= 20π
3 · 180 ≈ 0.1164 s

c. First, we need to figure out what K0 gives resonance during feedback and what
the frequency of the resonance is. We find ω0 ≈ 4 in the phase diagram and
see that |G(4i)| ≈ 2 at that point. This tells us that feedback with K0 = 0.5
results in resonance (more exact values are 3.87 rad/s and 0.533). From the
collection of formulae we get a PI of the following form:

K = 0.45K0 ≈ 0.2

Ti = T0
1.2 = 2π

1.2ω0
≈ 0.5
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4. When designing applications for the cloud, it is usually recommended to split
the code base into smaller self-contained microservices, which are then deployed
on a cloud platform. Each microservice can be regarded as a virtual server. One
such setup can be seen in Figure 2.

Figur 2: User requests a(t) routed into server 1, which are further sent to server
2 and finally server 3, which routes packages back to the user. On server 3, high
priority requests d(t) can be routed from an outside server.

If the throughput is large, the dynamics of a server resembles that of a water
tank with in- and outflow

q̇(t) = pin(t)− pout(t),

where q(t) is the average queue length and pin(t), pout(t) the average arri-
vals/departures. Commonly, the outflow from a server can be modeled as

pout(t) = µ
q(t)

q(t) + 1

where µ is the inherent service rate of the server. For our system, (µ1, µ2, µ3) =
(5, 5, 3). Since the final server is the slowest, it is important that we keep its
amount of packages limited to a set-point as not to overload the system. A
controller Gr(s) has been created that acts on a(t) in order to keep the level
on server 3 at the set point.

a. Create a state-space model for the system, and linearize it around u0 = 1. For
now, assume that d(t) = 0. (2 p)

b. By feed-back alone, the disturbances on server 3 can only be accounted for ret-
roactively. This is bad, as it renders our system sensitive to large step distur-
bances which can overload the server.
To combat this, an additional feedforward controller can be added to the system
using the known disturbance d(t) as the input. Draw the block diagram of the
entire system with the two controllers. Calculate the feedforward controller
with respect to the linearized system such that the disturbance dissapears. Is
the controller implementable? If not, suggest at least one improvement to make
it implementable. (2 p)
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Solution

a. The state space form of the server system becomes

ẋ1 = −µ1
x1

x1 + 1 + u (11)

ẋ2 = −µ2
x2

x2 + 1 + µ1
x1

x1 + 1 (12)

ẋ3 = −µ3
x3

x3 + 1 + µ2
x2

x2 + 1 (13)

y = x3 (14)

where (µ1, µ2, µ3) = (5, 5, 3). Stationary point, given u0 = α = 1.

(
x0

1, x
0
2, x

0
3, u

0
)

=
(

α

µ1 − α
,

α

µ2 − α
,

α

µ3 − α
, α

)
=
(1

4 ,
1
4 ,

1
2 , 1

)
(15)

Linearize the system dynamics around u0 = 1. Jacobian becomes

df1
x1

= −µ1
(x1+1)2

df1
x2

= 0 df1
x3

= 0 df1
u = 1

df2
x1

= µ1
(x1+1)2

df2
x2

= −µ2
(x2+1)2

df2
x3

= 0 df2
u = 0

df3
x1

= 0 df3
x2

= µ2
(x2+1)2

df3
x3

= −µ3
(x3+1)2

df3
u = 0

(16)

which yields the system

∆̇x =

−3.2 0 0
3.2 −3.2 0
0 3.2 −4/3

∆x+

 1
0
0

∆u (17)

∆y = ( 0 0 1 ) ∆x (18)

Σ Gr(s) Σ S1(s) S2(s) Σ

H(s)

S3(s)
R(s) E(s)

D(s)

Y (s)−

Figur 3: Control system with disturbance and feed-forward for Problem 4.

b. The optimal feed-forward controller to remove disturbances is given by

H(s) = − 1
S1(s)S2(s) . (19)
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In our linearized system, this becomes

H(s) = − 1
1

s+3.2
3.2
s+3.2

= −(s+ 3.2)2

3.2 (20)

The problem with this controller is that we differentiate the disturbance signal,
making it sensitive to high frequencies. Two ways to make it practical is either
by introducing a low-pass filter or relying on the static feedforward

H(s) = −3.22

3.2 = −3.2 (21)

instead.

5. Christmas is upon us and Santa Claus needs to plan the production of presents
from his factories. It is important that the amount of produced gifts are not too
few nor too many, or Santa might risk ruining Christmas or his tight budget.
The amount of gifts produced can be controlled by tuning the production speed
of the factories, the total output can be modeled as the following transfer
function from u(t) - production speed, to y(t) - millions of gifts produced

Gp(s) = 1
s(s+ 1) . (22)

This model is far from perfect, the imperfections can be thought of as two
disturbances, d1(t) affecting the control signal u(t) and d2(t) affecting the out-
put signal y(t). Further, the actual production will need to follow a ramp refe-
rence r(t) = αt, as peoples ability to postpone writing their wish lists makes it
hard to produce the correct amount of gifts in one batch. To control the facto-
ries, Santa has utilized feedback with a PID controller with the parameters
K = 5, Ti = 10 and Td = 2.

a. Draw a block diagram of the entire closed loop system including the disturban-
ces. Determine the transfer functions from R(s) to Y (s), D1(s) to Y (s) and
D2(s) to Y (s). What is the stationary error if there is no disturbance? (2 p)

b. The increasing strain on the factory gives rise to ramp disturbances of d1(t) =
β1t, d2(t) = β2t. What is the stationary error given these disturbances?

(1.5 p)

c. Save Christmas by suggesting an improvement to Santas naive PID controller,
such that the factories now manages to produce the right amount of presents.

(0.5 p)

Solution

a. Transfer functions with given parameters

Gp(s) = 1
s2 + s

(23)

Gr(s) = 20s2 + 10s+ 1
2s (24)

Go(s) = 20s2 + 10s+ 1
2s3 + 2s2 (25)
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Σ Gr(s) Σ Gp(s) Σ
R(s) E(s) U(s)

D1(s) D2(s)

Y (s)−

Figur 4: Control system with disturbances for Problem 5.

Transfer functions from R,D1, D2 to Y are given by

Y (s) = GrGp
1 +GrGp

R(s) = 20s2 + 10s+ 1
2s3 + 22s2 + 10s+ 1 (26)

Y (s) = Gp
1 +GrGp

D1(s) = 2s
2s3 + 22s2 + 10s+ 1 (27)

Y (s) = 1
1 +GrGp

D2(s) = 2s3 + 2s2

2s3 + 22s2 + 10s+ 1 (28)

Given no disturbances, the error can be written as

E(s) = R(s)− Y (s) = 1
1 +GrGp

R(s) = 2s3 + 2s2

2s3 + 22s2 + 10s+ 1R(s) (29)

using the criterion for stability, the poles are positive if a1, a2, a3 > 0 and
a1a2 > a3, and we have a positive coefficient in front of s3, which is the case.
The final value theorem can thus be used.

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s
2s3 + 2s2

2s3 + 22s2 + 10s+ 1
α

s2 = 0 (30)

b. The error given the ramp disturbances can be written as

E(s) = R(s)− Y (s) = 1
1 +GrGp

R(s)− Gp
1 +GrGp

D1(s)− 1
1 +GrGp

D2(s)

(31)
= E1(s) + E2(s) + E3(s) (32)

Same stability condition holds as before, use final value theorem.

lim
s→0

sE1(s) = lim
s→0

s
2s3 + 2s2

2s3 + 22s2 + 10s+ 1
α

s2 = 0 (33)

lim
s→0

sE2(s) = lim
s→0

s
−2s

2s3 + 22s2 + 10s+ 1
β1
s2 = −2β1 (34)

lim
s→0

sE3(s) = lim
s→0

s
−(2s3 + 2s2)

2s3 + 22s2 + 10s+ 1
β2
s2 = −0 (35)

(36)

Final error thus becomes
lim
t→∞

e(t) = −2β1 (37)
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c. The error occurs as the integrator in the plant does not affect the disturbance
on the control signal. To remedy this the controller could be fitted with a
second integrator.

6. Consider the following four transfer functions.

(1) G1(s) = (s2 + 2s+ 1)−1e−2s

(2) G2(s) = −(s− 4)(s2 + 4s+ 4)−1

(3) G3(s) = (s+ 3)(s2 + s+ 2)−1

(4) G4(s) = (s2 + 4)−1

a. Pair up the transfer functions (1)-(4), with a Bode diagram (A)-(D), and a
Nyquist diagram (i)-(iv) in Figure 5 and Figure 7. Each transfer function and
curve in the Bode/Nyquist diagrams should be used exactly once. Don’t forget
to motivate your answer! (2 p)

b. Sketch the step-responses of each transfer function (1)-(4), and write a short
comment motivating each sketched step response. (2 p)

Figur 5: Bode diagrams for Problem 6.
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Figur 6: Nyquist diagrams for Problem 6.

Solution

a. (1) The system G1(s) has a time-delay, which is invisible in the magnitude
diagram. However, we know that the static gain of this transfer function
is G1(0) = 1, i.e., a magnitude of 0 dB. Furthermore, we know that the
system has a double pole and no zero, i.e. a pole excess of 2, meaning
that it will have a constant amplification of low frequencies and a roll-off
of slope 2 at higher frequencies. The only solution which fits the bill is
the red curve (A). Furthermore, the only curve which encircles the origin
multiple times is the blue curve, i.e., the Nyquist plot (ii). (0.5 p)

(2) The system G2(s) has a pole excess of 1, and we would expect a rolloff
of slope 1 at higher frequencies. Furthermore, we note that the system
is critically damped, with a double pole in −2, so it should not have a
resonance peak. In addition, it has a static gain of 1. Consequently, the
system corresponds to the magnitude plot (D) in the bode diagram, and
the Nyquist plot (iii). (0.5 p)
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(3) The system G3(s) has a pole excess of 1, and we would expect a rolloff
of slope 1 at higher frequencies. Furthermore, we note that the system is
under-damped, with poles in −0.5± i

√
1.75, so it should not have a slight

resonance peak at ω =
√

2. In addition, it has a static gain of 1.5, which
is roughly 3.5 dB. Clearly, this corresponds to the magnitude plot (B),
and the corresponding Nyquist diagram is found in (iv). (0.5 p)

(4) The system G4(s) has a pole excess of 2, and we would expect a rolloff
of slope 2 at higher frequencies. Furthermore, we note that the system is
only marginally stable, with two imaginary poles in in ±2i, so it should
not have a significant resonance peak at ω = 2. Clearly, this corresponds
to the magnitude plot (C). Since the system poles are purely imaginary,
we have that G(iω) = (4 − w2)−1 ∈ R for all frequencies ω, this the
Nyquist curve should reside on the real axis for all ω, corresponding to
(i). (0.5 p)

In summary

• (1)-(A)-(ii)
• (2)-(D)-(iii)
• (3)-(B)-(iv)
• (4)-(C)-(i)

b. (1) To summarise the previous points, we have a static gain of 1, a time-
delay of 2, critical damping (no overshoot) with a relatively slow rise-time
(absolute value of poles is 1). Knowing this, we can draw something similar
to the red curve. (0.5 p)

(2) Now we have a static gain of 1, critical damping (no overshoot) with a
slightly faster rise-time (absolute value of poles is 2). In addition, we have
a zero in the right half plane, and our step like to the blue curve. (0.5 p)

(3) Now we have a static gain of 1.5, the system is quite under-damped (signi-
ficant overshoot) with a moderately fast rise-time (absolute value of poles
is
√

2). Consequently, the system is faster than G1, and slower than G2.
In addition, we have a zero in the left half plane. With this information,
we can sketch something like the black curve. (0.5 p)

(4) This system is only marginally stable, and we expect a sinusoidal beha-
viour in the system response with a period of 2 [rad/s], i.e., a period of
T = 2π/2 = π. Any sinusoidal behaviour with roughly this period will
score a point. (0.5 p)

Good luck!
——————————————————————-
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Figur 7: Step responses and solution to Problem 6. 13


