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Next lecture: Almost the same but about observability
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Controllability and Observability

Example of Kalman decomposition
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How does the system behave? From outside the blue box we only see
the input u and output y but a lot can happen inside!! 2



Controllability and Observability

Example of Kalman decomposition
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Introduce states and write the system in state-space form.
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Controllability and Observability

How well can we control two subsystems at the same time?

• Q: Are there any differences for the two cases below and how does it
depend on gain b?
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Different Ways to Describe a Dynamical System

Differential equation
ÿ + a1ẏ + a2y = b1u̇ + b2u

State space
ẋ = Ax + Bu
y = Cx + Du Transfer function

Y (s) = G(s)U(s) = Q(s)
P(s) U(s)

G(s) = C(sI − A)−1B + D

Collection of Formulae

L
(

dnf (t)
dtn

)
(s) = snF (s)

x1 = y
x2 = ẏ
...
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Recap of states and statespace realization

Physical systems are modeled by differential equations.

Example: Damped spring-mass system (ẏ ↔ velocity, y ↔ position)

mÿ(t) = −cẏ(t)− ky(t) + F (t)

The state vector x is a collection of physical quantities required to
predict the evolution of the system

x =


x1

x2
...

xn


xi ’s could be positions, velocities, currents, voltages, queue lengths,
number of virtual machines, temperatures, concentrations, etc.
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Recap of states and statespace realization

The evolution of the state vector (for an LTI system), subject to an
external signal u, can be described by

ẋ = Ax + Bu

where A is a matrix and B a column vector.

The measured signal of the system is given by

y = Cx (+ Du)
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Statespace ↔ Transfer function conversion

A system with state-space representation

ẋ = Ax + Bu
y = Cx (+ Du)

has transfer function

G(s) = C(sI − A)−1B + D

A transfer function model can have (infinitely) many different state-space
realizations.

Standard forms are: controllable canonical form, observable
canonical form, diagonal form, see Collection of Formulae.
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Lecture 6: State feedback control

1. Controllable form
2. State feedback control
3. Example
4. Controllability
5. Integral Action
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Controllable canonical form

The system with transfer function

G(s) = D + b1sn−1 + b2sn−2 + · · ·+ bn
sn + a1sn−1 + · · ·+ an

has controllable canonical form

dz
dt =


−a1 −a2 . . . −an−1 −an

1 0 0 0
0 1 0 0
...
0 0 1 0

 z +


1
0
...
0

 u

y =
[
1 b2 . . . bn

]
z + Du
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Observable canonical form

The system with transfer function

G(s) = D + b1sn−1 + b2sn−2 + · · ·+ bn
sn + a1sn−1 + · · ·+ an

has observable canonical form

dz
dt =


−a1 1 0 . . . 0
−a2 0 1 0
...

−an−1 0 0 1
−an 0 0 0

 z +


b1

b2
...

bn

 u

y =
[
1 0 0 . . . 0

]
z + Du

9



PID and state feedback controller

PID-controller:

u = K
(

e + 1
Ti

∫ t
e(τ)dτ + Td

de
dt

)
, e = r − y

State feedback controller

u = lref r + l1(x1,ref − x1) + l2(x2,ref − x2)− · · ·+ ln(xn,ref − xn)
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PID and state feedback controller

PID-controller:

u = K
(

e + 1
Ti

∫ t
e(τ)dτ + Td

de
dt

)
, e = r − y

State feedback controller

u = lref r + l1(x1,ref − x1) + l2(x2,ref − x2)− · · ·+ ln(xn,ref − xn)
=
= lref r − l1x1 − l2x2 − · · · − lnxn

if x1,ref = x2,ref = ... = xn,ref = 0

We will also add integral part to the state feedback later on.
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Process

{
ẋ = Ax + Bu
y = Cx

Y (s) = C(sI − A)−1BU(s)

The characteristic polynomial is det(sI − A)
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Controller

Linear state feedback controller

u = lref r − l1x1 − l2x2 − · · · − lnxn

= lref r − Lx

L =
[
l1 l2 . . . ln

]
x =

x1
...

xn
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Closed-Loop System

ẋ = Ax + B(lref r − Lx)
= (A− BL)x + Blref r

y = Cx

Y (s) = C [sI − (A− BL)]−1Blref R(s)

We have new system matrix.
The characteristic polynomial is det[sI − (A− BL)].

Choose L to get desired poles.

Choose lref to get y = r in stationarity.
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Example 1 — DC-motor

Transfer function from voltage to angle:

Gp(s) = b
s(s + a) = 100

s(s + 10)

Q: What are x1 and x2?
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Example 1 — DC-motor

Transfer function from voltage to angle:

Gp(s) = b
s(s + a) = 100

s(s + 10)

Q: What are x1 and x2?

State x1 corresponds to angular speed

State x2 corresponds to motor angle
14



Example 1 — DC-motor

Transfer function from voltage to angle:

Gp(s) = b
s(s + a) = 100

s(s + 10)
P-control: u = K (r − y)

Go(s) = Kb
s(s + a)

Gt(s) = Go(s)
1 + Go(s) = bK

s2 + as + bK

Compare the chacteristic polynomial with a desired characteristic
polynomial "which we know how it behaves".

s2 + as + bK = s2 + 2ζω0s + ω2
0 ⇔

ω0 =
√

bK
ζ = 0.5a√

bK
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Example 1 (cont’d) — State space model

{
ẋ1 = −ax1 + bu
ẋ2 = x1

y = x2


ẋ =

[
−a 0
1 0

]
x +

[
b
0

]
u

y =
[
0 1

]
x
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Example 1 (cont’d) — Feedback from both x1 and x2

Control law:

u = lref r − l1x1 − l2x2

Closed-loop system:
ẋ =

[
−a − bl1 −bl2

1 0

]
x +

[
blref

0

]
r

y =
[
0 1

]
x
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DC-motor example

Figure 1: State feedback motor control.

The control law
u = lr r − l1x1 − l2x2 = lr r − Lx

yields the closed-loop system

ẋ =
[
−10− 100l1 −100l2

1 0

]
x +

[
100lr
0

]
r

y =
[
0 1

]
x 17



Example 1 (cont’d)

Characteristic polynomial:

det(sI − A) =

∣∣∣∣∣ s + a + bl1 bl2
−1 s

∣∣∣∣∣
= (s + a + bl1)s + bl2
= s2 + (a + bl1)s + bl2

The poles can be placed anywhere want by choosing l1, l2.

At stationarity:

0 =
[

ẋ1

ẋ2

]
=
[
−(a + bl1)x1 − bl2x2 + blref r

x1

]
⇒

{
x1 = 0
l2x2 = lref r

Choose lref = l2. This gives x2 = y = r in stationarity.
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Example 2

Can we choose characteristic polynomial (poles) freely how we want?

{
ẋ1 = −x1 + u
ẋ2 = −2x2

ẋ =
[
−1 0
0 −2

]
x +

[
1
0

]
u

det(sI − A + BL) =

∣∣∣∣∣ s + 1 + l1 l2
0 s + 2

∣∣∣∣∣
= (s + 1 + l1)(s + 2)

We can not affect x2!
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Controllability

The system

ẋ = Ax + Bu

is called controllable if for any a and b there exist a control signal u
which transfers from state x(0) = a to state x(t) = b.

NOTE! Controllability does NOT concern y , C or D!
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x(t) = eAtx(0) +
∫ t

0
eA(t−s)Bu(s)ds

Cayley-Hamilton:

0 = An + a1An−1 + · · ·+ an−1A + an

where det(sI − A) = sn + a1sn−1 + · · ·+ an−1s + an.

Thus, we have

eAt = I + At + 1
2A2t2 + · · ·

= α0(t)I + α1(t)A + · · ·+ αn−1(t)An−1
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It follows that

x(t) = eAta +
∫ t

0
eA(t−s)Bu(s)ds

= eAta +
n−1∑
k=0

βkAkB

where βk =
∫ t

0 αk(t − s)u(s)ds.

Solutions for all a and b = x(t) exist if and only if

B,AB,A2B, . . . ,An−1B

are linearly independent.
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Criteria for controllability

The system ẋ = Ax + Bu is controllable if and only if (iff)

rank
[
B AB . . . An−1B

]
︸ ︷︷ ︸

Ws

= n

The matrix Ws is called the controllability matrix.
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Example 2

ẋ = Ax + Bu =
[
−a 0
1 0

]
x +

[
b
0

]
u

rank Ws = rank
[

b −ab
0 b

]
= 2 Controllable!

ẋ = Ax + Bu =
[
−1 0
0 −2

]
x +

[
1
0

]
u

rank Ws = rank
[
1 −1
0 0

]
= 1 Not controllable!
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Example 3a — Pumping to lower tank

{
ẋ1 = −ax1

ẋ2 = ax1 − ax2 + bu

ẋ =
[
−a 0
a −a

]
x +

[
0
b

]
u

Ws =
[
0 0
b −ab

]
Not controllable!
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Example 3b — Pumping to upper tank

{
ẋ1 = −ax1 + bu
ẋ2 = ax1 − ax2

ẋ =
[
−a 0
a −a

]
x +

[
b
0

]
u

Ws =
[

b −ab
0 ab

]
Controllable!
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Example 3c — Pumping to parallel tanks

{
ẋ1 = −ax1 + bu
ẋ2 = −ax2 + bu

ẋ =
[
−a 0
0 −a

]
x +

[
b
b

]
u

Ws =
[

b −ab
b −ab

]
Not controllable!
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Controllable form

G(s) = b1sn−1 + · · ·+ bn−1s + bn
sn + a1sn−1 + · · ·+ an−1s + an

ẋ =


−a1 −a2 . . . −an−1 −an

1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
0 1 0

 x +


1
0
0
...
0

 u

y =
[
b1 b2 . . . bn−1 bn

]
x

Ws =


1 ∗ . . . ∗
0 1 ∗
...

. . .
...

0 0 . . . 1

 Controllable!

28



State feedback in canonical controllable form

A− BL =


−a1 − l1 −a2 − l2 . . . −an−1 − ln−1 −an − ln

1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
0 1 0


New characteristic polynomial

sn + (a1 + l1)sn−1 + (a2 + l2)sn−2 + · · ·+ an + ln

Benefit: Easy to see how to choose L =
[
l1 l2 . . . ln

]
to change from original characteristic polynomial to desired!
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State feedback in canonical controllable form

A− BL =


−a1 − l1 −a2 − l2 . . . −an−1 − ln−1 −an − ln

1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
0 1 0


New characteristic polynomial

sn + (a1 + l1)sn−1 + (a2 + l2)sn−2 + · · ·+ an + ln

Benefit: Easy to see how to choose L =
[
l1 l2 . . . ln

]
to change from original characteristic polynomial to desired!
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Integral action

A limitation with ordinary state feedback controllers is that they
lack integral action, which consequently may result in stationary
control errors.
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Introduce an extra state xi as the integral of the error.

xi =
∫

(r − y)dt ⇒ ẋi = r − y = r − Cx

Figure 2: Introduce extra state xi for state feedback with integral action.
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If we augment the state vector x with the integral state xi such that

xe =


x1
...
xn
xi


the augmented system can be written

ẋe =
[

ẋ
ẋi

]
=
[

A 0
−C 0

]
xe +

[
B
0

]
u +

[
0
1

]
r = Aexe + Beu + Br r

y =
[
C 0

]
xe = Cexe

We have hence augmented the state-space system with a state which
represents the integral of the control error and thus arrived at a
controller with integral action. In stationarity it holds that ẋe = 0 and
thereby that ẋi = r − y = 0.
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If we augment the state vector x with the integral state xi such that

xe =


x1
...
xn
xi


the augmented system can be written

ẋe =
[

ẋ
ẋi

]
=
[

A 0
−C 0

]
xe +

[
B
0

]
u +

[
0
1

]
r = Aexe + Beu + Br r

y =
[
C 0

]
xe = Cexe

We have hence augmented the state-space system with a state which
represents the integral of the control error and thus arrived at a
controller with integral action. In stationarity it holds that ẋe = 0 and
thereby that ẋi = r − y = 0.
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State feedback with Integral Action (cont’d)

The controller now becomes

u = lr r − Lx − lixi = lr r − Lexe

where
Le =

[
L li

]
This yields the following closed-loop state-space equations

ẋe = (Ae − BeLe)xe + (Be lr + Br )r

y = Cexe

The parameters in the vector Le are chosen1 so that we obtain a
desired closed-loop pole placement, just as previously. Here the poles are
given by the characteristic polynomial

det(sI − (Ae − BeLe))
1NOT same values for L with and without integral action!!
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Remark: We no longer need the parameter lr in order to achieve y = r in
stationarity.

The parameter does not affect the poles of the closed-loop system, only
its zeros. However, it can therefore be chosen so that the system obtains
desired transient properties at setpoint changes.

We shall come back to zero placement in a later lecture.
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Summary

1. Controllable form
2. State feedback control
3. Example
4. Controllability
5. Integral Action

Next lecture

• Observability
• State estimation
• Output feedback
• Pole-Zero cancellations (Warning!!)
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