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Previous lecture: State feedback

Feedback signal as a linear combination of the states:

u = −l1x1 − l2x2 − · · · − lnxn = −Lx

Gives closed loop system matrix

Acl = A− BL
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Previous lecture: State feedback

Feedback signal as a linear combination of the states:

u = −l1x1 − l2x2 − · · · − lnxn = −Lx

Gives closed loop system matrix

Acl = A− BL

If the system is controllable, we can place closed loop poles
(eigenvalues of A− BL) arbitrarily

One big problem with this approach. . . typically not all states xi are
measured
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This lecture: Observers

Key idea:
System model + output signal y + control signal u → Estimate x̂ of x

Process
u y

We will design observers using pole placements.

Similar to what we did for state feedback.
Dual problems, i.e. "Same, same, but different"
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The Kalman filter

developed c. 1960 by
Rudolf Kalman (1930-2016)

Used in the Apollo navigation
computer

Applications: automatic control, radar tracking, medical imaging,
seismology, battery charge estimation, economics, online parameter
estimation etc, etc
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Observability

Is it always possible to estimate the state of a system from u and y?

Yes — if the system is observable

Definition: A state vector x0 6= 0 is not observable if the output is
y(t) = 0 when the initial state vector is x(0) = x0 and the input is given
by u(t) = 0. A system is observable if it lacks non-observable states.
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Test for observability

Test for observability: The observability matrix

Wo =


C
CA
CA2

...
CAn−1


has n (= number of states), linearly independent columns

Note that:

• Observability only depends on A and C
• Non-observable states x0 satisfy the equation Wox0 = 0
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Example: Observability of water tanks (1/2)

State-space model:

ẋ =
[
−1 0
0 −1

]
x

y =
[
1 −1

]
x

Observability matrix:

Wo =
[

C
CA

]
=
[
1 −1
−1 1

]
Wo has rank 1 ⇒ system is not observable
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Example: Observability of water tanks (2/2)

The non-observable states satisfy Wox0 = 0, i.e. the non-observable
states are given by

x0 =
[

a
a

]
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State-estimation: Notation

Want to estimate the state x of system

d
dt x = Ax + Bu

Introduce

• x̂ - estimated state vector
• x̃ = x − x̂ - estimation error
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State-estimation: Via simulation

Let the state estimate evolve according to

d
dt x̂ = Ax̂ + Bu

The estimation error evolves according to

d
dt x̃ = d

dt (x − x̂)

= Ax + Bu − (Ax̂ + Bu)
= A (x − x̂) = Ax̃

• Estimation error converges to 0 if A is stable
• Convergence rate depends on eigenvalues of A
• Requires perfect model and no load disturbances
• Information in measured signal y is not used
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State-estimation: Via observer (1/2)

Let the state estimate take y into account
d
dt x̂ = Ax̂ + Bu + K (y − ŷ)

ŷ = Cx̂

or
d
dt x̂ = (A− KC)x̂ + Bu + Ky

The estimation error evolves according to
d
dt x̃ = d

dt (x − x̂)

= Ax + Bu − ((A− KC)x̂ + Bu + KCx)
= (A− KC) (x − x̂) = (A− KC)x̃

By choosing K we can affect convergence speed of the state estimate
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State-estimation: Via observer (2/2)

d
dt x̃ = (A− KC)x̃

Poles are placed by choosing K , same as for state-feedback

Large K , fast poles of A− KC

• Fast convergence of state estimation
• Sensitive to measurement noise

Small K , slow poles of A− KC

• Slow convergence of state estimate
• sensitive to load disturbances and modeling errors

As always: Trade-off between robustness and performance
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Inverted pendulum example (1/2)

Process:

ẋ =
[
0 1
1 0

]
x +

[
0
−1

]
u = Ax + Bu

y =
[
1 0

]
x = Cx
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Inverted pendulum example (2/2)

Simulation from initial state ϕ(0) = −0.6, ϕ̇(0) = 0.4

Angle ϕ

Angular speed ϕ̇

Time [s]
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Output Feedback

Process:

ẋ = Ax + Bu

y = Cx

Kalman filter + Controller:

˙̂x = Ax̂ + Bu + K (y − ŷ)

ŷ = Cx̂

u = lr r − Lx̂
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Output Feedback (2/2)

Process:

ẋ = Ax + Bu

y = Cx

Kalman filter + Controller:

˙̂x = Ax̂ + Bu + K (y − ŷ)

ŷ = Cx̂

u = lr r − Lx̂

Introduce state-vector extended with estimation errors xe =
[

x
x̃

]
Closed loop state-space equations become:[

ẋ
˙̃x

]
=
[

A− BL BL
0 A− KC

][
x
x̃

]
+
[

Blr
0

]
r = Ae

[
x
x̃

]
+ Ber

y =
[
C 0

] [x
x̃

]
= Ce

[
x
x̃

]
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Ouput Feedback: Closed loop dynamics

Characteristic polynomial of closed loop system:

det
([

A− BL BL
0 A− KC

])
= det(sI − (A− BL)) · det(sI − (A− KC))

Possible to place poles for state feedback and the observer
independently!!

Can show that the transfer function r → y is

Gr→y (s) = C(sI − (A− BL))−1Blr

I.e. same as for state feedback!
Reason: After convergence of the Kalman filter, estimated state equals
true state. (Problems with load disturbances and modeling errors)

Rule of thumb: Observer poles twice as fast as state feedback poles
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Cancellation of Poles and Zeros

Process GP(s) = 1
1 + sT , PI-controller GR(s) = K

(
1 + 1

sTi

)

Many tuning rules for PI-control specify Ti = T , resulting in

open loop system G0(s) = K (1 + sT )
sT

1
(1 + sT ) = K

sT

closed loop system G(s) = K
K + sT

NOTE: pole/zero cancellation in G0(s)
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Cancellation of Poles and Zeros

open loop system G0(s) = K
sT closed loop system G(s) = K

K + sT
Resulting in the transfer functions

Y (s) = K
K + sT R(s) + K

(K + sT )(1 + sT )L(s)

NOTE: the pole/zero cancellation shows up in the load-disturbance
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Cancellation of Poles and Zeros

Transfer functions

Y (s) = K
K + sT R(s) + K

(K + sT )(1 + sT )L(s)
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NOTE: the pole/zero cancellation shows up in the load-disturbance.
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