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Preface

This compendium consists of lecture notes from the Basic Course in Automatic

Control at Lund University. The compendium is intended to complement a control

text book, exercise set, collection of formulae and laboratory exercise guidelines

which are used in the course.

The course consists of 15 lectures, where the last one is a pure repetition. Because

of this, the compendium contains notes from only the first 14 lectures.

Tore Hägglund
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Lecture 1

Introduction—The PID
Controller

In this lecture, we give a first introduction to automatic control and show how one

can describe problems from this field. Subsequently we introduce the reader to one

of the simpler and most commonly used controller—the PID controller.

1.1 What is Automatic Control?

Automatic control is the technology used to control processes in order to achieve

desired behaviors. In many principal disciplines of science, such as physics and me-

chanics, we learn to understand how nature works. We observe, and mathematically

describe, various phenomenons in our environment. In automatic control we use this

knowledge to control these phenomenons.

From mechanics we have for instance obtained equations, which describe the

velocity of a cart rolling down an inclined plane. In control theory the correspond-

ing equations can be used to device an automatic cruise controller for motorcars,

granting them constant speed, despite variations in the incline of the road.

Automatic control is used in a variety of ways. Here are some examples:

• The auto pilots of aircrafts and motorships are devices providing the vessels

with constant bearings, despite disturbances in form of winds and currents.

• To keep a constant temperature in buildings, despite variations in the outdoor

temperature and the number of persons in the building, is a classic control

problem.

• In the process industry, e.g. in pulp mills, hundreds—or even thousands—

of controllers maintain desired pressures, flows, temperatures, concentrations

and levels.

• Modern cars contain many control systems for e.g. cruise control, anti-lock

brake systems, power steering, emission reduction and air conditioning.

• Cameras contain control systems for e.g. auto focus and automatic exposure

control.

• Automatic control is not limited to technological contexts. The human body,

for instance, contains many control systems. One example is the temperature

control, which ensures that the body temperature is held constant at 37○ C,

despite variations in the surrounding temperature and the work load of the

body. Another example is the light control in the eye. The size of the pupil is

automatically adjusted so that the illumination of the retina is held as constant

as possible.

What is interesting, is that all these seemingly unrelated problems can be de-

scribed and solved with a unified theory, taught in this course.

7



Lecture 1. Introduction—The PID Controller

r u 
y Controller Process

Figure 1.1 The simple feedback loop.

1.2 The Simple Feedback Loop

All the above stated control problems can be summarized by the block diagram

shown in Figure 1.1. The control problems are solved by means of feedback.

The entity to be controlled is denoted y and referred to as the measurement

signal or output. The signal used to affect the process is denoted u and referred to

as the control signal or input. The signal constituting the reference value for the

output is denoted r and called the reference value, or the setpoint. The notions of

input and output are used in the literature, but are unfortunate, since they cause

confusion. Among controller manufacturers, it is e.g. common to call the control

signal output and the measurement signal input.

The purpose of the controller is to determine the control signal u such that the

measurement signal y tracks the reference r as well as possible. The control problem

would have been an easy one if the process was static, i.e. that there was a static

relation between y and u such that

y(t) = f (u(t))

Most processes are, however, dynamic, i.e.

y(t) = f (u[−∞,t])

It is crucial to understand the dynamics of the process, in order to solve an

automatic control problem. The next few lectures will treat process dynamics and

different ways of representing them. The remainder of this lecture is, however,

devoted to the controller and more specifically to describing the most commonly

used controller, namely the PID controller.

1.3 The PID Controller

We shall now deduce the structure of the PID controller and thereby show that it is

a natural extension of the very simplest controller, namely the on/off controller.

The On/Off Controller

The on/off controller is the simplest imaginable controller. Its control signal u is

given by

u =
{

umax e > 0

umin e < 0

where e is the control error, i.e. the difference between the setpoint r and the

measurement signal y.

e = r− y

The functionality of the on/off controller can also be described graphically, as

shown in Figure 1.2.

A drawback with this controller is that it gives rise to oscillations in the control

loop. In order for the controller to maintain a small difference between measurement

signal and setpoint, it must constantly switch the control signal between the two

levels umax and umin. If we for instance control the speed of a car by means of the gas
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1.3 The PID Controller

umax

umin

u

e

Figure 1.2 The control signal of the on/off controller.

pedal, while it can only take on the values “no gas” and “full gas”, we will need to

switch between these two values in order to keep the average speed at the setpoint.

This is one way of driving, but the control action is poor.

The P Part

For large control errors it may be feasible to either release or fully depress the

gas pedal. Consequently, the on/off controller performs well for large errors. The

oscillations appear for small control errors and can be reduced by e.g. decreasing

the controller gain for small control errors. This can be achieved by introducing a

proportional band or a P controller. The control signal of the P controller is given by

u =











umax e > e0

u0 + Ke − e0 ≤ e ≤ e0

umin e < −e0

where u0 is the control signal corresponding to a zero control error and K is the

gain of the controller. The P controller can also be described graphically, as shown

in Figure 1.3.

The output of the P controller corresponds to that of the on/off controller for large

control errors. For control errors of magnitude less than e0, the control signal is,

however, proportional to the control error.

For many controllers, the proportional band (PB) is given, rather than the gain.

The relation between these two entities is given by

PB = 100

K
[%]

The gain K = 1 hence corresponds to a proportional band PB = 100%.

The P controller removes the oscillations, which were present during on/off con-

trol. Unfortunately this comes at the price. We are no longer granted a zero sta-

tionary error, or in other words, that the setpoint and measurement signal coincide

umax

umin

u

e

0
e– e

0

u
0

Proportional band

Figure 1.3 The control signal of the P controller.
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Lecture 1. Introduction—The PID Controller

when all signals in the control loop have reached constant values. This is easily

realized by studying the control signal. For small control errors, the P controller

works within its proportional band. The control error is then given by

e = u− u0

K

In stationarity the control error becomes e = 0 if and only if at least one of the below

criteria are fulfilled

1. K is infinitely large

2. u0 = u

Alternative one, an infinite controller gain or a zero proportional band is equivalent

to on/off control. This alternative is therefore not a good solution, since it leaves

us with the initial oscillation problem. We are hence referred to alternative two,

in order to eliminate the stationary control error. Here we can only eliminate the

stationary control error if we can vary u0 so that it becomes equal to control signal

u for all values of setpoint r.

From the expression for the control error of the P controller we see that a higher

controller gain K leads to a smaller control error. We also see that we minimize the

maximal stationary control error by choosing u0 in the center of the working range

of the control signal. In most controllers, u0 is consequently preset to u0 = 50%. In

some controllers, it is possible to adjust the value of u0. From the above discussion

we see that u0 should be chosen as close to the stationary value of u as possible.

The I Part

Rather than letting u0 be a constant parameter, one can choose to adjust it automat-

ically in order to achieve u0 = u when all signals in the control loop have reached

constant values. This would eliminate the residual control error and is exactly what

the integral part (I part) of a PI controller does. The control signal of a PI controller

is given by

u = K

(

1

Ti

∫

e(t)dt + e

)

where Ti is the integral time of the controller. The constant level u0 of the P controller

has thus been replaced by the term

u0 =
K

Ti

∫

e(t)dt

which is proportional to the integral of the control error. This is why the term is

called the integral term or the integral part of the PID controller.

One can be convinced that the PI controller has the ability to eliminate residual

control errors by studying the above control law. Assume that we have a stationary

control error e ,= 0 despite the use of a PI controller. If the control error e is constant,

the proportional part in the PI controller will also hold a constant value Ke. The

integral part will, however, not be constant. It will increase or decrease, depending

on the sign of the control error. If the control signal is changed, the measurement

signal y of the process must sooner or later increase or decrease. Consequently, the

error e = r − y cannot be constant. Since this conflicts with the assumption of a

stationary error, we have showed that we cannot have a non-zero stationary error,

when the controller contains an integral part. The only occasion when all signals

internal to the controller can be stationary, is when e = 0.

We have now showed that the PI controller solves the problem of a residual

stationary error and that of oscillations resulting from on/off control. The PI con-

troller is therefore a controller without any substantial shortcomings. It is generally

sufficient when performance requirements are not extensive. Consequently, the PI

controller is the by far most commonly used controller in industrial applications.
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1.3 The PID Controller
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Figure 1.4 Two control cases where the output from a PI controller are equal at time t.

The D Part

One characteristic which limits the performance of the PI controller is that it only

takes past and present control errors into account; it does not try to predict the

future evolution of the control error. The problem is illustrated in Figure 1.4.

The two curves in Figure 1.4 show the evolution of the control error in the two

cases. The P part of the controller is proportional to the control error at the present

time instance t. This control error is equal for both figures. The integral part is

proportional to the surface delimited by the control error curve. This implies that a

PI controller yields the same control signal at time t for the two cases. An intelligent

controller should, however, see that there is a big difference between the cases. In

the left curve, the control error decreases rapidly and the control action should be

deliberate, in order not to cause an overshoot. In the right curve, a decrease in the

control error is followed by a sudden increase. Here, the controller should apply a

large control signal in order to curtail the control error. The derivative part of the

PID controller accomplishes exactly this type of compensation. It is proportional to

the change rate of the control error, i.e. proportional to the time derivative of the

error. See Figure 1.5.

The equation of the PID controller is given by

u = K

(

e+ 1

Ti

∫

e(t)dt + Td
de

dt

)

where Td is the derivative time of the controller.

The maximal benefit of the D part is obtained in cases where a lot can be

earned by predicting the control error. This is the case for many temperature control

applications. Due to the inertia of these systems it is necessary to abort heating in

time. Slow heat conduction can otherwise result in rising temperatures, long after

the seize of heating.

Everybody who has used a thick-bottomed pan for broiling has witnessed this

phenomenon. It can take quite a while from the time instance when one turns down

the temperature control knob, until the temperature in the pan actually begins to

e

t

D

I P

Figure 1.5 The integral part is proportional to the surface under the control error curve,

the proportional part is proportional to the current control error and the derivative part is

proportional to the change rate of the control error.
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Lecture 1. Introduction—The PID Controller

decrease. In the meanwhile the temperature can be subject to a significant overshoot

if one is not careful with the temperature control.

The PID controller can be summarized by means of Figure 1.5. The proportional

part provides the control signal with a contribution proportional to the current

control error. The integral part is the memory of the PID controller. It is proportional

to a weighted sum of all past control errors. Lastly, the derivative part tries to predict

future control errors using the derivative of the current control error.
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Lecture 2

Process Models

In the next few lectures we will discuss different ways to describe the dynamics

of the process. There are two predominant ways to obtain a dynamical model of a

process. One is to calculate the model through mass balances, energy balances, force

and moment equilibria etc. The other way is to conduct experiments on the process.

Most often, a combination of these two methods is used.

2.1 State Space Model

By writing down a suitable balance equation one can describe the process by means

of a differential equation.

dn y

dtn
+ a1

dn−1 y

dtn−1
+ . . .+ an y = b0

dnu

dtn
+ b1

dn−1u

dtn−1
+ . . .+ bnu (2.1)

The above equation is linear. Most often, however, balance equations lead to

non-linear differential equation. We treat this case in the next section.

The differential equation (2.1) can be written in state space form. If we introduce

n states x1, x2, · · · , xn, Equation (2.1) can be written as a system of first order

differential equations.

ẋ1 = f1(x1, x2, . . . , xn, u)
ẋ2 = f2(x1, x2, . . . , xn, u)

...

ẋn = fn(x1, x2, . . . , xn, u)

y = �(x1, x2, . . . , xn, u)

Note that fi and � are functions of the states and the control signal. They must not

depend on the measurement signal y.

Introduce the vectors

x =































x1

x2

...

xn































f =































f1

f2

...

fn































This allows us to write the equation system in the compact form

ẋ = f (x, u)
y = �(x, u)
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Lecture 2. Process Models

Example 2.1—From differential equation to state space form

Assume that we have obtained the following differential equation, describing a

process:

ÿ+ a1 ẏ+ a2 y = bu

Since this is a second-order differential equation, we have n = 2 and consequently

we need two state variables to write the equation in state space form. These can be

chosen in several ways. One possible choice would be

{

x1 = y

x2 = ẏ

It yields the following state space description

ẋ =








0 1

−a2 −a1







 x+








0

b







 u

y =


 1 0



 x

Generally, the state space description has the form

ẋ = Ax+ Bu

y = Cx+ Du

where A, B, C and D are matrices. It can only be written this way if f (x, u) and

�(x, u) are linear.

The functions f and � being linear means that the process has the same dynamic

properties independent of operation point. If the process is linear the super-position

principle holds. I.e. if the control signals u1 and u2 result in the measurement signals

y1 and y2, respectively, the super-position principle implies that the control signal

u1 + u2 results in the measurement signal y1 + y2.

Figure 2.1 shows an example of a process which is not linear. The process consists

of a tank from which fluid is pumped out. The purpose of the control is to govern the

valve which affects the inflow to the tank, such that the fluid level is held constant.

When the level is low, the cross section of the tank is small. This means that changes

in the inflow result in relatively fast and substantial changes in the fluid level. The

processes is therefore fast with a high gain for low fluid levels. When the level is

high, the process becomes slow with a lower gain.

What do we do if f and � are nonlinear? One could of course describe the process

using nonlinear differential equations, but these are significantly more complex to

Figure 2.1 A nonlinear process.
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2.2 Linearization

Figure 2.2 Linearization of a nonlinear process.

handle. Consequently, a common approach is to approximate the nonlinear equations

by linear ones. The method is illustrated in Figure 2.2. If we know that we want to

control the tank process around a certain level, we can assume that the tank has

vertical walls, according to the figure. Thus we obtain a linear process. When we lie

close to the desired level, the linear and nonlinear equations will hopefully exhibit

similar properties.

2.2 Linearization

We will now demonstrate how one linearizes a system

ẋ = f (x, u)
y = �(x, u)

where f and � are nonlinear functions of x and u. The linearization consists of the

following four steps:

1. Determine a stationary point (x0, u0) around which we shall approximate the

system. For a stationary point it holds that

ẋ0 = 0 \ f (x0, u0) = 0

2. Make Taylor series expansions of f and � around (x0, u0). Keep only the first

order terms.

f (x, u) ( f (x0, u0) +
�
�x

f (x0, u0)(x− x0) +
�
�u

f (x0, u0)(u− u0)

�(x, u) ( �(x0, u0) +
�
�x
�(x0, u0)(x− x0) +

�
�u
�(x0, u0)(u− u0)

Note that f (x0, u0) = 0 and introduce the notion y0 = �(x0, u0).
3. Introduce the new variables

∆x = x− x0

∆u = u− u0

∆y = y− y0

4. The state space equations in the new variables are given by

∆̇x = ẋ− ẋ0 = ẋ = f (x, u) ( �
�x

f (x0, u0)∆x+ �
�u

f (x0, u0)∆u = A∆x+ B∆u

∆y = y− y0 = �(x, u) − y0 (
�
�x
�(x0, u0)∆x+ �

�u
�(x0, u0)∆u = C∆x+ D∆u

15



Lecture 2. Process Models

h

q

q

out

in

Figure 2.3 The nonlinear tank in Example 2.3.

Note that x and f are vectors. If we for instance deal with a second order system

with the two states x1 and x2, a measurement signal y and a control signal u it

holds that

x =








x1

x2







, f =








f1

f2







,
� f

�x
=























� f1

�x1

� f1

�x2

� f2

�x1

� f2

�x2























,
� f

�u
=





















� f1

�u
� f2

�u





















,
��
�x

=






��
�x1

��
�x2







Example 2.2—Linearization of a nonlinear tank

Figure 2.3 shows the previously studied tank process, with some added quantity

labels. Assuming that the tank walls form an angle that makes the diameter of the

fluid surface equal to the height of the fluid, the fluid volume becomes

V = π h3

12

A mass balance for the tank shows that the change in volume equals the inflow

minus the outflow
dV

dt
= qin − qout

We are interested in changes of the fluid level. These are obtained through

dV

dt
= dV

dh

dh

dt
= π h2

4

dh

dt

i.e.
dh

dt
= 4

π h2
(qin − qout)

Introduce the familiar notions

x = y = h, u = qin

and assume that qout is constant. The resulting state space description is given by

ẋ = 4

π x2
(u− qout) = f (x, u)

y = x = �(x, u)

Now we linearize this system according to the method given above.

1. Stationary point.

f (x0, u0) = 0 \ u0 = qout

This criterion simply means that the inflow must equal the outflow in station-

arity. We obtain no restrictions on x0, i.e. we can linearize around any given

level.

16



2.3 The Transfer Function

2. Taylor series expansion.

f (x, u) ( − 8

π x3
0

(u0 − qout)(x− x0) +
4

π x2
0

(u− u0) =
4

π x2
0

(u− u0)

�(x, u) ( y0 + 1 · (x− x0) + 0 · (u− u0) = y0 + (x− x0)

3. New variables.

∆x = x− x0

∆u = u− u0

∆y = y− y0

4. State space equations in the new variables.

∆̇x = f (x, u) ( 4

π x2
0

∆u

∆y = �(x, u) − y0 = ∆x

We observe that the linearization in this case meant replacing the division by h2 in

the nominal case by a division by x2
0, where x0 is the level around which the system

was linearized.

2.3 The Transfer Function

The Laplace transformation of a time function f (t) is defined as

L(f (t))(s) = F(s) =
∫∞

0−
e−st f (t)dt

where s is a complex variable. If f (0) = 0 the Laplace transform holds the pleasant

property

L

(

df (t)
dt

)

(s) = sF(s)

I.e. the derivative of the time function corresponds to a multiplication of the cor-

responding Laplace transformation by s. By induction it holds for higher order

derivatives that

L

(

dn f (t)
dtn

)

(s) = sn F(s)

assuming that f (0) = f ′(0) = . . . = f n−1(0) = 0. From now on we will assume that

all these function values are equal to zero.

Example 2.3—Laplace transformation of a differential equation

Assume that the following differential equation describes a process.

ÿ+ a1 ẏ+ a2 y = b1u̇+ b2u

Laplace transformation yields

(s2 + a1s+ a2)Y (s) = (b1s+ b2)U(s)

This can also be written

Y (s) = b1s+ b2

s2 + a1s+ a2

U(s) = G(s)U(s)

17



Lecture 2. Process Models

The function G(s) is called the transfer function of the system. Often, as in the

above example, it consists of a polynomial fraction:

G(s) = Q(s)
P(s)

The zeros of the polynomial Q(s) are called the zeros of the system. The zeros of the

polynomial P(s) are called the poles of the system. Soon we will see that the values

of the poles are important for the behaviour of the system.

Example 2.4—The transfer function of the PID controller

In this example we will derive the transfer function of the PID controller. From

Lecture 1 we get the equation of the PID controller:

u = K

(

e+ 1

Ti

∫

e(t)dt + Td
de

dt

)

Laplace transformation gives

U(s) = K

(

E(s) + 1

sTi

E(s) + TdsE(s)
)

= K

(

1+ 1

sTi

+ Tds

)

E(s)

Here, we have used the fact that integration corresponds to division with s, in the

same way as derivation corresponds to multiplication with s.

So, the transfer function of the PID controller becomes

GR(s) = K

(

1+ 1

sTi

+ Tds

)

The Relation between the State Space Model and the Transfer Function

Often one wants to alternate between working with the state space description and

the transfer function. Therefore it is essential to be able to transit between these

descriptions. We end this lecture by demonstrating how this can be achieved.

Translation from State Space Form→ G(s) Start with the state space descrip-

tion

ẋ = Ax+ Bu

y = Cx+ Du

Laplace transformation yields

sX(s) = AX(s) + BU(s)
Y (s) = C X(s) + DU(s)

Solve for X(s) in the first equation and subsequently eliminate X(s) from the second

one

X(s) = (sI − A)−1BU(s)
Y (s) = C(sI − A)−1 BU(s) + DU(s)

where I is the identity matrix. The transfer function thus becomes

G(s) = C(sI − A)−1B+ D

The denominator polynomial of the transfer function is given by P(s) = det(sI− A),
which is the characteristic polynomial of the matrix A. Consequently, the poles of

the system are identical to the eigenvalues of the matrix A.

18



2.4 Block diagram representation

u y

GP

Figure 2.4 Block diagram for a process

Translation from G(s) → State Space Form There exists no unique solution to

this problem. A degree n transfer function requires at least n states, but they can be

chosen in many different ways. Further, it is possible to choose more than n states.

Sometimes the choice of states is naturally given by certain physical entities such

as position, speed and acceleration. In other cases we have no physical references

and are only interested in obtaining an arbitrary nth order state space description.

For these cases three forms are given in the collection of formulae: controllable form,

observable form and diagonal form.

2.4 Block diagram representation

In Figure 1.1, a block diagram describing the simple feedback loop was presented.

The block diagram is a convenient and efficient way to describe relations between

signals in control systems. If the notations Controller and Process in Figure 1.1 are

replaced by the transfer functions that describe the relations between the signals, it

is possible to calculate relations between different signals in the diagram.

In Figure 2.4, a very simple block diagram is presented. It describes a process

with input signal u, output signal y, and transfer function GP(s). The output signal

from the block is given by the transfer function in the block multiplied by the input

signal, i.e.

Y (s) = GP(s)U(s)
Most block diagrams consist of three components; blocks with transfer functions,

signals represented by arrows, and summations. In Figure 2.5, a block diagram

describing the simple feedback loop is presented, with process transfer function GP ,

controller transfer function GR and the signals setpoint r, control signal u, process

output y and control error e. The block diagram gives the following relations between

the signals.

Y = GpU

U = GR E

E = R − Y

(2.2)

If one, e.g., wants to determine the transfer function between setpoint r and

process output y, the other signals can be eliminated in the following way.

Y = GpU

U = GR E

E = R − Y

−→ Y = GpU

U = GR(R − Y )
−→ Y = GpGR(R − Y )

Finally, the transfer function between r and y is

Y = GpGR(R − Y )
(1+ GpGR)Y = GpGR R

Y = GpGR

1+ GpGR

R

(2.3)

After getting used to block diagram calculation, it is normally not necessary

to write down the intermediate results like those in (2.2), but one write down the

equations containing only the signals of interest directly, like the upper equation in
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u yr e
∑

GR GP

−1

Figure 2.5 Block diagram for the simple feedback loop

(2.3). This is done by starting with the output signal and going through the diagram,

against the arrows.

For more complicated systems, it is, however, often necessary to introduce inter-

mediate variables and divide the calculations into subcalculations. It is then often

useful to introduce intermediate variables after the summations, like e in Figure 2.5.
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Lecture 3

Impulse- and Step
Response Analysis

We begin this lecture by describing two additional process models, i.e. the impulse

and step response. This is followed by an examination of the relation between the

transfer function and the properties of the step response.

The state space description of a system can be written in the form

ẋ = Ax+ Bu

y = Cx+ Du

The solution to this system of differential equations is given by

y(t) = CeAt x(0) + C

∫ t

0

eA(t−τ)Bu(τ)dτ + Du(t) (3.1)

The output y can thus be described using three terms. The first term takes into

account the initial state. This is commonly uninteresting from a control perspective

except when the controller is initiated. The third term is called the direct term. It

is often negligible in practical systems. The remaining second term consists of a

weighted integral of the control signal. We shall utilize the solution (3.1) in order to

study the impulse and step response. In the next lecture we will use the solution to

analyze the frequency response.

3.1 The Impulse Response

Figure 3.1 shows an impulse response, i.e. the output y from a process when the

input u is given by a short pulse.

Assume that the control signal is described as an ideal pulse, i.e. a Dirac function

u(t) = δ (t)

If this control signal is introduced in Equation (3.1) and we assume that the initial

state is given by x(0) = 0 we obtain

y(t) = C

∫ t

0

eA(t−τ)Bδ (τ)dτ + Dδ (t) = CeAt B+ Dδ (t) " h(t) (3.2)

The impulse response is also called the weighting function and is denoted h(t).
The reason is the following: By comparing the expression for the weighting function

(3.2) to the general equation of the output, we see that Equation (3.1) can be rewritten

as

y(t) =
∫ t

0

h(t− τ)u(τ)dτ (3.3)
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Figure 3.1 Impulse response experiment.

In other words, the weighting function tells which weights shall be assigned to old

inputs when calculating the output.

The Laplace transformation of an impulse is obtained from the definition of the

Laplace transform

U(s) =
∫∞

0−
e−stδ (t)dt = 1

This means that the Laplace transformations of the impulse response is given by

the transfer function

G(s) = Y (s)
U(s) = Y (s)

Impulse response analysis is not very common in technological applications. How-

ever, it is common in medicine and biology. One can for instance inject a substance

into the blood circulation and study the resulting uptake and secretion.

3.2 The Step Response

Figure 3.2 shows a step response, i.e. an output y from a process when the input

u is given by a step. This is the by far most common experiment used to obtain a

process model in technological applications.

Assume that the control signal is given by a step

u(t) =
{

1 t ≥ 0

0 t < 0

If we introduce this control signal in Equation (3.3) we obtain

y(t) =
∫ t

0

h(t− τ ′)dτ ′ = [τ = t− τ ′] =
∫ t

0

h(τ)dτ (3.4)

The step response is thus the integral of the impulse response. The Laplace trans-

formation of a step is given by

U(s) =
∫∞

0−
e−stdt = −1

s

[

e−st
]∞
0
= 1

s
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Figure 3.2 Step response experiment.

3.3 The Relation between Poles and the Step Response

In this section we will study the relationship between the transfer function and the

step response. When the input u(t) is a step, the Laplace transformation of the

output y(t) becomes

Y (s) = G(s)U(s) = G(s)1
s

One can obviously calculate the inverse transform of this expression in order to

obtain the step response. In many situations it is, however, useful to be able to see

the characteristics of the step response directly from the transfer function, without

the need of an inverse transformation.

Two theorems which are useful when determining the initial and final properties

of the step response are the

Initial Value Theorem: lim
t→0

f (t) = lim
s→∞

sF(s)

Final Value Theorem: lim
t→∞

f (t) = lim
s→0

sF(s)

It is essential to denote that these theorems must be used with precaution. Before

utilizing them one must ensure that the limits really exist. This will be further

explained in Lecture 7.

The final value theorem can be used in the following way to calculate the final

value of the measurement signal y when the input u is given by a unit step.

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

sG(s)1
s
= G(0)

If the limit exists, the stationary value of the output is determined by the static gain

G(0) of the transfer function.

The characteristics of the step response are largely determined by the values of

the poles of the transfer function. In this lecture we will see how the poles affect the

properties of the step response for some simple processes. The influence of zeros are

treated later in the course, in Lecture 12.
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Figure 3.3 The placement of the poles and the step responses for the process G(s) = K/(1+sT)
as K = 1 and T = 1, 2, 5.

Example 3.1—First-order system

Assume that the transfer function of the process is given by

G(s) = K

1+ sT

This process has a pole in s = −1/T. If the input of the process is a unit step, the

Laplace transformation of the process output becomes

Y (s) = G(s)1
s
= K

s(1+ sT)
The output of the process is obtained by inverse transformation

y(t) = K
(

1− e−t/T
)

If T < 0, i.e. if the pole lies in the right-half plane, the process is unstable and y(t)
grows out of bounds. From now on we assume that T > 0, i.e. that the pole lies in

the left-half plane.

Figure 3.3 shows the step responses corresponding to three different values of T.

The figure shows that a smaller T yields a faster step response. It also shows the

pole of the process. The further into the left-half plane the pole lies, the faster the

step response becomes.

In this case, the final value theorem gives

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

sK

s(1+ sT) = K

It says that the process output approaches y = K as t →∞.

Parameter T is called the time constant of the process. At time t = T the process

output is given by

y(T) = K
(

1− e−T/T
)

= K
(

1− e−1
)

( 0.63K

Time constant T is thus the time it takes for the step response to reach up to 63%

of its final value. This is illustrated by Figure 3.3.

Applying the initial value theorem on y(t) tells us that y(0) = 0. It is, however,

more interesting to study at which rate the process output changes in the initial

phase, i.e. to study ẏ(0).

lim
t→0

ẏ(t) = lim
s→∞

s · sY (s) = lim
s→∞

s2 K

s(1+ sT) =
K

T

The shorter the time constant, i.e. the further into the left half plane the pole lies,

the faster the initial change of the process output becomes. This is also illustrated

by Figure 3.3.
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Figure 3.4 The pole placement and step response of the process G(s) = K/(1+ sT)2 as K = 1

and T = 1, 2.

Example 3.2—Second-order system, real poles

Assume that the transfer function of a process is given by

G(s) = K

(1+ sT1)(1+ sT2)

This process has two real poles in s = −1/T1 and s = −1/T2, respectively. If the

input to the process is a unit step, the Laplace transformation of the process output

is given by

Y (s) = G(s)1
s
= K

s(1+ sT1)(1+ sT2)
By inverse transformation of this expression, we obtain the output of the process

y(t) =



















K

(

1− T1e−t/T1 − T2e−t/T2

T1 − T2

)

T1 ,= T2

K

(

1− e−t/T − t

T
e−t/T

)

T1 = T2 = T

From the first expression we see that when one of the time constants is signifi-

cantly smaller than the other, the step response will approach that of a first-order

process, as in Example 3.1. If, e.g., T1 ≫ T2, the response will be like in Example 3.1

with T ( T1. If any pole lies in the right-half plane, the process is unstable and y(t)
grows out of bounds. We therefore assume that both poles lie in the left-half plane,

i.e. that T1 > 0 and T2 > 0.

Figure 3.4 shows the step response of the process as T1 = T2 = T. Just as in

the previous example, we observe that the step response becomes faster as the poles

move further into the left-half plane. The final value theorem gives

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

sK

s(1+ sT1)(1+ sT2)
= K

It tells us that the output approaches y = K as t →∞.

The initial value theorem applied to ẏ(t) yields

lim
t→0

ẏ(t) = lim
s→∞

s · sY (s) = lim
s→∞

s2 K

s(1+ sT1)(1+ sT2)
= 0

Hence the time derivative is zero, which is also evident from Figure 3.4.

It is easy to verify that the time derivative is zero for all systems where the

number of poles minus the number of zeros is greater than one.

25



Lecture 3. Impulse- and Step Response Analysis
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Re

ω0

φ

Figure 3.5 Interpretation of the parameters in the polynomial s2+ 2ζω0s+ω2
0. The frequency

ω0 denotes the distance between the poles and the origin, whereas ζ = cosφ is the relative

damping of the system.

Example 3.3—Second-order system, complex poles

For a second order system with complex poles it is often convenient to write the

transfer function in the form

G(s) = Kω2
0

s2 + 2ζω0s+ω2
0

0 < ζ < 1

Interpretations of the parameters ω0 and ζ are given in Figure 3.5.

The parameter ω0 denotes the distance between the poles and the origin. The

parameter ζ is called the relative damping and is related to the angle φ in Figure 3.5

through

ζ = cosφ

The relative damping ζ gives the relation between the real and imaginary parts of

the poles.

If the process input is a step, the Laplace transformation of the process output

becomes

Y (s) = G(s)1
s
= Kω2

0

s(s2 + 2ζω0s+ω2
0)

By inverse transformation of this expression the following process output is obtained.

y(t) = K

(

1− 1
√

1− ζ 2
e−ζω0 t sin

(

ω0

√

1− ζ 2t+ arccosζ
)

)

0 < ζ < 1

The expression contains a term consisting of a sinusoid with decaying amplitude.

Figure 3.6 shows the step response of the process for some different values of

ζ and ω0. The parameter ω0 determines the distance between the poles and the

origin. Just as in the previous examples, the step response becomes faster as the

poles are moved further into the left-half plane. We also see that the shape of the

step response does not change as long as ζ is held constant.

The parameter ζ determines the ratio between the real and imaginary part of

the poles. Figure 3.6 shows that the smaller ζ is, the less damped the step response

becomes. We also see that the initial part of the step response is fairly consistent as

long as ω0 is held constant.
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Figure 3.6 The placement of the poles and the step response of the process G(s) = K/(s2 +
2ζω0s+ω2

0) for K = 1. The two upper plots show the cases ζ = 0.7 and ω0 = 0.5, 1, 1.5. The two

lower plots show the cases ω0 = 1 and ζ = 0.3, 0.7, 0.9.

In this example the final value theorem gives

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

sKω2
0

s(s2 + 2ζω0s+ω2
0)
= K

The theorem thus yields that the process output approaches y = K as t →∞. This

is also evident from Figure 3.6.

The initial value theorem applied to ẏ(t) yields

lim
t→0

ẏ(t) = lim
s→∞

s · sY (s) = lim
s→∞

s2 Kω2
0

s(s2 + 2ζω0s+ω2
0)
= 0

Analogous to the case of real poles in the previous example, the time derivative

is zero in this second-order case.
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Lecture 4

Frequency Analysis

In this lecture two additional ways of describing process dynamics are described.

They are based on the frequency response and are normally illustrated graphically.

After a thorough introduction of the Bode plot and the Nyquist curve, the lecture as

well as the modelling part of the course are concluded by some examples showing

the relation between the different process models descriptions, which have been

introduced.

4.1 The Frequency Response

Figure 4.1 shows a frequency response, i.e. the output y from a process with a

sinusoidal input u.

From the figure we see that the output becomes a sinusoid with the same

frequency as the input, after the extinction of an initial transient. The only thing

distinguishing the two signals after the initial transient is that they have different

amplitude and that they are phase shifted. We shall now show that this is always

the case.

Assume that the control signal is given by a sinusoid of frequency ω, i.e.

u(t) = sinωt

Let G(s) be the transfer function and h(t) the impulse response of the studied

process.
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Figure 4.1 Frequency response experiment.
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4.2 The Nyquist Curve

Since the Laplace transformation of an impulse is simply 1, it holds that

G(s) = L(h(t))(s) =
∫∞

0−
e−st h(t)dt

We exploit this in order to find which output we obtain when the input is given by

a sinusoid. When the transient has died out, i.e. when t →∞, Equation (3.3) yields

y(t) =
∫ t

0

h(t− τ ′)u(τ ′)dτ ′ = [τ = t−τ ′] =
∫ t

0

h(τ)u(t− τ)dτ

=
∫ t

0

h(τ) sinω(t− τ)dτ = Im

∫ t

0

h(τ)eiω(t−τ)dτ

= Im

∫ t

0

h(τ)e−iωτ dτ eiωt = [t →∞] = Im G(iω)eiωt

= pG(iω)pIm ei arg G(iω)eiωt = pG(iω)p sin(ωt+ arg G(iω))

This means that when the control signal is given by u(t) = sin(ωt), the measurement

signal becomes y(t) = asin(ωt+φ), where

a = pG(iω)p (4.1)

φ = arg G(iω) (4.2)

If we carry out a frequency analysis, i.e. let the control signal be a sinusoid with

varying frequency, and measure the amplitude and phase shift of the measurement

signal, we can thus determine the value of the transfer function for these frequencies.

We obtain a table containing frequencies and their corresponding amplitudes and

phase shifts. A table is, however, an inconvenient representation of the process

dynamics. Therefore the table is usually represented graphically. This is done mainly

in either of two ways; the Nyquist curve and the Bode plot.

4.2 The Nyquist Curve

The Nyquist curve is constituted of the complex number G(iω) drawn in the complex

plane for ω in [0,∞]. Figure 4.2 shows a typical Nyquist curve.

Most processes have low-pass characteristics. This means that the measurement

signal of the process is affected by low frequency inputs, whereas high frequency

signals are damped out. Since the distance between the origin and points on the

Nyquist curve describes the gain of process, it is normal that the Nyquist curve

approaches the origin for high frequencies, as shown in Figure 4.2. The phase

shift between in- and output does usually increase with the frequency. This is the

explanation to the spiral shape of the curve in Figure 4.2.

The following example shows how one can compute the shape of the Nyquist

curve, given the transfer function.

Example 4.1—Nyquist curve drawing

Assume that the process is described by the transfer function

G(s) = 1

s+ 1

We compute G(iω) and separate into its real- and imaginary parts

G(iω) = 1

1+ iω
= 1− iω

1+ω2
= 1

1+ω2
− i

ω

1+ω2

We see that the real part is positive, whereas the imaginary part is negative for

all ω. In other words, the Nyquist curve will be contained in the fourth quadrant.

Further, we see that G(iω) ( 1 for small ω and G(iω) → 0 as ω →∞. The Nyquist

curve is shown in Figure 4.3
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Figure 4.3 The Nyquist curve in Example 4.1.

4.3 The Bode Plot

The Bode plot features two curves, pG(iω)p and arg G(iω) as functions of ω. Figure

4.4 shows the Bode plot of a typical process. The magnitude plot is drawn in a

logarithmic scale, whereas the argument is drawn in a linear scale. The frequency

axis is logarithmic.

The Bode plot of a process often looks as the one show in Figure 4.4. The low

frequency gain is often constant and corresponds to the static gain of the process.

As the frequency increases, the gain decreases and phase shift increases. In other

words, the process has low pass characteristics as we have seen previously. There is,

however, an exception as we will soon see.

The Bode plot has some properties which makes it easier to draw than the
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Figure 4.4 Bode plot.

Nyquist plot. Assume that we can factor the transfer function, e.g. as

G(s) = G1(s)G2(s)G3(s)

The logarithms of the magnitude and argument, respectively, are given by

log pG(iω)p = log pG1(iω)p + log pG2(iω)p + log pG3(iω)p
arg G(iω) = arg G1(iω) + arg G2(iω) + arg G3(iω)

This means that the Bode plot of a transfer function is given by the sum of the

Bode plots of its factors. This, in terms, enables us to draw all Bode plots which

correspond to products of less complex transfer functions, for which we have already

drawn the Bode plots. We shall study five sample transfer functions, into which all

transfer functions in this course can be factored. These sample transfer functions

are

1. K

2. sn

3. (1+ sT)n

4.
(

1+ 2ζ s/ω0 + (s/ω0)2
)n

5. e−sL

where K, T, ζ , ω0 and L are real numbers and n is an integer.

1. Bode Plot of G(s) = K

The magnitude and argument of the transfer function G(s) = K are given by

log pG(iω)p = log K

arg G(iω) = 0

Both the gain and argument are independent of ω. The Bode plot is thus made up

by two horizontal lines. This is shown in Figure 4.5 where Bode plots corresponding

to three values of K are shown.
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Figure 4.5 Bode plot of G(s) = K , where K = 0.5, 1 and 4.

2. Bode Plot of G(s) = sn

The magnitude and argument of the transfer function G(s) = sn are given by

log pG(iω)p = log piωpn = n log ω

arg G(iω) = n arg(iω) = n
π

2

The magnitude plot is a straight line with slope n, due to the logarithmic scales. The

argument is independent of ω and thus forms a horizontal line. Figure 4.6 shows

three Bode plots corresponding to some different values of n.
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Figure 4.6 Bode plots of G(s) = sn, where n = 1,−1 and −2.
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Figure 4.7 Bode plot of G(s) = (1+ sT)n, where T = 1 and n = 1,−1 och −2.

3. Bode Plot of G(s) = (1+ sT)n
The magnitude and argument of the transfer function G(s) = (1+ sT)n are given by

log pG(iω)p = log p1+ iωTpn = n log
√

1+ω2T2

arg G(iω) = n arg(1+ iωT) = n arctan(ωT)

For small values of ω the functions are given by

log pG(iω)p → 0

arg G(iω) → 0

For large values of ω the functions are given by

log pG(iω)p → n log ωT

arg G(iω) → n
π

2

These two asymptotes, the low-frequency and high-frequency asymptotes, are shown

in Figure 4.7 together with the Bode plots corresponding to some different values of

n. The intersection between the low- and high frequency asymptotes is given by

logωT = 0

This frequency is called the corner frequency and is given by ω = 1/T.

4. Bode Plot of G(s) =
(

1+ 2ζ s/ω0 + (s/ω0)2
)n

The low-frequency asymptote of this transfer function is given by G(iω) ( 1, i.e.

log pG(iω)p → 0

arg G(iω) → 0
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Figure 4.8 Bode plot of G(s) = ω2
0/(s2 + 2ζω0s+ω2

0), where ω0 = 1 and ζ = 0.05, 0.1, 0.2.

For large ω the high-frequency asymptote is given by G(iω) ( (iω/ω0)2n = (−1)n(ω/ω0)2n,

i.e.

log pG(iω)p → 2n log
ω

ω0

arg G(iω) → nπ

Figure 4.8 shows the Bode plots for some different values of the parameter ζ .

When ζ < 1/
√

2 there will be a resonance peak close to frequency ω0. The magnitude

of the peak increases when ζ decreases.

5. Bode Plot of G(s) = e−sL

This transfer function describes a pure time delay. This means that the output is

identical to the input, except that it has been delayed by a time L, y(t) = u(t − L).
If one sends a sinusoid through such a process, it outputs a sinusoid with the same

amplitude, but with a phase shift which is larger for higher frequencies. For the

transfer function G(s) = e−sL the magnitude and argument become

log pG(iω)p = log pe−iω Lp = 0

arg G(iω) = arg e−iω L = −ω L

Figure 4.9 shows the Bode plot for some different choices of the delay L.

Drawing the Bode Plot of a composite Transfer Function

Finally we shall illustrate how to draw a Bode plot of a higher order transfer function

by factoring it into the sample transfer functions treated above.

Example 4.2—Bode plot drawing

We want to draw the Bode plot of the transfer function

G(s) = 100(s+ 2)
s(s+ 20)2

The Bode plot is shown together with asymptotes in Figure 4.10. If one intends to
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Figure 4.9 Bode plot of G(s) = e−Ls for L = 5, 0.7 and 0.1

draw the Bode plot by hand, the first step is to factor the transfer function into a

product of the sample transfer functions which we have previously studied.

G(s) = 100(s+ 2)
s(s+ 20)2 = 0.5 · s−1

· (1+ 0.5s) · (1+ 0.05s)−2

For low frequencies, the two transfer functions to the right are almost one. The

ramaining parts form the low frequency asymptote

G(s) → 0.5

s
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Figure 4.10 Bode plot of G(s) = 100(s+2)
s(s+20)2
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We begin by drawing the magnitude curve. The low frequency asymptote is a straight

line with slope −1. The vertical placement of the line is determined by evaluating

the transfer function for a value of s = iω. For e.g. ω = 1 we obtain pG(iω)p = 0.5.

The transfer function has two corner frequencies. At ω = 2 the curve breaks up

once and we obtain an asymptote with slope 0. At ω = 20 the curve breaks down

twice and we obtain an asymptote with slope −2. The high frequency asymptote is

given by

G(s) → 100

s2

Figure 4.10 shows both the asymptotes and the detailed curve. The phase curve

starts at −90○ since the low frequency asymptote is an integrator, G(s) = 0.5/s.

Would the process only have consisted of this integrator, the phase would have

remained constantly −90○ for all frequencies. Now there is, however, first a corner

point at ω = 2, which increases the phase. If there would have been no additional

dynamics, the phase would have increased to 0○ for high frequencies. At ω = 20

we do have another corner point caused by a pole pair. Consequently, the phase

decreases and approaches −180○ for high frequencies.

4.4 The Relation between Model Descriptions

We have now introduced several ways of representing process dynamics: state space

model, Bode plot, Nyquist curve, step and impulse response and the transfer function.

We shall end the modelling part of the course by showing the relation between these

representations for some different types of processes.

Single-Capacitive Processes Figure 4.11 shows the singularity plot (poles and

zeros), the step response, the Nyquist curve and the Bode plot of a single capacitive—

or first order—process. This is a process type with simple dynamics which is easy to

control. If we imagine a mercury thermometer with a very thin glass wall, which is

immersed into boiling water, we get a response in the mercury column which bears

a form corresponding to a single-capacitive process.
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Figure 4.11 Different model descriptions of a single-capacitive process, G(s) = 1/(s+ 1).
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Figure 4.12 Different model descriptions of the multi-capacitive process G(s) = 1/(s+ 1)2

Multi-capacitive Processes Figure 4.12 shows model descriptions of a multi-

capacitive process, in this case a second-order process.

This is a very common process type. Let us conduct the same experiment as

with the single-capacitive process, but with the difference that we now immerse the

thermometer into cold water. The cold water container is then placed on a heater.

The water temperature will rise in a manner characteristic for a multi-capacitive

”capacitances” which are heated. The difference between single and multi-capacitive

processes increases with the addition of capacitances. This would have been the case

if e.g. the mercury thermometer had a thick glass wall or if the heating plate would

have been cold when the experiment begun.

Integrating Processes Figure 4.13 shows model descriptions of an integrating

process. If the process is integrating, the step response will not converge towards a

stationary level, but rather grow linearly. Examples of such processes are level con-

trol in tanks, pressure control in sealed vessels, concentration control in containers

without inflow and temperature control in well isolated ovens. If one opens the inlet

valve, the level will increase linearly given that the outflow remains unaffected. In

common for all these processes is that they involve some sort of accumulation. In the

level and pressure control cases it is an accumulation of mass, in the temperature

control case it is an accumulation of energy.

Oscillative Processes Figure 4.14 shows model descriptions of oscillative pro-

cesses. These processes have two complex poles. They are further characterized by a

step response which oscillates around its final stationary value. Oscillative processes

occur mainly in mechanical contexts, when elastic materials are used, e.g. in servo

axles, spring constructions etc.
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Figure 4.13 Different model descriptions of an integrating process, G(s) = 1/s.
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Figure 4.14 Different model descriptions of the oscillative process G(s) = 1/(s2 + 0.4s+ 1).

Delay Processes Figure 4.15 shows model descriptions of a process with a time

delay. In this case it is a process with a 1 s delay and a time constant of 0.1 s.

Figure 4.15 contains no singularity plot, since the delay cannot be represented in

such a plot. This process can not be described in state-space form either.

Delays arise e.g. when materials are transported in pipes or on conveyors. If we

for instance measure the pH value in a fluid being transported through a pipe, where

the addition of a the substance of which we want to measure the concentration is

made upstream with respect to the sensor, we are subject to a delay. It corresponds

to the time it takes the fluid to flow from the point of addition to the sensor. Another

well known example is the temperature control in a shower. Since a change in
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Figure 4.15 Different model descriptions of a process with a delay, G(s) = e−s/(0.1s+ 1).
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Figure 4.16 Different model descriptions of a process with inverse step response, G(s) =
(1− s)/((s+ 0.8)(s+ 1.2)).

the mix between cold and warm water is not noticeable until the water has been

transported through the shower hose, we are subject to a delay corresponding to the

time this transportation takes.

Processes with Inverse Responses Figure 4.16 shows model descriptions of a

process with an inverse response, i.e. a process where the step response initially

goes in the ”wrong” direction. Typical for these processes is that they have zeros in

the right-half plane. This will be further investigated later in the course. Processes

of this type are relatively difficult to control.

In the process industry a well known example of a process with inverse response
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arises when controlling the dome level in steam boilers. If one, for instance, would

like to increase the dome level by increasing the flow of water into the dome, the

first reaction will be that the water in the dome is cooled. This results in less steam

bubbles in the water and consequently the dome level decreases. First after a while,

when the water has been heated anew, will the level increase.

Another example of a process with an inverted response is a reversing car. If we

intend to pocket-park a car, its center of gravity is first moved in the wrong direction

before we can steer it into the pocket.
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Feedback and Stability

We will now leave the process modelling and enter the analysis part of the course.

First the properties of feedback are introduced through an example. The example

we have chosen is the control of a steam engine. A fundamental requirement is that

the control must succeed in keeping the controlled process stable. We define stability

and subsequently some methods to determine whether a control loop is stable.

5.1 Feedback—The Steam Engine

The steam engine is one of the earliest example of a control application. The control

objective is to maintain a constant angular speed, despite load variations. If one, for

instance, lets the steam engine drive a saw, one wants to avoid a change in rotational

speed as logs are fed in.

In order to control the steam engine, one must first of all measure its angular

speed. This was achieved by a mechanism shown in Figure 5.1.

When the angular speed is increased, the two spheres are forced outwards by the

centrifugal force. The vertical position of the shaft thus constitutes a measurement

of the angular speed. The shaft was connected to a valve which controlled the steam

outflow. Due to its working principle the device is known as a centrifugal governor.

The Uncontrolled Steam Engine

We start by investigating the uncontrolled process, i.e. the steam engine itself.

Figure 5.2 shows a block diagram of the process. We call this the open-loop system.

The output is the angular speed ω, which we want to keep constant. The angular

speed is affected by two momenta. The driving momentum Md is determined by us

by varying the steam outflow from the engine. We also have a load momentum Ml,

which varies with applied load.

Figure 5.1 Measurement of the angular speed was achieved using the centrifugal governor.
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∑

Steam engine

−Ml

Md ω

Figure 5.2 Block diagram of the uncontrolled steam engine.

A simple mathematical model of the steam engine is obtained from the momen-

tum equation

Jω̇ + Dω = Md − Ml (5.1)

where J is the momentum of inertia and D is a damping coefficient.

The stationary angular speed ω s, i.e. the constant angular speed corresponding

to constant momenta, is obtained by letting ω̇ = 0.

ω s =
Md − Ml

D

We see that we can control the angular speed by choosing a suitable driving mo-

mentum Md, but that it will vary if the load Ml or the damping D are varied. The

uncontrolled steam engine is thus sensitive to both loads and process variations.

The dynamical evolution of the system can be analysed by solving the differential

Equation (5.1). If we assume that the steam engine is initially at rest, i.e. ω = 0,

and that it is started at time t = 0, the angular speed is given by

ω(t) = Md − Ml

D

(

1− e−Dt/J
)

= ω s

(

1− e−Dt/J
)

The step response is shown in Figure 5.3 and the system settles with a time

constant T = J/D. The rise time is an alternative measure of the speed of the

step response. There are several parallel definitions of the rise time. Sometimes

it is defined as the inverse of the maximal time derivative of the measurement
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Figure 5.3 The step response of the uncontrolled steam engine. The process parameters are

given by J = D = 1. The time T is the time constant of the process.
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5.1 Feedback—The Steam Engine

signal. Other definitions include the time it takes for the measurement signal to go

between 5% and 95%, or between 10% and 90%, of its final value. The rise time is

alternatively referred to as the solution time of the system.

P Control of the Steam Engine

Let us now control the steam engine according to Figure 5.4. This is referred to

as the closed loop system. We start by studying a P controller and let the driving

momentum be given by

Md = K(ω r −ω)

where ω r is the setpoint value for the angular speed and K is the gain of the

controller.

If this controller is applied to the process in Equation (5.1) we obtain the equation

of the closed loop system

Jω̇ + Dω = K(ω r −ω) − Ml

i.e.

Jω̇ + (D + K)ω = Kω r − Ml (5.2)

In stationarity, i.e. when ω̇ = 0, it holds that

ω s =
K

D + K
ω r −

1

D + K
Ml

By choosing the controller gain K high, the angular speed ω can be held close to

its setpoint value ω r. We also see that the feedback makes the angular speed less

sensitive to variations in both load Ml and the process parameter D.

In order to study the dynamical evolution of the system, we can solve Equation

(5.2). If the system is initially at rest, i.e. ω = 0, the solution becomes

ω(t) = Kω r − Ml

D + K

(

1− e−(D+K)t/J
)

= ω s

(

1− e−(D+K)t/J
)

The time constant is given by T = J/(D + K). A high gain K hence results in a

faster settling than in the uncontrolled case. Figure 5.5 shows the settling process for

some different K, while the process is subject to load disturbances. (In Figures 5.5

and 5.6 the angular speed takes on negative values. This does not mean that the

steam engine is reversing, but is explained by the fact that we study deviations

from its equilibrium, which we have conveniently defined to be ω = 0.) We can thus

establish that the feedback has yielded a faster system which is less sensitive to

process variations and load disturbances.

∑ ∑

Steam engine

−Ml

Md ωω r

Controller

−1

Figure 5.4 Block diagram of the controlled steam engine.
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Figure 5.5 P control of the steam engine with gains K = 0, 1 and 4. The case K = 0 corresponds

to the uncontrolled open loop system. The process parameters are given by J = D = 1.

PI Control of the Steam Engine

Although the P control improved the properties of the steam engine, the problem

with a difference between the angular speed and its setpoint ω r in stationarity

remains. Motivated by this we introduce the PI controller

Md = K(ω r −ω) + K

Ti

∫ t

0

(ω r −ω)dt

where Ti is the integral time. If this controller is applied to the process in Equation

(5.1), the following equation is obtained.

Jω̇ + Dω = K(ω r −ω) + K

Ti

∫ t

0

(ω r −ω)dt − Ml (5.3)

By deriving the equation we get rid of the integral and obtain the pure differential

equation

Jω̈ + (D + K)ω̇ + K

Ti

ω = Kω̇ r +
K

Ti

ω r − Ṁl

If we assume that the angular speed setpoint and load are constant, it holds that

ω̇ r = Ṁl = 0 and we obtain the stationary angular speed

ω s = ω r

In stationarity we thus obtain the desired angular speed when utilizing the PI

controller. This can be seen in Figure 5.6, which shows the control performance under

load disturbances for some different choices of controller parameters. The figure

also shows that the dynamics are more complex than previously. The characteristic

equation of the closed-loop system is given by

Js2 + (D + K)s+ K

Ti

= 0
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Figure 5.6 PI control of the steam engine with gain K = 1 and integral times Ti = 0.02, 0.2, 1

and ∞. The case Ti = ∞ corresponds to P control. The process parameters are J = D = 1.

i.e.

s2 + D + K

J
s+ K

JTi

= 0 (5.4)

In the P control case the closed-loop system had only one pole. The location of the

pole was moved as the controller gain K was altered and the control performance

was improved with increased gains. In practice, however, we most often deal with

higher-order dynamics and excessively high gains lead to poor control.

In the case of PI control we deal with a second-order system with two poles. They

can be either real or complex. We see from Equation (5.4) that by altering K and Ti

an arbitrary characteristic polynomial, and thereby arbitrary pole placement, can

be achieved. This design method is referred to as pole placement.

Figure 5.6 shows that a short integral time Ti leads to oscillations and stability

problems. In the following lectures we will discuss how one can choose controller

parameters in order to fulfil the specifications on the closed loop system.

Summary

This introductory example has shown us some important properties of feedback.

Feedback gives us great advantages. We can keep the controlled variable closer to

its setpoint by reducing the sensitivity towards process and load variations. We

can also affect the speed of the system, so that we achieve a fast settling after

disturbances and setpoint changes.

We have additionally seen that we can have great variations in the settling and

that it is thus important how one chooses the closed-loop dynamics by means of the

controller. How this is done will be investigated throughout the rest of the course.

5.2 Stability - Definitions

A fundamental requirement in control applications is that we achieve to keep the

controlled process stable. We begin by defining the stability concept and then pro-

ceed by introducing different methods to conclude whether a process is stable. For
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simplicity, the definitions are given for the process dynamics, but they are general

and are valid for the closed-loop system as well

For the definitions we choose to consider the system in its state-space form, i.e.

ẋ = Ax+ Bu

y = Cx+ Du

Asymptotic Stability A linear system is asymptotically stable if

x(t) → 0 as t →∞ for all initial states if u(t) = 0.

Here we consider the deviation from an equilibrium. This means that u(t) = 0

corresponds to the state x(t) = 0. The definition tells us that independent of their

initial values, the state variables will return to their equilibria. Observe that the

stability concept is unrelated to the input and output. Stability is a property of the

system itself and has nothing to do with how we affect or measure it.

Stability A linear dynamic system is stable if x(t) is bounded for all

initial states if u(t) = 0.

This definition is weaker than the definition of asymptotic stability, which means

that an asymptotically stable system also is stable. We now no longer demand that

the state returns to the equilibrium, but only that it remains bounded.

Instability A linear dynamic system is unstable if there exists an

initial state, which results in an unbounded state x(t) when u(t) = 0.

Example 5.1—Stability in the scalar case

We first investigate the stability concept in the scalar case where we only have

one state variable. Since u(t) = 0 and the measurement signal is irrelevant in the

definitions, it is sufficient to study the equation

ẋ(t) = ax(t)
x(0) = x0

with solution

x(t) = x0eat

We obtain three cases depending on the sign of a.

a < 0 Asymptotically stable

a = 0 Stable

a > 0 Unstable

Figure 5.7 shows the responses for the three cases.

In other words, the sign of a determines the stability in the scalar case.

Example 5.2—Stability in the diagonal case

We now investigate the stability concept in the case when the matrix A is diagonal,

i.e. when the state-space equations are given by

ẋ(t) =































a1 0

a2

. . .

0 an































x(t) = Ax(t)

x(0) = x0
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Figure 5.7 Solutions for different choices of the parameter a in Example 5.1 for x0 = 1.

Since every state variable has an equation corresponding to the scalar case

ẋi(t) = ai xi(t)

where ai is an eigenvalue of the A matrix, the signs of the eigenvalues determine

the stability. We obtain the following cases:

1. If all eigenvalues of the A matrix have negative real parts, the system is

asymptotically stable.

2. If any eigenvalue of the A matrix has positive real part, the system is unstable.

3. If all eigenvalues of the A matrix have negative or zero real parts, the system

is stable.

In the general case, when the A matrix is not diagonal, the rule in Example 5.2

still applies, with the exception that non-positive eigenvalues are an insufficient

criterion for stability. It can, however, be shown that the system is stable if any

purely imaginary eigenvalues are unique.

5.3 Stability Analysis

From the stability definition we see that stability can be determined from the

eigenvalues of the A matrix, which are equivalent to the poles of the transfer

function, cf. Lecture 2. In what lies ahead we put our focus on asymptotic stability.

The stability analysis thus becomes a matter of investigating whether the roots of

the characteristic polynomial of the A matrix, which are identical to the denominator

polynomial of the transfer function, lie in the left-half plane.

It can be useful to know the stability criteria for second and third order systems

by heart. For a second-order polynomial parametrized as

s2 + a1s+ a2

47



Lecture 5. Feedback and Stability

replacements
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∑

Figure 5.8 The control loop, being analyzed by means of the root-locus method.

the roots lie in the left half plane if and only if (iff) the coefficients a1 and a2 are

both positive. For a third-order polynomial

s3 + a1s2 + a2s+ a3

it is also demanded that all coefficients are positive. It is, however, further demanded

that

a1a2 > a3

For higher-order polynomial computer aid is practical to determine whether the

roots lie in the left-half plane.

The Root-Locus Method

In control contexts, one often wants to investigate how the properties of the control

loop are affected when a parameter, e.g. a controller parameter, is varied. One

way of doing this is by means of the root-locus method. It shows how the poles

are translated when a control-loop parameter is varied. The case studied here is

described by Figure 5.8. It could be a process with transfer function Q(s)/P(s),
which is controlled by a P controller with gain K, where we want to know how the

poles of the closed-loop system are affected as K varies. It could also be a more

complicated controller, where all dynamics except the gain K are included in the

process polynomials Q(s) and P(s). The closed-loop transfer function is given by

Y (s) = KQ(s)
P(s) + KQ(s) R(s)

We see that the closed-loop zeros coincide with the open-loop zeros. They are given

by the nominator polynomial Q(s) and are unaffected by K. The poles will, however,

vary with K. The characteristic equation of the closed-loop system is obtained from

the nominator polynomial of the transfer function.

P(s) + KQ(s) = 0

Our task is to investigate how the poles move as K is varied within the interval

[0,∞]. We begin by studying the end points. For K = 0, the characteristic equation

becomes

P(s) = 0

This implies that the poles of the closed-loop system are identical to the poles of the

open-loop system for K = 0. For K →∞ we obtain the equation

Q(s) = 0

This means that the poles of the closed-loop system will approach its zeros as

K → ∞. If the number of poles and zeros are equal, all poles will approach a zero.

Normally there are, however, more poles than zeros. The ”left over” poles will then

approach infinity. We shall now study a simple example.

48



5.3 Stability Analysis

−2 −1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

Re

Im

Figure 5.9 Root locus in Example 5.3.

Example 5.3—Root locus o f a second-order system

Assume that we have a control problem according to Figure 5.8 where the process

transfer function is given by
Q(s)
P(s) =

1

s(s+ 1)
The closed-loop characteristic equation is given by

P(s) + KQ(s) = s(s+ 1) + K = 0

Since this is a second-order equation, it can easily be solved by hand. We obtain the

two poles

s = −1

2
±

√

1

4
− K

The root locus is shown in Figure 5.9. For K = 0 we observe that the poles lie

in 0 and −1, i.e. they correspond to the poles of the open loop system. When K

is increased, the two poles will first approach each other along the real axis. As

K = 1/4 they will both lie in s = −0.5. For K > 1/4 we obtain a complex-conjugated

pole pair with constant real parts and growing imaginary parts as K →∞.

For a second-order system the root locus can be drawn by hand. For higher-order

systems this becomes complicated and consequently computer aid is recommended.

In the following example the root locus of a third order system is studied.

Example 5.4—Root locus of a third-order system

Assume that we have a control problem according to Figure 5.8 where the process

transfer function is given by

Q(s)
P(s) =

1

s(s+ 1)(s+ 2)

Additionally, the closed-loop characteristic equation is given by

s(s+ 1)(s+ 2) + K = s3 + 3s2 + 2s+ K = 0

The root locus is shown in Figure 5.10. For K = 0 the poles lie in 0, −1 and −2, i.e.
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Figure 5.10 The root locus in Example 5.4.

they correspond to the poles of the open loop system. All poles will approach infinity

as K → ∞, since there are no zeros. Along their path the poles change properties

according to the following:

0 < K < 0.4 Three poles in the left-half plane.

0.4 < K < 6 One real and two complex poles in the left-half plane.

K = 6 A real pole in the left-half plane and

two imaginary poles.

6 < K One real pole in the left half plane and two complex

poles in the right half plane.

The properties of the control loop vary with the placement of the poles. Fig-

ure 5.11 shows step responses corresponding to different values of K. For 0 < K <
0.4 we have real poles and monotone step responses. For K > 0.4 the poles are

complex, which results in oscillating responses. The closer to the imaginary axis the

poles get, the less damped the responses become. For K = 6 the system has reached

its stability boundary and for K > 6 the system is unstable.
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Figure 5.11 Step responses of the system in Example 5.4.
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Lecture 6

The Nyquist Criterion and
Stability Margins

In the previous lecture we have shown how to determine whether a process or control

loop is stable by investigating the poles of its transfer function or the eigenvalues

of its A matrix. This lecture will introduce an additional method for determining

stability, namely the Nyquist criterion. In this method frequency descriptions, given

by either the Bode- or Nyquist plot, are analyzed. Subsequently, we will define some

measures of stability margins.

6.1 The Nyquist Criterion

In order to deduce the Nyquist criterion it is required that one is accustomed with

Cauchy’s argument principle, which is described at the end of this lecture. It will

here suffice to give an intuitive explanation to the Nyquist criterion.

Figure 6.1 shows the block diagram of a simple feedback loop where G0 = GRGP

is the open-loop transfer function, i.e. the product of the process transfer function

GP and the controller transfer function GR. There is a switch in the figure, which

enables us to cut the feedback. When the switch is in position 1, the control loop

functions normally. However, when the switch is in position 2, the feedback is broken

and a sinusoid is applied to the open-loop transfer function.

Assume that the switch is in position 2. Under the assumption that the loop

transfer function is stable, the signal e will also become a sinusoid. As we introduced

the frequency analysis in Lecture 4, we showed that this error signal is given by

e(t) = −pG0(iω)p sin(ωt+ arg G0(iω))
= pG0(iω)p sin(ωt+ arg G0(iω) +π)

Let us choose the frequency of the sinusoid such that arg G0(iω) = −π and denote

this frequency ω0. We then obtain

e(t) = pG0(iω0)p sin(ω0t)

G0

−1

r = 0
y

e

sin(ω t)
2

1
∑

Figure 6.1 The simple feedback loop, being analyzed by means of the Nyquist criterion.
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−1 0

0

−1 0

0

−1 0

0

−1 0

0

Figure 6.2 Nyquist curves for four different loop transfer functions. According to the Nyquist

criterion the two leftmost systems are stable, whereas the two systems to the right are unstable.

Let us further assume that pG0(iω0)p = 1. Then we will obtain the signal

e(t) = sin(ω0t)

i.e. the same signal which is sent into the system. If the switch is now toggled from

position 2 to position 1, the signals in the control circuit will not be affected. The

control loop is caught in a self-induced oscillation. In other words we lie on the

stability boundary.

Correspondingly, one can imagine what will happen if pG0(iω0)p ,= 1. Assume

that pG0(iω0)p > 1. Then the signal e(t) will have the same frequency and phase as

the input, but the amplitude will be larger. If one toggles the switch from position 2

to position 1 under these circumstances, the amplitude in the control loop will grow

and an unstable loop is obtained. Analogously, a gain pG0(iω0)p < 1 will imply a

decreasing amplitude and a stable control loop.

We can summarize the stability investigation in the following way: Investigate the

magnitude of the loop transfer function at the frequency ω0 for which arg G0(iω) =
−π . Depending on the magnitude we obtain one of the following cases.

pG0(iω0)p < 1 Stable.

pG0(iω0)p = 1 Stability boundary.

pG0(iω0)p > 1 Unstable.

This intuitive reasoning is unfortunately not always true. It assumes, e.g., that

signal components with other freuqencies than ω0 are damped out, which is not

always the truth. It was Nyquist that showed the shortcomings in this reasoning,

and therafter he formulated his criterion:

The Nyquist Criterion Assume that the loop transfer function has no poles in

the right-half plane, and that possible poles on the imaginary axis are uniqe. Given

this, the system is asymptotically stable if the point −1 lies to the left of the Nyquist

curve as it is traversed from ω = 0 to ω = ∞.

Figure 6.2 shows Nyquist curves for some different loop transfer functions and

the Nyquist criterion interpretation of these.

One advantage of the Nyquist criterion, as opposed to previously introduced

stability investigation methods, is that it is applicable also when the system contains
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Lecture 6. The Nyquist Criterion and Stability Margins

a delay. The Nyquist criterion, however, cannot be used when the system contains

poles in the right half plane. For this case one is referred to Cauchy’s argument

principle, which is described at the end of this lecture.

Example 6.1—Third-order system

We apply the Nyquist criterion on the system, which we previously studied by means

of the root-locus method.

G0(s) =
K

s(s+ 1)(s+ 2)
Figure 6.3 shows the Nyquist curve of G0. As seen, the Nyquist curve starts in

the third quadrant. Due to the integrator, it has infinite gain for low frequencies.

As ω increases, the Nyquist curve approached the origin. At the frequency ω0 the

Nyquist curve crosses the negative real axis and enters the second quadrant.

In order to use the Nyquist criterion we must first determine the frequency ω0.

This can be done by evaluating G0(iω) and then determining the value of ω for

which the Nyquist curve intersects the negative real axis.

G0(iω) =
K

iω(1+ iω)(2+ iω) =
−Ki(1 − iω)(2− iω)
ω(1+ω2)(4+ω2)

= −Ki(2 −ω2 − 3iω)
ω(1+ω2)(4+ω2) =

−3K

(1+ω2)(4+ω2) − i
K(2−ω2)

ω(1+ω2)(4+ω2)

The expression shows that the imaginary part is zero for ω = ω0 =
√

2. The next

step in the stability investigation is to determine where the Nyquist curve intersects

the real axis. This intersection is given by

G0(i
√

2) = − 3K

3 · 6
= − K

6

The Nyquist curve lies to the right of the point −1 for K < 6. The Nyquist criterion

thus yields the same stability criterion as obtained when we studied the root locus.

6.2 Stability Margins

We have now discussed stability concepts and different methods to determine sta-

bility. In practice it is not sufficient to determine whether a process is stable. In

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
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−0.4

−0.2

0
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Figure 6.3 The Nyquist curve in Example 6.1, drawn for the case K = 1.
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6.2 Stability Margins

addition one wants to know the margins towards the stability limit. We will now

introduce three common margins, namely the gain margin, the phase margin and

the delay margin.

Gain and Phase Margin

The gain and phase margins are easily defined using the Nyquist plot, see Figure 6.4.

For simplicity we assume that the Nyquist curve of the open loop transfer function

G0 is strictly decreasing, both in magnitude and argument. The gain margin is

denoted Am and determines by how much the gain can be be increased without

reaching instability. This margin is read at the frequency ω0, where the phase shift

is π , i.e. arg G0(iω0) = −π . The gain margin is thus given by

Am = 1/ pG0(iω0)p
The phase margin is denoted φm and determines by how much the phase shift

can be decreased without passing the stability limit. The phase margin can be

determined by observing the phase shift in the Nyquist curve at the frequency ω c,

where the magnitude is unity, i.e. pG0(iω c)p = 1. The frequency ω c is known as the

cross-over frequency. The phase margin is given by

φm =π + arg G0(iω c)
The gain and phase margins can also be read from the Bode plot, see Figure 6.5.

The critical point −1 in the Nyquist plot corresponds to two horizontal lines in the

Bode plot. One line corresponds to the magnitude pG0(iω)p = 1 while the other is

corresponding to the argument arg G0(iω) = −π . The gain margin is obtained as the

distance between the line pG0(iω)p = 1 and the magnitude curve at the frequency

ω0. The phase margin is obtained as the distance between the line arg G0(iω) = −π

and the phase curve.

It is important to maintain reasonable stability margins, since it allows for

some variations in process dynamics. This is, however, not the only reason. The

stability margins and the distance to the critical point −1 are also decisive for

the control performance. If the stability margins are inadequate, jerky and poorly

damped control is obtained. On the other hand, large stability margins result in

slow control.
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Figure 6.4 Determination of the phase margin φm and the gain margin Am in the Nyquist

plot.
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Figure 6.5 Determining the phase margin φm and the gain margin Am in the Bode plot.

Customary rules of thumb prescribe gain and phase margins within the intervals

Am ∈ [2, 6] and φm ∈ [45○, 60○], respectively.

Delay Margin

The delay margin determines the length of an added delay required to drive the

control loop unstable. The delay margin has no interpretations as a distance in the

Nyquist plot, as we have seen for the gain and phase margins.

Assume that the open-loop transfer function G0(s) is augmented with a delay.

The new loop transfer function thus becomes

Gnew
0 (s) = e−sLG0(s)

where L is the delay. The gain and phase shift of the new transfer function are given

by

pGnew
0 (iω)p = pG0(iω)p

arg Gnew
0 (iω) = arg G0(iω) −ω L

The gain is thus not affected by the delay, while the phase shift decreases. Assume

that the nominal loop transfer function G0 has cross-over frequency ω c, i.e. that

pG0(iω c)p = 1, and that the corresponding phase margin is denoted φm. Since Gnew
0

has the same gain as G0, the cross-over frequency of Gnew
0 will also be ω c. The phase

margin will, however, decrease since the phase shift has decreased. The new phase

margin becomes

φnew
m = φm −ω c L

If the delay is excessive, the phase margin vanishes and the closed-loop system

becomes unstable. This occurs when

ω c L = φm

This gives us the following bound on how long delays can be before causing an

unstable system

Lm =
φm

ω c
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6.3 Cauchy’s Argument Principle (not included in the course)

The delay Lm is known as the delay margin and is a robustness margin in the same

way as the gain margin Am and the phase margin φm.

Obviously, we cannot allow delays close to Lm. The limit

ω c L < 0.2

is a good rule of thumb which guarantees a phase margin decrease of at most 12○.
The equation also reveals how this criterion can be met. Either the delay L must be

kept sufficiently short or one has to limit the cross-over frequency ω c, i.e. limit the

speed of the system.

6.3 Cauchy’s Argument Principle (not included in the course)

We shall now briefly summarize Cauchy’s argument principle. Subsequently, we will

see how it can be used in a control context to determine stability.

Assume that we have a function F(s) which is analytic, except for a in a finite

number of poles p1, p2, . . . , pP , on a complex set bounded by the curve C. See Fig-

ure 6.6. Further assume that the function has a finite number of zeros n1, n2, . . . , nN

inside C.

Now investigate how the curve C is mapped by the function F and especially

study how many times the curve F(C) encircles the origin. Observe that the curve

has orientation and hence that the number of encirclements can be both positive

(counter clockwise) and negative (clockwise). Let P and N denote the number of

poles and zeros, respectively, enclosed by C. Cauchy’s argument principle states that

N − P = 1

2π
∆C arg F(s)

Put in words, the formula says that the number of zeros (N) minus the number

of poles (P) equals the number of times the curve F(C) encircles the origin. In

Figure 6.6 N = 4, P = 2 and F(C) encircles the origin twice in the positive

direction.

A Control Theory Application We shall now see how Cauchy’s argument prin-

ciple can be applied in order to determine the stability of a control loop. We study

the simple feedback loop shown in Figure 6.1. The closed-loop transfer function is

given by

G(s) = G0(s)
1+G0(s)

The location of the poles are given by the denominator polynomial of G(s). We

thus define F(s) as

F(s) = 1+ G0(s)

ReRe

ImIm

n1

n2

n3

n4

p1
p2

C

F

F(C)

Figure 6.6 Mapping illustrating Cauchy’s argument principle.
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Lecture 6. The Nyquist Criterion and Stability Margins

Since we are interested in knowing if there are any poles in the right half plane,

we would prefer to choose C such that it encloses the right half plane. The curve

we choose is shown in Figure 6.7. If we let R → ∞ and r → 0, the curve C will

enclose the right half plane. The reason for introducing the small half circle is that

there must not lie any poles or zeros on C while poles in the origin are commonly

occurring. This is true for e.g. the case when the controller contains an integrator.

Since we have chosen F(s) = 1+ G0(s) it holds that

N = Number of zeros of 1+G0 enclosed by C.

= Number of poles of G enclosed by C.

P = Number of poles of 1+ G0 enclosed by C.

= Number of poles of G0 enclosed by C.

Let us investigate the last equation in order to realize its validity. If we assume

that G0 is the fraction between two polynomials we have that

G0(s) =
Q(s)
P(s) [ 1+ G0(s) =

P(s) + Q(s)
P(s)

Since G0(s) and 1+G0(s) share a common denominator polynomial, they also have

the same poles. Cauchy’s argument principle thus states that

N − P = Number of times 1+ G0(C) encircles the origin.

Rather than studying how many times 1 + G0 encircles the origin, we choose

to study how many times G0 encircles the point −1. The procedure is summarized

below.

1. Draw G0(s) as the curve C is traversed.

2. Count the number of times, n, which the curve encircles the point −1.

3. Cauchy’s argument principle yields N − P = n.

4. If N = 0 there are no poles in the right half plane and consequently the

closed-loop system is asymptotically stable.

The Nyquist criterion is a special case of Cauchy’s argument principle. It treats

the case when the open loop transfer function does not have any poles in the right

half plane, i.e. the case when P = 0. Cauchy’s argument principle then states that

the closed-loop system is stable (N = 0) if G0(C) does not enclose the point −1. For

this case it is sufficient to study the Nyquist curve. Rather than evaluating the map

of the entire curve C, it will suffice to study the map of the positive imaginary axis.

Re

Im

Reiφ

reiφ

C

Figure 6.7 The curve C in an automatic control application of Cauchy’s argument principle.
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6.3 Cauchy’s Argument Principle (not included in the course)

Example 6.2—Third order system

We apply Cauchy’s argument principle to the same system which was previously

studies in Example 6.1, i.e.

G0(s) =
K

s(s+ 1)(s+ 2)

The first step is to determine G0(C). In order to do this we divide the curve C into

segments. To begin with we compute the map of the positive imaginary axis, i.e. the

Nyquist curve. We have already done this in Example 6.1 and the curve is shown

in Figure 6.3. We do not have to compute the map of the negative imaginary axis,

since it is simply the Nyquist curve mirrored in the real axis.

The map of the large half circle is given by

G0(Reiφ ) → 0, R →∞

The large half circle is thus mapped onto the origin. The small half circle yields

G0(reiφ) → K

2reiφ
= K

2r
e−iφ , r → 0 φ :

π

2
→ 0 → −π

2

The small half circle is thus mapped onto a half circle with infinitely large radius.

It starts with argument −π/2, passes 0 and ends with argument π/2.

Figure 6.8 shows G0(C). The figure also shows an enlargement of the interesting

part around the point −1 for the case K = 1.

The Nyquist curve thus lies to the right of the point −1 for K < 6. We have once

again arrived at the same stability criterion. For K > 6 the curve will encircle the

point −1 twice, which according to Cauchy’s argument principle tells us that there

are two poles in the right half plane. We came to this conclusion in the last lecture,

as we studied the root locus of the system.

Cauchy’s argument principle and the Nyquist criterion are significantly more

complicated methods than those presented previously. On the other hand they pro-

vide an important insight into and understanding of control theory. E.g. the methods

show that the properties of the control loop in the frequency range around −180○

are critical for stability, robustness and performance of the closed-loop system.
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Figure 6.8 The mapping G0(C) from Example 6.2 is shown to the left. To the right we see an

enlargement of the area around the origin.
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Lecture 7

The Sensitivity Function
and Stationary Errors

At the end of the previous lecture we defined three different stability margins.

We will begin this lecture by introducing the sensitivity function, which can be

interpreted in terms of a stability margin. Then we will treat another demand,

which is usually put on the control loop: we expect the control error to vanish in

stationarity.

7.1 The Sensitivity Function

In a simple feedback loop, with open-loop transfer function G0 = GRGP , where GP

is the process transfer function and GR is the transfer function of the controller, the

sensitivity function is given by

S = 1

1+ GPGR

(7.1)

The sensitivity function is a transfer function which can be interpreted in several

ways. We shall here present three of its interpretations.

The Sensitivity Function as a Stability Margin

Figure 7.1 shows the interpretation of the sensitivity function in the Nyquist plot.
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1/pSp = p1+GRGP p

Figure 7.1 The sensitivity function interpreted in the Nyquist plot.
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u = 0 yol

l n

Gp ΣΣ

Figure 7.2 Block diagram of the open-loop system.

GR GP

−1

Σ Σ Σ

r = 0 e u

l n

ycl

Figure 7.3 Block diagram of the closed-loop system.

Every point on the Nyquist curve is given by the value of the loop transfer func-

tion, i.e. GR(iω)GP(iω), evaluated at the corresponding frequency. The distance

between the point −1 and the corresponding point on the Nyquist curve is thus

p1+GR(iω)GP(iω)p. Since the sensitivity function is given by Equation (7.1), we see

that 1/pS(iω)p is the distance to the critical point −1. A small value of the sensitivity

function yields a robust system, since it implies a large margin to the stability limit.

The maximum value of the sensitivity function is denoted Ms.

Ms = max
ω
pS(iω)p

Figure 7.1 shows that Ms is given by the inverse of the shortest distance to the

Nyquist curve. The value of Ms is therefore an interesting stability margin, in the

same way as the gain, phase and delay margins, which were defined in the previous

lecture. Often, one tries to keep Ms in the range [1.2, 2].

The Sensitivity Function as a Measure of Disturbance Rejection

Figure 7.2 shows the block diagram of a process with transfer function GP , being

subject to a load disturbance l and measurement noise n. Disturbances may affect

the process in many ways, but they are normally represented by these two distur-

bances. Load disturbances enter at the process input in the same way as the control

signal. People that enter a room generate heat in the same was as heating radiators

and are therefore load disturbances for the temperature control. Measurement dis-

turbances affect the measurement signal. They are often electrical disturbances of

high frequency and are thefore often called noise. When the control signal is u = 0,

the process output becomes

Yol(s) = N(s) + GP(s)L(s)

Assume that we close the loop, in which the controller is described by GR, according

to Figure 7.3. Since the setpoint is r = 0, the output from the control loop becomes

Ycl(s) =
1

1+ GR(s)GP(s)
N(s) + GP(s)

1+ GR(s)GP(s)
L(s)

The ratio between the outputs of the open and closed-loop systems becomes

Ycl(s)
Yol(s)

= 1

1+ GP(s)GR(s)
= S(s). (7.2)
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Lecture 7. The Sensitivity Function and Stationary Errors

Hence, the sensitivity function describes how disturbances are affected by the feed-

back. Disturbances with frequency ω, for which pS(iω)p < 1, are rejected, while

disturbances for which pS(iω)p > 1 are amplified by the feedback.

The Sensitivity Function as a Measure of Sensitivity to Modelling Errors

A third interpretation of the sensitivity function is obtained by investigating the

effects of modelling errors on the measurement signal. Assume that we have deduced

a model Gp of the process to be controlled. Realistically this model is not an exact

description of the real process, which we have chosen to denote G0
P . The closed-

loop systems obtained using the model and the true transfer function, respectively,

become

Y = GRGP

1+ GRGP

R Y 0 = GRG0
P

1+ GRG0
P

R

where Y and Y 0 are the measurement signals obtained for the model and the true

system.

The relative error in the measurement signal is

Y 0 − Y

Y
=

GRG0
P

1+ GRG0
P

R − GRGP

1+ GRGP

R

GRGP

1+ GRGP

R

= G0
P(1+ GRGP) − GP(1+ GRG0

P)
GP(1+GRG0

P)

= 1

1+ GRG0
P

·

G0
P − GP

GP

= S0
·

G0
P − GP

GP

where S0 denotes the sensitivity function of the true system, i.e. the sensitivity

function obtained using G0
P instead of GP in Equation (7.1). We can summarize the

expression as

Y 0 − Y

Y
= S0

·

G0
P − GP

GP

We can now observe that the sensitivity function is a transfer function from the

relative modelling error to the relative error in measurement signal. Once again

we see that it is favorable to have a small sensitivity function. Modelling errors

affect the measurement signal less at frequencies for which the sensitivity function

is small. Figure 7.1 shows that the sensitivity function achieves a maximum at the

frequency approximately corresponding to the phase shift −180○. In other words,

this is the frequency around which it is important to have an accurate model of the

process to be controlled.

7.2 Stationary Errors

We shall now investigate stationary errors and the properties required by a controller

in order to avoid them. The problem which we shall investigate is illustrated in

Figure 7.4. We study the simple feedback loop with two inputs, the setpoint r and a

load disturbance l. This gives us the two transfer functions

Y = GRGP

1+ GRGP

R + GP

1+ GRGP

L

The measurement signal is thus affected both by changes in the setpoint value and

load disturbances. In many contexts one chooses to isolate these two cases.
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y
GPGR

r

l

e

−1

∑ ∑

Figure 7.4 The simple feedback loop.

The Servo Problem The servo problem is the case for which l = 0, i.e. the case

where we are only interested in the setpoint tracking properties of the controller.

This is commonly occurring in motor control, e.g. in vehicles and industry robots.

When considering the servo problem, the transfer function is given by

Y = GRGP

1+ GRGP

R = G0

1+G0

R (7.3)

where G0 = GRGP denotes the open-loop transfer function.

The Regulator Problem The regulator problem is another name of the case

r = 0. Here we only study the effect of load disturbances. This problem is commonly

occurring in process industry where setpoint values are often constant during long

periods of time, whereas loads are continuously changing. In this context the transfer

function is given by

Y = GP

1+ GRGP

L (7.4)

We shall treat the servo and regulator problems independently, beginning with

the servo problem.

Stationary Errors—The Servo Problem

The servo problem control error can be obtained by means of Equation (7.3).

E(s) = R(s) − Y (s) = 1

1+ G0(s)
R(s)

The final-value theorem is used to determine the control error e(t) as t →∞.

e∞ = lim
t→∞

e(t) = lim
s→0

sE(s)

Observe that the final-vale theorem can only be applied when the limit exists. This

is the case if and only if the signal sE(s) has all its poles in the left-half plane. The

proof of the final-value theorem is given by the definition of the Laplace transform:

lim
s→0
(sE(s) − e(0)) = lim

s→0

∫∞

0

e−st ė(t)dt =
∫∞

0

ė(t)dt = lim
t→∞

(e(t) − e(0))

We will now study an example before proceeding with the general case.

Example 7.1—Stationary error in step and ramp setpoint tracking

Assume that the process and controller are described by the transfer functions

GP =
1

s(1+ sT) GR = K
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Lecture 7. The Sensitivity Function and Stationary Errors

The process model could e.g. describe an electric motor with current as input and

shaft angle as output. The controller is a P controller with gain K. Together they

yield the open-loop transfer function

G0 = GRGP =
K

s(1+ sT)

Assume that the setpoint is constituted by a step

r(t) =
{

1 t ≥ 0

0 t < 0

The Laplace transformation of a step is given by

R(s) = 1

s

The control error thus becomes

E(s) = 1

1+ G0(s)
R(s) = s(1+ sT)

s(1+ sT) + K
·

1

s

By means of the final-value theorem we can now compute the stationary error

e∞ = lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s(1+ sT)
s(1+ sT) + K

= 0

The limit exists under the assumption that the parameters K and T are positive.

We thus see that there is no persisting control error, despite the use of only a P

controller. The reason for this will be revealed soon as we will study the general

case. But first we investigate the case where the setpoint is a ramp

r(t) =
{

t t ≥ 0

0 t < 0

The Laplace transformation of a ramp is given by

R(s) = 1

s2

The control error thus becomes

E(s) = 1

1+ G0(s)
R(s) = s(1+ sT)

s(1+ sT) + K
·

1

s2

This yields the stationary error

e∞ = lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

1+ sT

s(1+ sT) + K
= 1

K

It is true also for this case that the limit exists if the parameters K and T are

positive. When the setpoint is given by a ramp we hence have a persisting control

error. Its magnitude is inversely proportional to the controller gain K.
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7.2 Stationary Errors

The General Case We shall now study the general case. We assume that the loop

transfer function is given in the form

G0(s) =
K

sn
·

1+ b1s+ b2s2 + · · ·

1+ a1s+ a2s2 + · · ·

e−sL = K B(s)
sn A(s) e−sL

This covers most of the processes and controllers we will encounter. It contains a

low-frequency part given by K/sn, a delay L and two polynomials with static gains

1, i.e. A(0) = B(0) = 1.

We let the setpoint be given by

r(t) =
{

tm/m! t ≥ 0

0 t < 0

where m is a positive integer. The Laplace transformation of the setpoint is given

by

R(s) = 1

sm+1

The control error for this general case becomes

E(s) = 1

1+ G0(s)
R(s) = sn A(s)

sn A(s) + K B(s)e−sL
·

1

sm+1

The stationary error can be computed by means of the final-value theorem.

e∞ = lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

A(s)
sn A(s) + K B(s)e−sL

·

sn

sm

However, remember that this necessitates the existence of a limit. Since A(0) =
B(0) = 1 and e−sL → 1 as s → 0 it holds that

e∞ = lim
s→0

1

sn + K
sn−m

We hence see that the stationary error is determined entirely by the low-frequency

properties of the loop transfer function, i.e. K and n, as well as the property m of

the setpoint. We obtain the following cases, depending on the relation between m

and n:

n > m e∞ = 0

n = m = 0 e∞ =
1

1+ K

n = m ≥ 1 e∞ =
1

K

n < m Limit does not exist.

The table shows that it is the number of integrators, n, in the loop transfer

function, which determine how fast setpoints can be tracked without a persisting

control error. In Example 7.1 the loop transfer function contained one integrator,

i.e. n = 1. For step changes in setpoint we have m = 0 resulting in the stationary

control error e∞ = 0. For ramp changes in setpoint we have m = 1, which according

to the above table results in e∞ = 1/K. This is notably the same results which we

arrived at in Example 7.1.
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Lecture 7. The Sensitivity Function and Stationary Errors

Stationary Errors—The Regulator Problem

We shall now investigate stationary errors in the context of the regulator problem, i.e.

the case where the setpoint value is constant while the load disturbances vary. Since

we assume the setpoint value to be r = 0, Equation (7.4) yields the measurement

signal

Y (s) = GP(s)
1+GR(s)GP(s)

L(s)

We can utilize the final value theorem in the same manner as before in order to

determine the stationary error. Since r = 0, we might as well study the measurement

signal directly rather than the control error. The final value theorem yields

y∞ = lim
t→∞

y(t) = lim
s→0

sY (s)

We begin investigating the regulator problem by studying an example.

Example 7.2—Stationary errors in the regulator problem

Assume that the process and controller are given by the transfer functions

GP =
1

1+ sT
GR =

K

s

The process model can e.g. describe the relationship between current and angular

speed in an electric motor. The controller is an I controller, i.e. a pure integrator.

Together they yield the loop transfer function

G0 = GRGP =
K

s(1+ sT)

which is identical to the loop transfer function studied in Example 7.1.

Assume that the load disturbance is given by a step, i.e.

l(t) =
{

1 t ≥ 0

0 t < 0

with Laplace transformation L(s) = 1/s. The measurement signal then becomes

Y (s) = GP(s)
1+ GR(s)GP(s)

L(s) = s

s(1+ sT) + K
·

1

s

By means of the final value theorem we can compute the stationary measurement

signal.

y∞ = lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

s

s(1+ sT) + K
= 0

The limit exists under the assumption that the parameters K and T are positive.

Just as in Example 7.1 we will not obtain any persisting control error.

Now assume that the process and controller are given by the transfer functions

GP =
1

s(1+ sT) GR = K

Compared to the previous case, we have now added an integrator to the process

and removed an integrator from the controller. The loop transfer function is hence

unaffected. The measurement signal at a step load disturbance becomes

Y (s) = GP(s)
1+ GR(s)GP(s)

L(s) = 1

s(1+ sT) + K
·

1

s
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7.2 Stationary Errors

By means of the final value theorem we obtain the stationary measurement signal

y∞ = lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

1

s(1+ sT) + K
= 1

K

Despite the fact that we have the same transfer function as previously, we still

obtain a persisting control error. The integrator in the process does not contribute

to eliminating the stationary error caused by the load disturbance.

The example shows that the location of the integrator is of relevance. In the

context of the servo problem it is the number of integrators in the loop transfer

function, which determines which setpoints can be tracked without persisting control

errors. In the context of the regulator problem it is the number of integrators in

the controller, which determines which load disturbances can be eliminated by the

feedback controller. We now show this by studying the general case.

The General Case Assume that the process and controller are given by the

transfer functions

GP(s) =
K P BP(s)
sp AP(s)

e−sL GR(s) =
K BR(s)
sr AR(s)

where AP(0) = BP(0) = AR(0) = BR(0) = 1. The load disturbances are given in

the form

L(s) = 1

sm+1

The measurement signal of the general example becomes

Y (s) = GP(s)
1+ GR(s)GP(s)

L(s) = sr AR K P BP e−sL

sr+p AP AR + K BR K P BP e−sL
·

1

sm+1

By means of the final value theorem we can now compute the stationary error.

y∞ = lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

AR K P BP e−sL

sr+p AP AR + K BR K P BP e−sL
·

sr

sm

Remember that the limit must exist, in order for us to do this. Since AP(0) =
BP(0) = AR(0) = BR(0) = 1 and e−sL → 1 as s → 0 it holds that

y∞ = lim
s→0

K P

sr+p + K K P

sr−m

We thus see that the number of integrators, r, internal to the controller determines

whether there will be any persisting control error. We obtain the following cases

depending on the relation between m and r.

r > m y∞ = 0

r = m = 0, p = 0 y∞ =
K P

1+ K K P

r = m = 0, p ≥ 1 y∞ =
1

K

r = m ≥ 1 y∞ =
1

K

r < m The limit does not exist.

In Example 7.2 we studied steps in the load disturbances, i.e. m = 0. The first

design example involved one integrator in the controller, i.e. r = 1. According to the

above table this results in y∞ = 0, which is confirmed by the example. In the second

design example the controller lacked integrators. There was, however, an integrator

in the process, i.e. r = 0 and p = 1. According to the table this yields the stationary

error y∞ = 1/K, which was also confirmed by the example.

The above conducted analysis shows why it is often desirable to have an integrator

in the controller. The reason being that it guarantees the elimination of a stationary

control error otherwise caused by steps in either setpoint or load disturbances.
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Lecture 8

State Feedback

We shall now move on to the synthesis of control systems. This will be carried out

in several of the model descriptions, which we introduced in the beginning of the

course. We begin by designing controllers in state space.

8.1 State Feedback

We assume that the process to be controlled is given in state space form, i.e.

ẋ = Ax+ Bu

y = Cx
(8.1)

For simplicity we assume that the process lacks a direct term, i.e. that the ma-

trix D = 0. This is a realistic assumption since processes with a direct term are

uncommon.

The transfer function of the process is given by

Y (s) = C(sI − A)−1BU(s)

where the denominator polynomial

det(sI − A)

is the characteristic polynomial of the process.

We further assume that we can measure all process states. This is obviously

an unrealistic assumption in most cases. In the next chapter we will, however, see

that this assumption can be relaxed and that the states can be computed from the

only signals we normally posses over, i.e. the control and measurement signals. The

controller structure is shown in Figure 8.1. The controller equation becomes

u = krr− k1 x1 − k2 x2 − · · ·− kn xn = krr− K x (8.2)

where the vectors K and x are given by

K =


 k1 k2 · · · kn



 x =































x1

x2

...

xn































y
Processkr

r

−K

u

x

∑

Figure 8.1 State feedback.
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8.1 State Feedback

In state feedback the control signal is hence a linear combination of the state

variables and the setpoint.

The Closed-Loop System If we combine the control law (8.2) with the process

model (8.1) the state-space description of the closed-loop system is obtained.

ẋ = (A− BK)x + Bkrr

y = Cx
(8.3)

Here, the setpoint r is our new input. The corresponding transfer function is given

by

Y (s) = C(sI − (A− BK))−1 Bkr R(s)
where the characteristic polynomial has become

det(sI − (A− BK))

The state feedback has changed the matrix A of the open-loop system (8.1) into

A− BK, which is the corresponding matrix for the closed-loop system (8.3). Since K

can be chosen arbitrarily, we have a certain freedom in determining the eigenvalues

of this matrix.

The controller parameter kr is apparently unaffected by the pole placement of

the closed-loop system. To begin with we shall choose kr such that the static gain of

the closed loop system becomes unity in order to achieve y = r in stationarity. Later

we will introduce integral action to achieve this goal.

We will now illustrate the synthesis method by an example.

Example 8.1—State feedback control of an electric motor

The transfer function of an electric motor is given by

GP(s) =
100

s(s+ 10)

where the current is the input and the shaft angle is the output. The transfer

function can be divided into two parts according to Figure 8.2, where we have also

marked the angular speed. If we introduce the angle and the angular speed as states,

the process can be described in state-space form as

ẋ1 = −10x1 + 100u

ẋ2 = x1

y = x2

which can be written in the matrix form

ẋ =








−10 0

1 0







 x+








100

0







 u

y =


 0 1



 x

y = x21

s

100

s+ 10

u x1

Figure 8.2 Block diagram of the motor in Example 8.1. The state x1 corresponds to the angular

speed, while the state x2 represents the angle.
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y = x21

s

100

s+ 10

−k1

−k2

kr

r
∑

x1u

Figure 8.3 The state feedback motor control in Example 8.1.

Now we establish feedback connections from the angle and the angular speed

according to Figure 8.3. The control law

u = krr− k1 x1 − k2 x2 = krr− K x

yields the closed-loop system

ẋ =








−10− 100k1 −100k2

1 0








x+









100

0








krr

y =


 0 1



 x

The characteristic polynomial becomes

det(sI − (A− BK)) =
∣

∣

∣

∣

∣

s+ 10+ 100k1 100k2

−1 s

∣

∣

∣

∣

∣

= s2 + (10+ 100k1)s+ 100k2

Since we can achieve an arbitrary second-order characteristic polynomial by choosing

the parameters k1 and k2, the poles of the closed-loop system can be places freely.

Assume that the characteristic polynomial of the closed-loop system is given by

s2 + 2ζωs+ω2

This yields the following controller parameters

k1 =
2ζω − 10

100
k2 =

ω2

100

Now it remains to determine the parameter kr such that y = r in stationarity.

One could always determine kr by calculating the closed-loop transfer function and

thereafter assure that G(0) = 1, i.e. that the static gain becomes unity. It is, however,

often more efficient to investigate the stationary relation as ẋ = 0 directly in the

state-space description. For our example it holds that

ẋ = 0 =








−10− 100k1 −100k2

1 0







 x+








100

0







 krr

y =


 0 1



 x
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8.2 Controllability
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The measurement signal y for different ω The measurement signal y for different ζ

The control signal u for different ω The control signal u for different ζ

Figure 8.4 State feedback control of the motor in Example 8.1. The figures to the left show

the controller corresponding to ζ = 0.7 and ω = 10, 20, 30, where the fastest control action

is achieved by the highest frequency. The figures to the right show the control performance for

ω = 20 and ζ = 0.5, 0.7, 0.9, where the most damped control action corresponds to the largest

relative damping.

The second state-space equation implies that x1 = 0 in stationarity. That this must

be the case is obvious, since x1 represents the angular speed. By inserting x1 = 0

into the first equation and exploiting that y = x2 we observe that y = r if

kr = k2

We have now completed our synthesis. Figure 8.4 shows step responses corre-

sponding to different choices of the design parameters ζ and ω. The figure shows

that the design parameter ω is an efficient way to specify the speed of a system and

that the relative damping ζ is a good measure of the damping of the system.

8.2 Controllability

In the previous example we could place the poles of the closed-loop system arbitrarily

by means of the state feedback. An interesting question is whether this is always

possible. We begin the investigation by an example.

Example 8.2—Controllability

Assume that the process we are about to control is described by the following

equations

ẋ = Ax+ Bu =








−1 0

0 −2







 x+








1

0







 u

y = Cx+ Du
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Since the A matrix is diagonal, one can directly observe its eigenvalues and thereby

the poles of the process, which lie in −1 and −2. State feedback yields the matrix

A− BK =








−1− k1 −k2

0 −2









This, in terms, gives us the characteristic polynomial of the closed-loop system

det(sI − (A− BK)) = (s+ 1+ k1)(s+ 2)

Here we see that we cannot place the poles arbitrarily. By means of k1 we can

move the pole which initially lays in −1. However, there is no way for us to move the

pole in −2. We also see that the parameter k2 does not appear in the characteristic

polynomial. Hence we do not benefit from measuring x2 and involve the measurement

in the feedback.

The cause of our problem is clearly visible in the state-space description. Its

second equation is given by

ẋ2 = −2x2

and is unaffected by the control signal u. Consequently, this state is not controllable.

This reasoning leads us to the concept of controllability, which is defined in the

following way:

A state vector x0 is said to be controllable if there exists a control sig-

nal which brings x from the origin to x0 in a finite time. A system is

controllable if all its states are controllable.

If a system is controllable it is possible to place its poles arbitrarily using state

feedback. As seen from the definition, controllability is unrelated to the output y.

The definition concerns the state vector and the control signal. In the state-space

description (8.1) we thus see that the controllability is determined by the A and B

matrices.

Whether a system is controllable can be determined by studying the controlla-

bility matrix, which is defined as

Ws =


 B AB A2B · · · An−1B




where n is the degree of the system. One can show that a system is controllable if

and only if the controllability matrix Ws consists of n linearly independent columns.

In the non-controllable case the columns of Ws tell which, if any, of the states are

controllable. This is illustrated in the examples below.

We investigate the controllability of the two systems studied in examples previ-

ously in this lecture.

Example 8.3—Controllability

In Example 8.1 an electric motor described by the equations

ẋ =








−10 0

1 0







 x+








100

0







 u

y =


 0 1



 x

was studied. The controllability matrix of this process is given by

Ws =


 B AB


 =








100 −1000

0 100
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The columns of this matrix are linearly independent. One way to determine whether

the columns of a quadratic matrix are linearly independent is to investigate if the

determinant is non-zero. Since the columns of Ws are linearly independent, the

process is controllable. We observed this already in Example 8.1, since the poles

could be arbitrarily placed.

Let us now investigate the controllability of the system in Example 8.2. There

the A and B matrices were given by

A =








−1 0

0 −2








B =









1

0









This yields the controllability matrix

Ws =


 B AB


 =








1 −1

0 0









The columns of this matrix are linearly dependent and det Ws = 0. The system in

Example 8.2 is thus not controllable. The columns of Ws also show that x1 is a

controllable state, while x2 is not controllable.

A Controllability Example

Controllability is an abstract concept. Processes are often constructed so that con-

trollability is achieved for the states which one wishes to control. Despite this, the

concept of controllability is still important and it is good to develop an intuitive

understanding of it. We will return to this later in the course.

In order to increase the understanding of the controllability concept, we will now

investigate a few physical processes regarding their controllability. The processes to

be investigated are shown in Figure 8.5 and are made up by interconnected water

tanks and the corresponding flows.

By writing down the mass balance equations for the individual tanks, we obtain

a dynamical model. If the level in a tank is denoted x it holds that

ẋ = qin − qout

where qin is the inflow and qout the outflow from the tank. All tanks are equipped

with a hole in their bottom which makes the inflow approximately proportional to

the level in the corresponding tank. The inflow of a tank is made up by either of the

outflow from a higher tank or an auxiliary flow u, which is our control signal.

Process A First consider process A in Figure 8.5. In this case the controlled flow

enters the upper tank. The following mass balances are obtained

ẋ1 = u− ax1

ẋ2 = ax1 − ax2

where x1 and x2 denote the levels in the upper and lower tank, respectively. The

first equation tells us that the inflow of the upper tank is given by u whereas the

outflow is proportional to the level in the tank. From the second equation we obtain

that the inflow of the lower tank equals the outflow of the upper tank and that the

outflow of the lower tank is proportional to the level in the tank. The dynamics of

process A are thus described by

ẋ = Ax+ Bu =








−a 0

a −a







 x+








1

0







 u

As a consequence, the controllability matrix is given by

Ws =


 B AB


 =








1 −a

0 a
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A B C

1

11

222

u

u u

Figure 8.5 Several connections of water tanks leading to different cases regarding controlla-

bility.

The columns of this matrix are linearly independent, and the determinant is

det Ws = a ,= 0. Hence, the system is controllable. The columns of the controllability

matrix are shown graphically in Figur 8.6, where it’s obvious that they are linearly

independent. This means that we can control both levels to take on arbitrary values,

in accordance with the definition of controllability. Observe that the definition does

not require that we should be able to maintain arbitrary constant levels. From

studying the equations one realizes that this is only possible for levels which satisfy

u = ax1 = ax2

In stationarity we thus have the same level in both tanks. Finally we must consider

the validity of the equations. In reality it holds that the levels cannot take on

negative values, neither can the control signal be negative given that there is no

pump which could suck water from the tank. As a consequence we have x1 ≥ 0,

x2 ≥ 0 and u ≥ 0.

Process B Now consider process B, shown in Figure 8.5. In this case the controlled

flow enters the lower tank. This infers that we can no longer control the level in the

upper tank. Let us now confirm this intuitively drawn conclusion by applying the

above introduced analysis method.

The following balance equations constitute a model of process B

ẋ1 = −ax1

ẋ2 = u+ ax1 − ax2

x1

x2

x1

x2

x1

x2

Process A Process B Process C

Figure 8.6 The columns of the controllability matrix in the three examples.
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The process dynamics can therefore be written

ẋ = Ax+ Bu =








−a 0

a −a







 x+








0

1







 u

The controllability matrix is thus

Ws =


 B AB


 =








0 0

1 −a









The columns of the matrix are linearly dependent, the determinant is given by

det Ws = 0 and the system is hence not controllable. The columns of Ws further

show that the level in the lower tank is controllable, as opposed to the upper tank

level. This is also obvious from Figur 8.6.

Process C In process C, shown in Figure 8.5, the flow enters both tanks, such

that half of the flow enters tank 1 whereas the other half enters tank 2.

The following balance equations hold for tank C

ẋ1 = 0.5u− ax1

ẋ2 = 0.5u− ax2

The dynamics of process C can therefore be written

ẋ = Ax+ Bu =








−a 0

0 −a







 x+








0.5

0.5







 u

The controllability matrix becomes

Ws =


 B AB


 =








0.5 −0.5a

0.5 −0.5a









The columns of the matrix are linearly dependent, the determinant is det Ws = 0 and

the system is hence not controllable. The construction is such that if the levels are

initially equal, they will remain equal. This can also be observed from the columns

of Ws, and the illustration in Figur 8.6.
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Kalman Filtering

In the previous lecture the synthesis part of the course began by introducing state

feedback. This method came with the price of several serious limitations, which we

will eliminate during this lecture. Firstly, a premises of the state feedback is that

we can measure all process states. This is, however, normally not possible. In this

lecture we will describe the Kalman filter, which is a method to obtain an estimate

of the state vector from the control and measurement signals.

Another serious limitation was that the previously introduced state feedback

controller lacks integral action, which consequently may result in stationary control

errors.

9.1 Integral Action

We begin by introducing integral action in the controller. Figure 8.1 shows the block

diagram of the nominal state feedback. The parameter kr was chosen such that the

static gain from setpoint r to measurement signal y was unity. This did, however,

not guarantee y = r in stationarity. A load change will e.g. bring the measurement

signal away from the setpoint.

Figure 9.1 shows how the state feedback can be augmented with an integral term.

First we form the control error e, which we have not used in the context of state

feedback previously, as the difference between the setpoint r and the measurement

y. Then we integrate the control error and multiply it with a gain, which we in this

context denote ki. Finally we add the contribution from the integral term to the

control signal u.

To add the integral term to the control signal in this way is no stranger than

adding the integral term to a P controller and thereby arriving at a PI controller.

The integral term will naturally affect the position of the closed-loop poles. In

order to use the same methodology as in the previous lecture we will describe the

integral term as part of the state feedback.

We begin by reviewing the state-space representation of the process.

ẋ = Ax+ Bu

y = Cx
(9.1)

y
Processkr

r

−K
1

s
−ki

−1

u

e xi
x

∑

∑

Figure 9.1 State feedback with integral action.
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Now introduce the state x1 according to Figure 9.1. This yields the equation

xi =
∫

(r− y)dt [ ẋi = r− y = r− Cx

If we augment the state vector x with the integral state xi such that

xe =








x

xi









the augmented system can be written

ẋe =








ẋ

ẋi







 =








A 0

−C 0







 xe +








B

0







 u+








0

1







 r = Ae xe + Beu+ Brr

y =


 C 0



 xe = Ce xe

(9.2)

Since we want to write the closed-loop system on state-space form, control signal u

must be eliminated from Equation (9.2). The control signal is given by

u = krr− K x − ki xi = krr− Ke xe

where

Ke =


 K ki





If this expression is introduced in Equation (9.2), the state-space form of the closed-

loop system becomes:

ẋe = (Ae − Be Ke)xe + (Bekr + Br)r

y = Ce xe

We have hence augmented the state space system with a state which represents

the integral of the control error and thus arrived at a controller with integral action.

In stationarity it holds that ẋe = 0 and thereby that ẋi = r− y = 0.

The parameters in the vector Ke are chosen so that we obtain a desired closed-

loop pole placement, just as previously. Here the poles are given by the characteristic

polynomial

det(sI − (Ae − Be Ke))
We no longer need the parameter kr in order to achieve y = r in stationarity.

The parameter does not affect the poles of the closed-loop system, only its zeros. It

can therefore be chosen so that the system obtains desired transient properties at

setpoint changes. We shall come back to zero placement in a later lecture.

9.2 Observability

So far we have assumed that all process states have been directly measurable.

Normally this is not the case. However, if one can estimate the state vector by

studying the control and measurement signals, one could close the loop over the

estimates rather than the real states.

In Example 8.1 we utilized state feedback from two states in order to control an

electric motor. The measurement signal was the angle of the motor shaft and the

other state was given by the angular speed of the shaft. If the angular speed cannot

be directly measured, it can be estimated by e.g. deriving the angle measurement.

Before describing how to estimate the state vector, we will ask ourselves the

principal question whether it is generally possible to estimate the state vector merely

by studying u and y. The answer is that it is possible if the system is observable.

Observability is defined in the following way:
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Lecture 9. Kalman Filtering

A state vector x0 ,= 0 is not observable if the output is y(t) = 0 when

the initial state vector is x(0) = x0 and the input is given by u(t) = 0. A

system is observable if it lacks non-observable states.

As seen from the definition, observability has nothing to do with the control

signal u. Rather, it concerns the state vector and the measurement signal. In the

state-space description (9.1) we see that this implies that observability is determined

solely by A and C.

Whether a system is observable can be determined by studying the observability

matrix which is defined in as

Wo =









































C

C A

C A2

...

C An−1









































Here n is the degree of the system. One can show that the system is observable if

and only if the observability matrix Wo has n linearly independent rows. If x0 is a

non-observable state, it fulfills the equation

Wo x0 = 0

As seen, observability and the observability matrix have strong resemblance

to controllability and the controllability matrix, which we studied in the previous

lecture. We will nu study an observability example.

Example 9.1—Observability

A process is described by the following equations:

ẋ =








−1 0

0 −1







 x

y =


 1 −1



 x

We can e.g. imagine that the equations describe the process in Figure 9.2, where the

states are given by the tank levels. The measurement signal is the difference between

the tank levels. The system lacks input and we study only the state evolution after

various initial states.

We shall now investigate the observability of the process. The observability

matrix is

Wo =








C

C A







 =








1 −1

−1 1









The rows of this matrix are not linearly independent, the determinant is det Wo = 0

and the system is not observable. From the equation

Wo x0 = 0

1 2

x1 x2

+ −

y

∑

Figure 9.2 A physical interpretation of the process dynamics in Example 9.1.
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a

c

db x1

x2

Figure 9.3 Different initial states in Example 9.1.
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Figure 9.4 The measurement y corresponding to the initial states in Figure 9.3.

we see that the non-observable states can be written

x0 =








a

a









If we return to the definition of observability we can justify that this is correct.

If the initial levels in the two tanks are equal they will empty in exactly the same

way and the measurement remains y = 0.

Figure 9.3 shows four initial states for the levels in the two tanks. The corre-

sponding outputs y are shown in Figure 9.4

The initial state a is a non-observable state. The measurement is consequently

y = 0. The initial state b yields a response in the measurement. However, this is

the same response obtained for the initial state c. All initial states which have the

same difference between the levels x1 and x2 will yield the same response in the

measurement signal y and it is hence not possible to tell them apart. The initial

state d yields a response which differs from the others since the difference between

x1 and x2 is not the same as for the other three cases.
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9.3 Kalman Filtering

If the system is observable it is possible to estimate the state vector by studying the

input u and the output y. The most common way of doing this is to filter the in- and

outputs through a Kalman filter. We shall deduce the Kalman filter in two steps. As

a first step we shall see what happens if we try to estimate x by simply simulating

the process.

State Estimation through Simulation

The prerequisite of state estimation is that the process is known and given in state

space form and that the control signal u as well as the measurement signal y are

available. We can simulate the process in the following way:

˙̂x = Ax̂+ Bu

Here x̂ is the estimate of the state vector x. We drive the simulation with the same

control signal u as we apply to the real process. Will this work? Will the estimated

state vector x̂ converge to x?

Introduce the estimation error

x̃ = x− x̂

The derivative of the estimation error becomes

˙̃x = ẋ− ˙̂x = Ax+ Bu− Ax̂− Bu = Ax̃

Whether the estimation error approaches zero depends on the matrix A. If A has all

its eigenvalues in the left half plane, i.e. if the process is asymptotically stable, the

estimation error will converge to zero. The convergence rate depends on where in

the left half plane the eigenvalues lie. Estimating the state vector by simulating the

process might thus work in some cases. For the estimation we use the control signal

u, while we ignore the information available through the measurement y. State

estimation by derivation of y has a corresponding shortcoming. If one for instance

estimates the angular speed of the motor in Example 8.1 by deriving the angle

measurement, the information in the control signal is not exploited. The Kalman

filter is, however, a method which makes use of both the control and measurement

signals in order to estimate the state vector.

Kalman Filtering

The Kalman filter estimates the state vector in the following way:

˙̂x = Ax̂+ Bu+ L(y− ŷ)
ŷ = Cx̂

(9.3)

Compared to the simple simulation method, we have now introduced a correction

term. Here the difference between the real measurement signal y and the estimated

measurement signal ŷ affects the estimation.

By merging the two equations in Equation (9.3) the Kalman filter can be written

in the form
˙̂x = (A− LC)x̂+ Bu+ Ly (9.4)

From this form it is obvious how the Kalman filter is driven by the two signals u

and y.

The estimation error x̃ decreases according to

˙̃x = ẋ− ˙̂x = Ax+ Bu− Ax̂− Bu− LC(x− x̂)
= (A− LC)x̃
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9.3 Kalman Filtering

The properties of the Kalman filter are no longer determined merely by the A

matrix, but rather by the A− LC matrix, in which the vector L is a free parameter.

We can consequently choose a desired decrease rate of the estimation error x̃. The

choice is a compromise between speed and sensitivity towards disturbances and

modelling errors. A method used to determine L is illustrated by the following

example.

Example 9.2—Kalman filtering of pendulum dynamics

In this example we shall balance an inverted pendulum. We leave the control part

to the next lecture and put our focus on process state estimation. The pendulum to

be controlled is shown in Figure 9.5.

We assume that we can measure the angle φ which consequently becomes our

measurement signal, i.e. y = φ. The control objective is to balance the pendulum so

that y = φ = 0. The setpoint will thus be r = 0. The control signal u is proportional

to the force affecting the cart. For simplicity we assume that u = z̈.

There are two forces affecting the pendulum. The gravitational force strives to

increase the angle φ and thus causing the pendulum to fall down. The control signal

can give the pendulum an acceleration in the opposite direction and thus re-erect

the pendulum.

A momentum equation with suitable choice of states, linearization and parame-

ters yields the following process model of the pendulum:

φ̈ = φ − u

A second-order system requires at least two states for its state-space representation.

We choose the angle φ and its derivative φ̇ to represent these states.

x1 = φ

x2 = φ̇

This yields the following state-space description of the process:

ẋ =








0 1

1 0








x+









0

−1








u = Ax+ Bu

y =


 1 0



 x = Cx

φ

z

Figure 9.5 The pendulum in Example 9.2.
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A Kalman filter estimating the state vector is given by Equation (9.4) and our

task is to determine the vector L so that the matrix A − LC obtains the desired

eigenvalues. We have

A− LC =








0 1

1 0







−








l1

l2











 1 0



 =








−l1 1

1− l2 0









The eigenvalues are given by the characteristic polynomial

det(sI − (A− LC)) =
∣

∣

∣

∣

∣

s+ l1 −1

−1+ l2 s

∣

∣

∣

∣

∣

= s2 + l1s− 1+ l2

We can now place the two poles arbitrarily by choosing l1 and l2 adequately. E.g.

assume that we desire to place the poles in s = −4 ± 4i. This yields the desired

characteristic polynomial

(s+ 4− 4i)(s+ 4+ 4i) = s2 + 8s+ 32

By comparing the two polynomials, we arrive at the following Kalman filter param-

eters:

l1 = 8 l2 = 33

Figure 9.6 shows the result of a simulation experiment with the Kalman filter.

The initial state is given by φ(0) = −0.6 and φ̇(0) = 0.4 Since the process is

unstable, it has to be controlled. This control is treated in the next lecture.

The solid curves in Figure 9.6 show the actual states. The angle is initially

φ(0) = −0.6. After an initial overshoot to φ ( 0.4 it stabilizes at φ = 0 after

approximately 3 s.

The dashed curves show the estimates and are thus the ones of highest interest

for us. They both start out in zero. After approximately 1.5 s they have converged

well to the actual states.

The example shows that the Kalman filter can be used to estimate the state

vector. One thus realizes that it should be possible to use the estimated state for the
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x
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Figure 9.6 Actual and estimated angle and angular speed of the pendulum in Example 9.2.
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feedback, rather than the actual ones. It is, however, important that the Kalman

filter is sufficiently fast, since the transient behavior shown in Figure 9.6 will be

repeated every time the process is disturbed, which would happen e.g. if someone

pokes at the pendulum. The relationship between the Kalman filter and the state

feedback will be further investigated in the next lecture.

Finally it is worthwhile noting that the Kalman filter is not merely interesting

in the context of state feedback control. The method to estimate variables which

are not directly measurable by exploiting the process dynamics and the availability

of certain measurement signals is used in a large number of other applications.

Examples include technical systems as well as biological, medical and economical

ones.
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Output Feedback and
Pole-Zero Cancellation

Two lectures ago we introduced the concept of output feedback and assumed that all

process states were available for measurement. We chose the controller parameters

with the placement of the closed-loop system poles in mind. In the previous lecture

the Kalman filter was introduced. It turned out to be an attractive way of estimating

the state vector and we chose the filter parameters so that a desired filter pole

placement was obtained. In this lecture we will investigate what happens if we

apply state feedback control to a Kalman filtered process.

The cancellation of poles and zeros in the transfer function leads to the loss of

controllability and/or observability. This will be further explored in the second part

of this lecture.

10.1 Output Feedback

We shall now merge the state feedback and the Kalman filter and close the loop

from the estimated states, rather than the actual ones. We call this output feedback

in order to emphasize that we do no longer close the loop from the states of the

process. Rather, we use the setpoint r, measurement y and control signal u. The

controller structure is shown in Figure 10.1, where the controller is confined within

the dashed rectangle.

In order to simplify the analysis we have chosen to omit the integral term, which

was introduced in the previous lecture.

We choose to describe the process in state space and assume that it lacks a direct

y
Processkr

Kalman filter

r

−K

u

x̂

∑

Figure 10.1 Output feedback. The controller is confined within the dashed rectangle.
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term.

ẋ = Ax+ Bu

y = Cx

The controller now becomes a combination of the Kalman filter and the state

feedback
˙̂x = Ax̂+ Bu+ L(y− ŷ)
ŷ = Cx̂

u = krr− K x̂

We shall investigate the closed-loop system and begin by doing so in state space.

A natural way to choose the state vector would have been to append the Kalman

filter estimates x̂ to the process states x. For reasons, which will become evident

later in the lecture, we will rather append the process states x with the estimation

error x̃ = x− x̂ in order to form the state vector.

xe =








x

x̃









The state-space equations can now be written

ẋ = Ax+ Bu = Ax+ Bkrr− BK x̂ = Ax+ Bkrr− BK(x − x̃)
= (A− BK)x + BK x̃+ Bkrr

˙̃x = ẋ− ˙̂x = Ax+ Bu− Ax̂− Bu− LC(x− x̂) = (A− LC)x̃

On block matrix form this becomes









ẋ

˙̃x







 =








A− BK BK

0 A− LC

















x

x̃







+








Bkr

0







 r = Ae









x

x̃







+ Ber

y =


 C 0













x

x̃







 = Ce









x

x̃









(10.1)

Thanks to the introduction of x and x̃ as system states, the Ae, Be and Ce

matrices now contain a number of zeros. We will benefit from this substantially now

that we will investigate the closed-loop system.

Due to the block triangularity of Ae, its characteristic polynomial is given by

det(sI − Ae) = det(sI − (A− BK)) · det(sI − (A− LC))

This is an appealing result. It shows that the characteristic polynomial is a product

of the characteristic polynomial from the nominal state feedback and that of the

Kalman filter. Consequently it is possible to separate the control problem into two

parts, as we have already attempted in the previous lectures. The state feedback can

first be determined and its poles placed as if all states were actually measurable.

When later a Kalman filter is introduced in order to obtain state estimates and

realize output feedback, this will not affect the pole placement of the feedback.

Let us compute the transfer function from r to y. It is given by

Ge(s) = Ce(sI − Ae)−1 Be =


 C 0













E

F









where








E

F







 =








sI − (A− BK) −BK

0 sI − (A− LC)









−1 







Bkr

0









85



Lecture 10. Output Feedback and Pole-Zero Cancellation

By multiplying both sides with (sI − Ae) we get









Bkr

0







 =








sI − (A− BK) −BK

0 sI − (A− LC)

















E

F









=








(sI − (A− BK))E − BK F

(sI − (A− LC))F









The latter part of the equation yields F = 0. Consequently, we arrive at

E = (sI − (A− BK))−1
Bkr

which gives us the transfer function

Ge(s) = C(sI − (A− BK))−1 Bkr

This is a remarkable result. The transfer function is identical to the one which

we obtained when we closed the loop from the real states. The dynamics of the

Kalman filter are hidden in the transfer function. The characteristic polynomial of

the Ae matrix is of order 2n, whereas the transfer function is merely of order n.

In the pendulum example from the previous lecture we saw how the estimated

state converged to the actual state after a few seconds long transient. Following this

transient there is inherently no difference between feedback from the estimated and

actual states, as long as no disturbances forces the state estimate away from the

actual state. This explains why the dynamics of the Kalman filter are not visible in

the transfer function.

A transfer function of order n can always be described in state space using n

states, which are all both controllable and observable. One could also introduce more

than n states, but the additional states cannot be both observable and controllable.

It is e.g. possible to introduce a state which has no significant relation to the process.

This state will obviously be neither controllable nor observable.

Correspondingly a transfer function of degree n obtained from a state space

model of degree > n shows us that there are states which lack controllability or

observability. In our case the Kalman filter state is not controllable. This can be

seen by constructing the controllability matrix of the system in Equation (10.1).

Ws =


 Be AeBe · · · An−1
e Be



 =








Bkr (A− BK)Bkr · · ·

0 0 · · ·









Since the last n elements in the columns are zero, there are n linearly independent

columns and the non-controllable states correspond to those of the Kalman filter.

The fact that the states of the Kalman filter are not controllable can be seen directly

from the state space Equation (10.1).

˙̃x = (A− LC)x̃

We can apparently not affect the estimates by means of the closed-loop system input,

i.e. by the setpoint r.

Summary

We have now introduced a method to determine a controller—state feedback com-

bined with Kalman filtering. The analysis has shown that the design process can be

separated into two parts.

The first part was to estimate the state vector by means of the Kalman filter.

The properties of the Kalman filter are determined by the gain vector L. The choice

of this vector, i.e. the pole placement of the Kalman filter, is as always a balance

between performance and robustness against model errors, process variations and

disturbances.
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The second part was to design the state feedback. Here the analysis has shown

us that we can treat the problem as if working with the actual states. The feedback

vector K determines the poles of the closed-loop system. Also here the choice is

a compromise between performance and robustness. In order to keep the estimate

close to the actual state, it is customary to choose K so that the poles of the state

feedback are at least twice as slow as those of the Kalman filter. This is, however,

not a requirement and there exist exceptions from this rule of thumb.

We will now round off by completing the pendulum example, which we started in

the previous lecture.

Example 10.1—Inverted pendulum control

In Example 9.2 and Figure 9.5 the inverted pendulum was described and a Kalman

filter for estimating its states

x1 = φ

x2 = φ̇

was established for the following state space model of the process:

ẋ =








0 1

1 0







 x+








0

−1







 u = Ax+ Bu

y =


 1 0



 x = Cx

We will now initially assume that the states are directly measurable and hence

introduce the state feedback

u = −K x

Since the setpoint is constantly r = 0 there is no reason to include the term krr

in the controller. Neither do we bother to introduce integral action. The closed loop

system is given by

ẋ = (A− BK)x
y = Cx

where

A− BK =








0 1

1 0








−









0

−1











 k1 k2



 =








0 1

1+ k1 k2









The eigenvalues of the matrix are given by the characteristic polynomial

det(sI − (A− BK)) =
∣

∣

∣

∣

∣

s −1

−1− k1 s− k2

∣

∣

∣

∣

∣

= s2 − k2s− 1− k1

The two poles can now be placed arbitrarily by choosing k1 and k2 adequately.

In Example 9.2 the poles of the Kalman filter were placed in s = −4 ± 4i. It is

reasonable to choose the poles for the state feedback closer to the origin. Here we

will choose two poles, with half the distance to the origin, i.e. in s = −2 ± 2i. This

yields the desired characteristic polynomial

(s+ 2− 2i)(s+ 2+ 2i) = s2 + 4s+ 8

By matching coefficients the following controller parameters are obtained.

k1 = −9 k2 = −4

Figure 10.2 shows the result of a simulation where feedback has been established

from the actual states, using these controller parameters. The figure shows how the
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Figure 10.2 State feedback from actual states in Example 10.1.
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Figure 10.3 State feedback from estimated states in Example 10.1.

controller erects the pendulum from the initial state φ = −0.6, φ̇ = 0.4 to the

desired state φ = φ̇ = 0.

Figure 10.3 shows the result when feedback was establish from the estimated

states, which were obtained by the Kalman filter from Example 9.2. The figure

clearly shows how control performance has decreased in the initial phase due to the

poor initial estimates produced by the Kalman filter.
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10.2 Cancellation of Poles and Zeros

In connection to the state feedback and Kalman filtering we have discussed the con-

cepts of controllability and observability. We have seen that the loss of controllability

and observability is connected to the cancellation of poles and zeros in the transfer

function, resulting in a lower order of the transfer function, than the dimension of

the A matrix in the state-space representation.

We have previously pointed out that most processes are inherently designed to

be both controllable and observable. However, the insight that controllability and

observability can be lost through pole/-zero cancellation is important. It is indeed not

uncommon that these properties are lost by introducing a controller which cancels

part of the process dynamics. We shall illustrate the problem through a simple and

very commonly occurring example.

Assume that the controlled process is described by the simple first-order model

GP(s) =
1

1+ sT

and that it is controlled by a PI controller with transfer function

GR(s) = K

(

1+ 1

sTi

)

= K
1+ sTi

sTi

where K is the controller gain and Ti its integral time. The system is shown in

Figure 10.4.

Many well known tuning methods for PI control are based on choosing the

integral time to correspond to the (slowest) time constant of the process, i.e.

Ti = T

Figure 10.4 shows that this results in the cancellation of the process pole and the

controller zero. Consequently, a simplified description of the system is obtained,

shown in Figure 10.5. The open loop transfer function is now given by

G0(s) = GR(s)GP(s) = K
1+ sT

sT
·

1

1+ sT
= K

sT

We have thus obtained a first order loop transfer function. The closed-loop trans-

fer function from r to y becomes

G(s) = G0(s)
1+ G0(s)

= K

K + sT

This first order system can be made arbitrarily fast by choosing K so that the pole

s = − K

T

y1

1+ sT
K

1+ sTi

sTi

r u

−1

∑

Figure 10.4 The simple feedback loop.
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K

sT

−1

r y
∑

Figure 10.5 The simple feedback loop in figure 10.4 after the cancellation.

is adequately placed.

Figure 10.6 shows the result of a simulation where the time constant of the

process was T = 10, resulting in Ti = T = 10. The controller gain was chosen to be

K = 10, yielding the closed-loop time constant Ts = 1, i.e. 10 times faster than that

of the open-loop system.

Thus far everything seems to be in order. However, the fact that poles and zeros

have been cancelled should raise some suspicion. It means that there exists states

which are not controllable or observable.

Let us now investigate what happens when load disturbances are introduced

according to the block diagram in Figure 10.7. We now have two inputs—the setpoint

r and the load disturbance l. This yields the following transfer functions:

Y (s) = GP(s) (L(s) + GR(s)(R(s) − Y (s)))

= GP(s)GR(s)
1+ GP(s)GR(s)

R(s) + GP(s)
1+ GP(s)GR(s)

L(s)

= K

K + sT
R(s) + sT

(1+ sT)(K + sT) L(s)

We observe that the transfer function from l to y is of second order and that the

initial process pole is part of its dynamics. The state corresponding to this slow pole

has been made uncontrollable from r by the pole/zero cancellation. However, the
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Figure 10.6 A setpoint step response. The time constant of the closed loop system is Ts = 1.
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y
GPGR

r

l

e

−1

∑ ∑

Figure 10.7 The simple feedback loop with both a setpoint r and load disturbances l.

state is observable which will be revealed upon load changes.

Figure 10.8 shows the response of a setpoint step followed by a load step. Note

that the scales here are not the same as in Figure 10.6. The figure shows that the

load response becomes significantly slower due to the presence of the open-loop pole,

which has the time constant T = 10. Observe that the control signal is affected by

the fast time constant but remains constant during the slow settling process.

This example shows the potential danger in cancelling poles and zeros. The can-

cellation can lead to simple calculations and good properties concerning variations

in certain signals. However, the lack of controllability and/or observability caused

by the cancellation can lead to unpleasant surprises when other signals are varied.

This is especially true when slow dynamics are cancelled.

The conclusion is that it is safer to place transfer function poles adequately, so

that they do not cancel any possible zeros of the system.

−5 0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−5 0 5 10 15 20 25 30 35 40 45 50

0

2

4

6

8

10

12

Measurement signal y

Control signal u

time

Figure 10.8 Response to a step in r at t = 0 followed by a step in l at t = 10.
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Lecture 11

Lead–Lag Compensation

We shall now move on to determining controllers using frequency domain methods,

aided by the Bode plot. First we will review how to determine the properties of

the closed-loop system by imposing specifications on the Bode plot of the open-loop

system. Subsequently, two types of compensation links will be introduced. One of

them affects the low frequency properties and the stationary error, whereas the

other affects the speed and robustness of the system.

11.1 Specifications in the Bode Plot

Figure 11.1 shows the Bode plot of a simple feedback loop with loop transfer function

G0 = GPGR, where GP is the transfer function of the process and GR that of the

controller. The closed-loop transfer function is given by

G(s) = G0(s)
1+ G0(s)

Since one wants the measurement signal to track the setpoint, i.e. y = r, the ideal

closed loop transfer function would be G(s) = 1. This is obviously not practically

achievable. However, with a high open-loop gain pG0(iω)p at low frequencies it is

possible to achieve G(iω) ( 1 for low frequencies. Figure 11.2 shows a typical Bode

plot of a closed-loop transfer function. We have pG(iω)p ( 1 for low frequencies. The

magnitude then increases for a frequency range and undergoes a fast decline for

even higher frequencies.

The bandwidth ωb is frequently used as a measure of system speed. It is defined

as the frequency for which pG(iωb)p = 1/
√

2, see Figure 11.2.

Figure 11.3 shows the Bode plot of the loop transfer function G0. Its character-

istics are typical for many loop transfer functions. Due to integral action, the gain

is high for low frequencies. With increased frequency, the gain decreases while the

phase shift increases.

Despite the fact that we are ultimately interested in the properties of the closed-

loop system, specifications can be imposed on the corresponding open-loop system. It

is e.g. the number of integrators in G0 which determines how fast setpoint changes

can be tracked without a persisting control error. It is also the low-frequency gain

G0

−1

r y
∑

Figure 11.1 The simple feedback loop with loop transfer function G0(s).
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Figure 11.2 Bode plot of the closed-loop system where the bandwidth ωb is used as a measure

of system speed
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Figure 11.3 Bode plot of the open-loop system where the cross-over frequency ω c has been

used as a speed measure and the phase margin φm has been used as a robustness measure of

the closed-loop system.

which determines how large the otherwise obtained stationary control errors become.

These matters were handled in Lecture 7.

The speed of the closed-loop system is related to how high in frequency the open-

loop system maintains a substantially high gain. Consequently, one could think of

many ways to specify the speed of the system. Here we choose to use the cross-

over frequency ω c, i.e. the frequency for which the gain curve intersects the line

pG0(iω)p = 1.

We have previously introduced several measures on the open-loop system, which

describe the robustness of the closed-loop system, e.g. the gain margin Am, the phase
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Lecture 11. Lead–Lag Compensation

margin φm and the maximal value of the sensitivity function Ms. They all have in

common that they somehow describe the distance to the critical point −1 in the

Nyquist plot. Here we choose to use the phase margin as our robustness margin.

By reading off the low frequency gain, the cross-over frequency ω c and the phase

margin φm of the open-loop system G0, we can predict the properties of the closed-

loop system. If we are not satisfied by these properties, we can modify the Bode plot

by introducing lead–lag compensation links.

11.2 Lead–Lag Compensation

Figure 11.4 shows the block diagram of the simple feedback loop, where the nominal

loop transfer function G0(s) has been compensated using the link GK(s). The new

open-loop transfer function thus becomes

Gnew
0 (s) = GK (s)G0(s)

This compensation link can be used to shape the new open-loop transfer function

Gnew
0 (s) so that it fulfills the specifications of the open-loop system.

Since

log pGnew
0 (iω)p = log pGK (iω)p + log pG0(iω)p

arg Gnew
0 (iω) = arg GK(iω) + arg G0(iω)

it is easy to determine the compensation link GK (s) as the difference between the

desired open-loop transfer function Gnew
0 (s) and the uncompensated transfer function

G0(s).
Figure 11.5 shows the gain curves for two types of lead–lag compensation links.

The two curves to the left show a case where the nominal open-loop transfer function

G0 has adequate high-frequency properties, but where the low-frequency gain is too

low. The compensation link GK therefore has a high gain for low frequencies, while

its high frequency-gain is unity. The two figures to the right show a case where the

nominal loop transfer function G0 has adequate low-frequency properties. However,

one wants to increase the speed of the closed-loop system by increasing the cross-

over frequency. The compensation link GK therefore has a gain which is unity for

low frequencies, but high for higher frequencies.

We have now seen how compensation links can be obtained easily from the

Bode plot by forming the difference between the desired and nominal open-loop

transfer functions. In order to implement the compensation link, it must, however,

be parametrized, i.e. a transfer function must be matched to the desired Bode plot.

The following sections will be committed to demonstrating how this can be done.

y
G0GK

r u

−1

∑

Figure 11.4 The simple feedback loop with compensation link GK (s).
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Figure 11.5 Two cases of lead–lag compensation. The plots to the left show a type of compen-

sation which increases the low-frequency gain. The figures to the right shows another type of

compensation which increases the high-frequency gain and thereby the cross-over frequency. The

compensation links GK is given by the difference between Gnew
0 and G0.

11.3 Lag Compensation

We begin by studying the Bode plot of a compensation link with transfer function

GK (s) =
s+ a

s+ a/M
= M

1+ s/a

1+ sM/a
M > 1

The Bode plot of GK is shown in Figure 11.6. The low-frequency asymptote of

the gain curve is GK(0) = M, whereas its high-frequency asymptote is given by

GK(s) → 1, s →∞. The compensation link has one pole, which makes the Bode plot

break down at the frequency ω = a/M and one zero, which causes the Bode plot to

break up again at ω = a.

This lag compensation link has the same shape as the compensation link to the

left in Figure 11.5. It increases the gain for low frequencies and is therefore used

to reduce stationary errors. The term lag compensation comes from the fact that it

contributes with a phase lag, which is obviously an unwanted property.

The lag link has two parameters, which need to be determined. The low-frequency

gain M and the corner frequency a are determined in the following way:

M : The gain M is given by the specifications on how much we desire to decrease

the stationary error. If the nominal loop transfer function G0 contains at least

one integrator, one can show that the stationary error is decreased by a factor

M.

a : The corner frequency a determines at which frequency the gain of the com-

pensation link shall break down from M to 1. The parameter a is commonly

chosen so that the negative phase shift does not affect the phase margin too

much. The choice can be simplified by a commonly used rule of thumb. If the

parameter is chosen to be

a = 0.1ω c
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Figure 11.6 Bode plot of the lag compensation link. The parameters are given by M = 10 and

a= 1.

it guarantees that the phase margin is decreased by at most 6○, assuming that

ω c is not changed. This can be seen by studying the argument of GK (iω c):

arg GK(iω c) = arctan
ω c

a
− arctan

Mω c

a
= arctan 10− arctan 10M

> arctan 10− 90○ > −6○

Special Case Let us investigate what happens if M →∞. The resulting compen-

sation link becomes

GK(s) =
s+ a

s+ a/M
→ s+ a

s
= 1+ a

s
, M →∞

This is the equation of a PI controller. Choosing M → ∞ will thus eliminate the

stationary error, since it introduces an additional integrator in the control loop.

Sometimes one chooses to introduce as many integrators as needed to eliminate

persisting stationary errors, rather than determining a finite value of M in a lag

compensation filter.

Example 11.1—Decreasing stationary errors

An electric motor can be described by the transfer function

GP(s) =
100

s(s+ 10)

The input is the motor current and the output is the shaft angle φ. Initially the motor

is part of a negative feedback connection, as seen in Figure 11.1, i.e. G0 = GP . This

yields satisfactory speed (cross-over frequency) and robustness (phase margin). Since

G0 contains an integrator it is possible to track setpoint steps without persisting

control errors. However, setpoint ramps yield persistent control errors, which we

wish to decrease by a factor 10.

The Bode plot of the motor is shown in Figure 11.7. The slope of the magnitude

curve is −1 for low frequencies and its phase shift is −90○. The gain curve breaks

down to slope −2 at the corner frequency ω = 10, while the phase approaches −180○.
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Figure 11.7 The Bode plot of the motor in Example 11.1.
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Figure 11.8 Bode plot of G0 (—–) and Gnew
0 (- - -) in Example 11.1.

We can also observe that the cross-over frequency is given by ω c ( 8 and that the

phase margin is φm ( 50○.
Since we aim at decreasing the stationary error by a factor 10 and G0(s) has an

integrator, we choose M = 10. In order not to affect the phase margin excessively we

choose the corner frequency a = 0.1ω c = 0.8. This gives us the compensation link

GK(s) =
s+ a

s+ a/M
= s+ 0.8

s+ 0.08

Figure 11.8 shows the Bode plot of the compensated system Gnew
0 . The low-

frequency gain has increased by a factor 10, as desired. Meanwhile, there have been

no significant changes to the properties of the system at or above the cross-over
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Figure 11.9 The control errors caused by a setpoint ramp for different choices of the parameter

a in Example 11.1.

frequency.

Finally, Figure 11.9 shows the setpoint ramp responses of the compensated sys-

tem. For clarity reasons the control error is shown, rather than the response itself.

The figure shows the control error for some different choices of the corner frequency

a. The case a = 0 corresponds to GK = 1, i.e. compensation-free control. It is clear

from the figure that the choice of a is a compromise between performance and ro-

bustness. If a is chosen small we obtain a robust but slow system, whereas a large a

yields a fast settling but a significant overshoot. In the latter case, the phase margin

has decreased significantly. The figure shows that the choice a = 0.1ω c = 0.8 is

reasonable, but perhaps a little bit conservative.

11.4 Lead Compensation

We will now move on to study the Bode plot of another type of compensation link.

Its transfer function is given by

GK (s) = K K N
s+ b

s+ bN
= K K

1+ s/b
1+ s/(bN) N > 1

The Bode plot of GK(s) is shown in Figure 11.10. The low-frequency asymptote is

GK(0) = K K and the high-frequency asymptote is given by GK(s) → K K N, s →∞.

The transfer function contains a zero, which makes the Bode plot break up at the

frequency ω = b and a pole which makes it break down again at ω = bN.

The lead compensation link has the same appearance as the rightmost compen-

sation link in Figure 11.5. It increases both the high-frequency gain and the phase

shift of the loop transfer function. Consequently, this link can be used both to change

the speed (cross-over frequency) and the robustness (phase margin).

The lead compensation link contains three parameters: K K , N and b. In the lag

compensation case we chose the parameters so that the negative phase shift should

not affect the phase margin. Now we do the opposite and ensure that the peak of

the positive phase curve appears at the cross-over frequency.
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Figure 11.10 The Bode plot of a lead compensation link. The parameters are given by K K = 1,

N = 10 and b = 0.1.

The compensation link GK has a phase peak at the frequency which is given

as the geometric mean of the corner frequencies b and bN, i.e. ω = b
√

N. For this

frequency it holds that

pGK (ib
√

N)p = K K

√
N

arg GK(ib
√

N) = arctan(
√

N) − arctan(1/
√

N)

The compensation link parameters are determined in four steps:

1. The first step is to specify the desired cross-over frequency ω c and phase

margin φm.

2. The parameter N determines the magnitude of the phase curve peak. A larger

N results in a larger phase lead. Figure 11.11 shows the relation between N

and the phase lead ∆φ. The desired phase lead at the cross-over frequency ω c

is

∆φ = φm − (180○ + arg G0(iω c))

3. The next step is to ensure that the phase peak is attended for ω c. Since the

peak lies at the frequency b
√

N, we should choose b so that

b
√

N = ω c

4. The last step is to determine the parameter K K so that the frequency ω c really

becomes the cross-over frequency, i.e.

pGK (iω c)p · pG0(iω c)p = 1

Here, the following relation comes in handy:

pGK (iω c)p = pGK(ib
√

N)p = K K

√
N
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Figure 11.11 The relationship between the parameter N and the phase lead ∆φ in the lead

compensation link.

A Special Case Let us investigate what happens if N → ∞. As a result the

compensation link becomes

GK (s) = K K
1+ s/b

1+ s/(bN) → K K (1+
s

b
), N →∞

This is the equation of a PD controller.

Example 11.2—Increased speed with maintained robustness

We consider the same motor as in the previous example, with transfer function

GP(s) =
100

s(s+ 10)

Initially the motor is part of the simple feedback loop shown in Figure 11.1, i.e.

G0 = GP . This time we shall not affect the stationary properties, but rather make

the motor control twice as fast with maintained robustness properties. The aim is

thus to double the cross-over frequency without a decrease in phase margin.

Figure 11.7 shows that the nominal cross-over frequency is 8 while the corre-

sponding phase margin is 50○. We now determine the parameters in the lead link

according to the four steps given above.

1. Since the specification was to double the cross-over frequency while maintain-

ing the phase margin, we call for ω c = 2 · 8 = 16 and φm = 50○.

2. We see from the Bode plot that the argument of the process at the frequency

ω c = 16 is given by arg G0(i · 16) ( −150○. This means that we need a

phase lead of ∆φ = φm − (180○ − 150○) = 20○. Figure 11.11 shows that this

corresponds to N = 2.

3. The next step is to choose b so that the phase peak is located at ω c. From the

equation b
√

N = ω c = 16 we obtain b= 16/
√

2 ( 11.

4. Finally we determine K K so that ω c = 16 really becomes the cross-over fre-

quency. In the Bode plot we observe that pG0(iω c)p ( 0.35. The equation

pGK(iω c)p · pG0(iω c)p ( K K

√
N · 0.35 = 1
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Figure 11.12 Bode plot of G0 (—–) and of Gnew
0 (- - -) in Example 11.2
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Figure 11.13 Setpoint step responses of the uncompensated system (—–) and compensated

system (- - -) in Example 11.2

now yields K K ( 2.

The lead compensator hence becomes

GK(s) = K K N
s+ b

s+ bN
= 4

s+ 11

s+ 22

Figure 11.12 shows the Bode plot of the compensated system Gnew
0 . The cross-over

frequency has moved to ω c = 16 with maintained phase margin, as desired.

Figure 11.13 finally shows the setpoint step responses. The figure shows that
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we have succeeded in doubling the speed of the system without increasing its step

response overshoot.
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Lecture 12

PID Control

In this lecture we shall first investigate the Bode plot of the PID controller and

therefrom draw conclusions regarding the function and tuning of the controller.

Subsequently, we review a few simple rules of thumb for PID tuning. The second

part of the lecture is devoted to handling of setpoint values and transfer function

zeros. Finally, a few augmentations of the PID controller, needed for practical im-

plementations, are introduced.

12.1 The Bode Plot of the PID Controller

In the previous lecture we saw that one can use the Bode plot of the open-loop

system in order to determine compensation links which give the closed-loop system

desired properties.

We use the same methodology to investigate both the functionality and parameter

interpretation of the PID controller. In order to do this we draw the Bode plot of

the PID controller. For simplicity we choose to draw the Bode plot for a certain

parametrization of the PID controller, namely the series form.

The Series Form of the PID Controller

Thus far we have assumed that the PID controller is described by the equation

u = K

(

e+ 1

Ti

∫

e(t)dt + Td
de

dt

)

with corresponding transfer function

GR(s) = K

(

1+ 1

sTi

+ sTd

)

This form is known as the parallel form, since the control error e is treated in

parallel in the P, I and D parts. An equally common form in industrial applications

is illustrated by the transfer function

G′
R(s) = K ′

(

1+ 1

sT ′i

)

(1+ sT ′d)

This is known as the series form, since it can be described as a series connection of

a PI and a PD controller. The difference between these two forms is not as large as

it might appear. If we multiply the factors in the series form we arrive at

G′
R(s) = K ′

(

1+ 1

sT ′i

)

(1+ sT ′d) = K ′
(

1+ T ′d
T ′i
+ 1

sT ′i
+ sT ′d

)

The controller thus contains P, I and D parts. The only difference between the

two forms is hence their parametrizations. The relations are given by the following
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equations:

K = K ′ T
′
i + T ′d

T ′i
K ′ = K

2



1+
√

1− 4Td

Ti





Ti = T ′i + T ′d T ′i =
Ti

2



1+
√

1− 4Td

Ti





Td =
T ′i T

′
d

T ′i + T ′d
T ′d =

Ti

2



1−
√

1− 4Td

Ti





If one switches from one controller form to the other and simultaneously translates

the controller parameters appropriately, the functionality of the controller remains

unchanged.

Two interesting observations can be made concerning the structures. The first is

that the two representations are identical when the controllers are used as either

P, PI or PD controllers. It is only when all three terms are used that we have a

difference in parametrization between the series and parallel forms.

The second observations is that the parallel form is more general than its series

counterpart. We can always translate a controller from series to parallel form, but

the contrary is true only for the special case

Ti ≥ 4Td

This can be seen by comparing the transfer functions. The PID controller has a pole

in the origin and two zeros. In the parallel form the two zeros can be complex, while

the series form only allows for real zeros.

When the PID controller was implemented with pneumatic technology back in the

30- and 40-ies, it was done in series form, for practical reasons. The explanation to

why there still exist so many controllers in series form is that many manufacturers

have kept the controller structure, though the technology used to implement the

controllers have changed.

The Bode Plot of the PID Controller

We shall now study the Bode plot of the PID controller and choose to do so for its

series form. This form is easier to draw due to its real zeros. Also, the interpretation

of the controller parameters is more straightforward for the series form. The drawn

conclusions will, however, be valid also for the parallel form.

The transfer function G′
R can be written

G′
R(s) = K ′

(

1+ 1

sT ′i

)

(1+ sT ′d) =
K ′

sT ′i
(1+ sT ′i )(1+ sT ′d)

The low-frequency asymptote of the Bode plot is K ′/(sT ′i ) while its high-frequency

asymptote is given by K ′T ′ds. The Bode plot shows two corner frequencies. Under

the assumption that T ′i > T ′d the first corner frequency will appear at ω = 1/T ′i
while the second lies at ω = 1/T ′d. Both the corner frequencies correspond to zeros,

causing the Bode plot to break upwards.

The Bode plot of the PID controller is shown in Figure 12.1. The Bode plot

clearly shows the role of the three parameters. The gain K ′ determines the level of

the magnitude curve whereas the integral and derivative times T ′i and T ′d determine

its two corner frequencies. We shall exploit the Bode plot in order to investigate the

meanings of the PID parameters for the closed-loop system.
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Figure 12.1 Bode plot of the PID controller with parameters K ′ = 1, T ′i = 10 and T ′d = 1.

The PID Parameters

Figure 12.2 shows how the Bode plot is affected when the three controller parameters

are varied. We shall now investigate how these variations affect the properties of

the closed-loop system. As we do this we assume that we have a fairly well tuned

controller. This implies that the cross-over frequency ω c lies close to both corner

frequencies of the controller, i.e. close to 1/T ′i and 1/T ′d. Further we assume that

the loop transfer function exhibits the typical structure shown in Figure 11.3, with

declining gain and phase.

Increased K ′ An increase of the gain K leads to an equal raise of the gain

curve for all frequencies while the phase curve remains unaffected. The increased

low-frequency gain causes a possible decrease of the stationary error.

The increased gain will increase the cross-over frequency ω c of the compensated

system, which leads to increased speed of the closed-loop system. Since the phase

margin is now obtained at a higher frequency, the increased gain will also lead to

decreased robustness resulting from the smaller phase margin.

Decreased T ′i A decrease of T ′i means an increase of the integral action, since

T ′i occurs in the denominator of the I part. A decrease of T ′i leads to an increased

low frequency gain, while the phase is decreased. The higher low frequencies gain

causes a decrease of any stationary errors.

The increased gain leads to an increase in the speed of the closed-loop system.

Since the phase margin is now to be evaluated at a higher frequency, while the

phase has decreased, the robustness of the closed loop system has decreased.

Increased T ′d An increase of T ′d causes an increased gain for high frequencies

and an increased phase. The cross-over frequency ω c increases, due to the increased

gain.

The increased cross-over frequency results in a faster system. The fact that the

phase margin is now evaluated for a higher frequency would generally results in

reduced robustness. However, we cannot draw this conclusion since the phase has

also been increased. There is actually a possibility of increasing both speed and

robustness by increasing T ′d. This is, however, only true within certain bounds.

Further increase of T ′d yields a decrease of the robustness.
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Figure 12.2 Bode plot of the PID controller. The dashed curves show how the Bode plot is

affected when the three parameters K ′, T ′i and T ′d are varied.

12.2 Simple tuning rules

The PID controller is an elementary controller, often used in simple applications

where one lacks the time and knowledge needed to further analyze the control

problem. Consequently, there is a demand for easily applied rules of thumb, which

can be used to tune the controller parameters to an acceptable performance level.

The tuning should preferably be based on simple experiments conducted on the

process.

Many tuning methods have been suggested since the PID controller was first

introduced. The by far most well known are, however, Ziegler–Nichols’ methods. They

are not the best methods, but among the easiest to apply. It is worth noting that these

methods are only to be considered as rules of thumb. They yield often acceptable

controller parameters. If one has higher demands of controller performance, more

elaborate methods may be needed.

The minimal amount of information needed to control a process is a process

gain in order to determine K and a process time for the determination of Ti and

Td. Ziegler and Nichols presented two methods in the 40-ies, which can be used to

obtain these parameters, a step response method and a frequency method.

The most popular method in industry today is the Lambda method. It was

derived in the sixties, and it provides acceptable control performance for a large

class of processes.

Ziegler–Nichols’ Step Response Method

Ziegler–Nichols’ step response method is based on manual control of the process, i.e.

that the control signal u is manually governed and no controller is present.

When the process has reached an equilibrium a step is issued in the control

signal. We assume the step size to be 1. Steps of different magnitude will require
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Figure 12.3 Evaluation of the gain a and time b from a process step response.

Controller K Ti Td

P 1/a

PI 0.9/a 3b

PID 1.2/a 2b 0.5b

Table 12.1 Recommended controller tuning according to Ziegler–Nichols’ step response method.

normalization of the response in the measurement signal.

Figure 12.3 shows a typical step response. A tangent is drawn through the point

where the incline of the step response attains a maximum. The gain a and time

b are then obtained from the intersection between this tangent and the coordinate

axis. Ziegler and Nichols suggested that the obtained parameters should yield the

PID parameters according to table 12.1.

From the table we see that the controller gain K is chosen to be inversely

proportional to the process gain a and that the controller times Ti and Td are chosen

proportional to the process time b.

Ziegler–Nichols’ Frequency Method

Ziegler and Nichols frequency method is based on incorporating a P controller in the

loop and thereafter conducting the following steps:

1. Successively adjust K until the process oscillates with a constant amplitude.

The corresponding gain is denoted K0.

2. Measure the period T0 of the oscillation.

3. Choose the controller parameters from table 12.2.

In Ziegler–Nichols’ frequency method we identify the point GP(iω0), being the

point where the phase shift is −180○. If a P controller is installed in the loop and

its gain is gradually increased, one will eventually reach the gain K0 for which

pK0GP(iω0)p = 1. This corresponds to the limit of stability. The gain K0 thus holds

adequate information to calculate GP(iω0) while the frequency ω0 is given by the

period T0, ω0 = 2π/T0.

Controller K Ti Td

P 0.5K0

PI 0.45K0 T0/1.2

PID 0.6K0 T0/2 T0/8

Table 12.2 Recommended controller tuning according to Ziegler–Nichols’ frequency method.
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Now that we have realized how Ziegler–Nichols’ frequency method works, we

can observe that in the case of P control it suggests a controller with gain margin

Am = 2.

The Lambda method

The Lambda method is based on a step response experiment, where static process

gain Kp, time delay L, and time constant T are determined. The experiment is shown

in Figure 12.4. The point where the process output has the largest derivative is first

determined, and the tangent to the curve at this point is drawn. The intersection

between this tangent and the line representing the level of the process output

before the step change is then determined. The time from the step change to this

intersection point gives an estimate of time delay L. Time constant T is then

determined from the time it takes to reach 63 % of the final value. Static gain Kp is

finally determined by dividing the change in process output with the magnitude of

the control signal step:

Kp =
∆y

∆u

The Lambda method has one parameter that can be set by the user, namely the

desired time constant of the closed-loop system. This time constant is called lambda

λ.

The original Lambda method only considered PI control. The tuning rule is

K = 1

Kp

T

L + λ

Ti = T

(12.1)

The integral time is chosen equal to the process time constant T. The gain, however,

is dependent on the choice of λ. A common choice is λ = T, which means that it

is desired to give the closed-loop system the same time constant as the open-loop

system.

The controller parameters are derived in the following way. The process and the

controller transfer functions are

GP(s) =
Kpe−sL

1+ sT
GR(s) = K

1+ sTi

sTi

∆y

∆u

Process output

Control signal

63 %

L T

Figure 12.4 Determination of Kp, L, and T from a step response experiment.
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r e u y
GR GP

−1

∑

Figure 12.5 Standard structure of the simple feedback loop.

Since Ti = T, the loop transfer function is

G0(s) =
K P Ke−sL

sT

The closed-loop transfer function between the setpoint and the process output be-

comes

G(s) = G0(s)
1+ G0(s)

= K P Ke−sL

sT + Kp Ke−sL
( K P Ke−sL

sT + Kp K(1 − sL) =
e−sL

1+ s(T/(Kp K) − L)

where the approximation is that the time delay in the denominator is replaced by the

first terms in its Taylor series expansion. Therefore, the closed-loop transfer function

is a first-order system with the same time delay as for the process, and with the

time constant λ = T/(Kp K) − L. By specifying λ, K is given by Equation (12.1).

It is possible to derive tuning rules for PID controllers with the same approach

as for the PI controller. In this case, the time delay in the denominator of the

closed-loop transfer function is not approximated by a Taylor series expansion, but

with e−sL ( (1− sL/2)/(1+ sL/2). The ingegral and derivative times are chosen so

that poles in the loop transfer function are cancelled, in the same way as for the PI

controller. The rules for the series and parallell form are:

K ′ = 1

Kp

T

L/2+ λ
K = 1

Kp

L/2+ T

L/2+ λ

T ′i = T Ti = T + L/2

T ′d =
L

2
Td =

T L

L + 2T

12.3 Setpoint Handling

A controller has normally two inputs, setpoint r and measurement signal y, and one

output, control signal u. As we have analyzed and synthesized controllers we have

generally assumed that the controller structure is that shown in Figure 12.5.

This works fine when analyzing the poles and stability margins of the closed-loop

system. The structure can also be used when calculating properties of the closed-loop

system subject to load disturbances. However, the setpoint value is commonly not

handled as shown in Figure 12.5. In Figure 12.5 the control error e = r− y is formed

and constitutes the controller input so that

U = GR E = GR(R − Y )

This means that the setpoint and measurement signals are treated identically by

the controller. However, one often wants to treat the two signals differently. We shall

give examples of such situations later in this lecture.

A more general controller structure is shown in Figure 12.6. The control signal

is now given by

U = GR1 R −GR2Y
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r u y
GR1 GP

−GR2

∑

Figure 12.6 Structure with two degrees of freedom.

One usually says that the controller structure shown in Figure 12.6 has two

degrees of freedom, since it provides us with the freedom to treat the two inputs

separately. This freedom is typically used to improve control performance with re-

spect to setpoint changes.

A PID controller, tuned to perform well under load disturbances, often yields

large overshoots at setpoint steps if the standard structure is used. Hence it is

common to modify the PID controller in process control applications, as discussed in

the next section. In addition it is customary to let steps in the setpoint pass through

a ramp function or a low pass filter in order to further depress the overshoot.

In servo applications, setpoint tracking is the main control objective. Conse-

quently a large part of the control calculations are committed to obtaining satisfac-

tory setpoint tracking.

Zeros

Previously in the course we have observed that the poles of the transfer function

have a critical role for the properties of the closed-loop system. We have, however, not

discussed the role of its zeros. We shall now show that the zeros play an important

role when it comes to setpoint handling.

We begin by studying a control loop with transfer function G(s), measurement

signal y and setpoint input r, as shown in Figure 12.7. Figure 12.8 shows the output

y and its derivative ẏ resulting from a step in the setpoint r.

r y
G

Figure 12.7 The nominal transfer function G where the output is given by the measurement

signal y while the setpoint r constitutes the system input.

Assume that the transfer function is extended by the zero s = z, so that the

transfer function from setpoint to measurement is given by

G1(s) = G(s)
(

1− s

z

)

We denote the new measurement y1. The new control loop is described by the block

diagram shown in Figure 12.9. It is evident from the figure that the measurement

y1 is a weighted sum of the old measurement y and its derivative ẏ, since

y1 = y− 1

z
ẏ

The position of the zero z determines the weighting. The zero has most influence

when it lies close to the origin, i.e. when pzp is small.

Figure 12.10 shows the step response for some different values of the zero z. The

step response is given by a weighting of the two signals shown in Figure 12.8.
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Figure 12.8 The step response and its derivative for the system G(s) = (s+ 1)−3.

r y1y
G

− s

z − ẏ/z

∑

Figure 12.9 Block diagram of the system G1 = G(1− s/z).

For positive values of z, i.e. for right-half plane zeros, the weighting of the

derivative ẏ will be negative. This results in a step response which starts in the

’wrong’ direction.

For negative z, i.e. left-half plane zeros, the weight of the derivative ẏ will be

positive. This results in a faster response and large overshoots can be obtained if

the zero lies close to the origin.

Zeros are further discussed in the next section, in connection to setpoint weight-

ing in the PID controller.

12.4 Practical Modifications of the PID Controller

The elementary form of the PID controller is given by the equation

u = K

(

e+ 1

Ti

∫

e(t)dt + Td
de

dt

)

In order to obtain a practically useful controller, this form is usually modified in

several ways. We shall here bring up the most common modifications and do so by

treating the three terms separately.
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Figure 12.10 Step response of the system G1(s) = (s+ 1)−3(1− s/z) for different values of the

zero z. The dashed curve shows the nominal case with no zero.

Modification of the P Part

The proportional term of the PID controller is given by

uP = Ke

A common modification is to exchange the nominal P part for

uP = K(br− y)

where b is a weighting factor normally chosen so that 0 ≤ b ≤ 1. This means that

one exploits the two degrees of freedom and consequently treat r and y differently.

The reason that one sometimes wants to reduce the magnitude of the setpoint

value in the P part is partly to reduce the overshoot at steps in r and partly to avoid

that rapid setpoint changes result in wear of the actuators.

For a PI controller with setpoint weighting the control signal is given by

U = K

(

bR − Y + 1

sTi

(R − Y )
)

= K
1 + sbTi

sTi

R − K
1+ sTi

sTi

Y

The setpoint weighting thus affects the zeros of the transfer function form r to u.

For the standard structure where b = 1, the zero lies in s = −1/Ti. The setpoint

weighting b moves the zero to s = −1/(bTi). If 0 ≤ b < 1 the zero will be moved

further into the left-half plane and thus decreasing the overshoot, as we have just

seen.

Figure 12.11 shows PI control for which the weighting factor b is being varied.

The figure shows a setpoint change followed by a load disturbance. It reveals that

the response to the load disturbance is unaffected by b, unlike the setpoint response.

Smaller b result in decreased overshoots and control signal steps at the setpoint

change.

Modification of the I Part

The integral term of the PID controller is given by

uI =
K

Ti

∫

e(t)dt
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Figure 12.11 PI control of the process GP(s) = (s + 1)−3. The setpoint weighting b is given

by b = 0 (the slowest response), b = 0.5 and b = 1 (the fastest response). The figure shows the

response of a setpoint step at t = 0 followed by a load step at t = 20.

Its purpose is to eliminate stationary errors. It is hence important that it is the

actual controller error, which we integrate. Consequently, we do not apply setpoint

weighting in the integral part.

An inherently unstable process requires stabilizing feedback. Likewise, the addi-

tion of an integrator renders the controller unstable, requiring stabilizing feedback.

This can lead to problems if the signals in the control loop are confined within

certain bounds, since the feedback no longer works when the control signal becomes

saturated. We illustrate what could happen in Figure 12.12.

–

umax

u

u

r y

+

Measurement and setpoint signals

Control signal

out

Figure 12.12 Integrator windup caused by a limited control signal.
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Figure 12.12 shows the control signal, the measurement signal and the setpoint

for a case where the control signal is limited.

After the first setpoint change, the control signal grows to its upper bound umax.

The saturated control signal is not sufficient to eliminate the control error. The error

integral and thereby the integral term uI will thus grow linearly. Consequently, the

desired control signal grows. We hence obtain a difference between desired control

signal u and the applied control signal uout.

Figure 12.12 shows what happens when the setpoint is eventually decreased to

a level for which the controller can eliminate the error. The setpoint change results

in a change in the control error which causes a decrease of the integral part and

ultimately also in the control signal u. Since the integral part has been allowed

to grow while the control signal was saturated, it will take some time before the

applied control signal uout starts to decrease.

This phenomenon is known as integrator windup. The easiest way to eliminate

this problem is to stop updating the integral part when the control signal is sat-

urated. This obviously requires the saturation to be known. Most industrial PID

controllers are equipped with methods to avoid integrator windup. They are called

anti-windup.

Modification of the D Part

The derivative term of the PID controller is given by

uD = KTd
de

dt
= KTd

(

dr

dt
− dy

dt

)

If the control error e is derived accordingly, the resulting changes in uD may become

very large if e varies rapidly. We shall introduce two modifications of the D part

which address the problem of rapid changes in r and y, respectively.

It is very common to exclude the setpoint r from the derivative part, resulting in

uD = −KTd
dy

dt

In many cases, especially within the process industry, the setpoint is constant during

long periods of time. When eventually there is a change in the setpoint, it is often

rapid. In these contexts it is reasonable not to include the setpoint in the derivative

part, since the derivative of the setpoint is zero during long periods of time. However,

at setpoint changes, the derivative grows very large resulting in large steps in the

control signal, leading to unnecessary wear on the actuators.

In servo problems and other cases which do not involve fast variations of the

setpoint, it is of course still practical to include the setpoint in the derivative part.

Fast, high-frequency variations in the measurement signal y are seldom caused

by variations in the actual process, but rather by measurement noise. It is therefore

not desirable to derive these high frequent variations. In the Bode plot of a PID

controller shown in Figure 12.1, one can clearly see that the gain increases with the

frequency. A certain gain increase in the controller is desirable. However, there is

no reason to increase the gain also for higher frequencies. This can be prevented by

augmenting the derivative part with a low-pass filter, changing the transfer function

of the derivative term according to

KTds −→ KTds

1+ sTf

The time constant Tf of the low-pass filter is often chosen to be a factor N times

the derivative time, i.e.

Tf =
Td

N

where N normally lies in [5, 10].
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The low-pass filter adds a pole to the transfer function of the PID controller.

This pole changes the high frequency gain of the PID controller into K(1 + N),
i.e. constant rather than increasing as previously. It is often desirable to decrease

the disturbance sensitivity even further by introducing an additional filter, which

results in a decreasing - rather than constant - high frequency gain.
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Controller Structures and
Implementation

Thus far we have studied control problems based on the structure of the simple feed-

back loop with one measurement signal and one control signal. In practise it is not

unusual to have several available signals in order to solve various control problems.

There exists several widely used controller configurations, where several signals are

used. We shall here review three of the most common controller structures: cascaded

controllers, feed forward and delay compensation. Finally we address some questions

connected to the fact that most current controllers are implemented in computers

rather than analog circuits.

13.1 Cascaded Controllers

Cascade control is a strategy where two controllers are combined so that the output

of the first controller forms the setpoint of the other. This is illustrated by the

following example.

Example 13.1—Control of a Heat Exchanger

We shall study control of a heat exchanger where steam on the primary side is used

to heat water on the secondary side. We want to control the temperature on the

secondary side of a heat exchanger by controlling the steam valve on its primary

side. This can be achieved by letting the temperature controller actuate the steam

valve directly as shown in Figure 13.1. What actually affects the temperature is not

the position of the valve, but rather the steam flow. If the valve is linear and the

steam flow does not vary, there is a constant relation between the valve position and

the steam flow. Usually, however, valves exhibit some form of nonlinearity and the

steam pressure varies over time.

E.g. assume that the steam pressure on the primary side suddenly starts to

decrease. As a consequence the steam flow will decrease, leading to slower heating

of the water on the secondary side. The temperature controller will issue a control

R1

T

r1

y1

u1

Figure 13.1 Temperature control of a heat exchanger.
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R1R2

F T

r1

y1

u1r2

y2

u2

Figure 13.2 Cascade control of a heat exchanger.

signal corresponding to a more open valve position and after a while the steam flow

will anew stabilize at a correct level. Consequently this strategy works, but the price

is rather large disturbances in the temperature.

If one can measure the steam flow it is possible to incorporate a flow controller

according to Figure 13.2. We form an inner control loop, which controls the steam

flow. The setpoint of the flow controller R2 is given by the control signal of the

temperature controller R1. This is an example of a cascade control.

Cascading the controllers leaves the master controller R1 with a simpler task.

Rather than letting R1 bear the entire control burden, part of the assignment is

reassigned to the controller R2. The controller R1 now only needs to produce a flow

setpoint. Subsequently, it is up to the flow controller to maintain a flow close to this

setpoint. A pressure variation will efficiently be eliminated by the flow controller,

leading to a decreased disturbances in the temperature, as compared to the case

with only one PID controller.

The general principle of cascaded control is shown in Figure 13.3. The primary

goal is to control the signal y1 by means of the controller R1. This could be achieved by

using merely the controller R1 and letting its control signal enter the process directly.

During cascade control one exploits the availability of an additional measurement

signal, y2. By locally establishing a feedback connection from y2 by means of the

controller R2 one can achieve more efficient control, than would be possible with

only one controller. The controller R1 is often referred to as the primary or master

controller, whereas R2 is known as the secondary or slave controller.

Cascade control is a typical example of how one can achieve more advanced

control solutions, despite the simple structure of the PID controller, by combining

several controllers. The foremost reason to use cascade control is to handle distur-

bances which enter the process at P2, before they give rise to disturbances in the

primary measurement signal y1. An example of this are the pressure variations in

the above example. A prerequisite is obviously that the inner control loop is signif-

icantly faster than the outer one. Another advantage with cascade control is that

the dynamics which the primary controller is to control can be simplified. Without

cascade control, the controller R1 works on a process consisting of the two section

P1 and P2. When cascading is implemented the process sections are changed to a

R1 R2 P2 P1

u1 u2 y2 y1

Figure 13.3 The principle of cascade control.
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combination of P1 and P2 in a feedback connection with R2.

13.2 Feed Forward

Feedback is an efficient method to solve control problems. One measures the signal

to be controlled, compares it to a setpoint and subsequently computes a control

signal based on this comparison. The feedback strategy, however, has a weakness

in that the controller does not react to disturbances before they contribute to the

control error. In many cases it is possible to measure a disturbance before it affects

the control error. By compensating for disturbances at this earlier stage in the loop

it is possible to dramatically improve control performance. The strategy used to do

this is known as feed forward.

A well-known example application of feed forward is temperature control in

apartments. Most apartments are equipped with a thermometer. It measures the

outdoor temperature, being the most significant disturbance when controlling the

indoor temperature.

By exploiting the information about the outdoor temperature one can compensate

for variations in the outdoor temperature before they affect the indoor temperature.

If, for instance, the outdoor temperature decreases, the feed forward suggests an

increased radiator water temperature, despite that there has not yet been a decrease

in the indoor temperature. By means of this feed forward, the variations in the indoor

temperature are considerably reduced.

It is central to the efficiency of the feed forward how early in the loop the

disturbance can be measured. If this can be done long before the disturbance is

seen in the measurement signal, the feed forward can be made more efficient. This

is especially true if the process contains a long delay. If we can only measure the

disturbance when it has already affected the process output, there is generally no

benefit in implementing a feed forward connection. Here one might just as well let

the controller handle the disturbance by means of feedback.

We illustrate the principle of feed forward and how to calculate a feed forward

link by means of an example.

Example 13.2—Feed forward of disturbance flows in the tank process

Figure 13.4 shows a tank process consisting of two tanks. Water is pumped into

the upper tank and the objective is to control the level in the lower tank. In this

example we shall study two types of disturbances. In the first case we assume that

GFB

v1

v2

1

2

u

uFB

y

r

Figure 13.4 Feed forward in Example 13.2.
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Figure 13.5 Feed forward in Example 13.2 when the flow disturbance v1 enters the upper

tank.

a disturbance flow v1 enters the upper tank and in the second case we have a

disturbance flow v2 entering the lower tank.

Obviously, one does not need to treat these disturbances explicitly, since they are

indirectly counteracted by the feedback control. If the flows are measurable we can,

however, improve the control performance significantly by introducing feed forward.

We begin by studying the first case, when the flow disturbance enters the upper

tank. The control problem is described by the block diagram shown in Figure 13.5.

The transfer function GP1 describes the relation between inflow and outflow in

the upper tank, while GP2 describes the relation between the inflow and the level

in the lower tank. We have here disregarded the pump dynamics and assumed that

the control signal u is given by the controlled flow. The usual feedback part of the

controller is given by the transfer function GF B, which consequently determines the

feedback term uF B of the control signal based on the setpoint r and the measurement

y.

Finally, we have the disturbance flow v1. Since it enters the process at the same

point as the controlled flow, it is added to the process input. The disturbance signal

v1 is sent to the feedforward part of the controller GF F , resulting in the feedforward

term uF F . The control signal is thus given by

u = uF B + uF F

In this example it is obvious how the feed forward part of the controller can be

determined. If we choose GF F = −1 so that

UF F = GF F V1 = −V1

the disturbance flow will never give rise to a change in the level y. It is also obvious

from figure 13.4 that a change in the disturbance flow v1 gives rise to an equally

large change in the controlled flow u, but with the opposite sign.

We will now move on to study the problem when the disturbance flow v2 enters

the lower tank. The block diagram of the problem is shown in Figure 13.6.

The optimal feed forward is one which makes disturbance variations invisible

in the measurement signal. We can thus compute the optimal feedforward transfer

function GF F by computing the transfer function from v2 to y and choosing GF F so

that this transfer function becomes zero. However, we do not need to do all this. It

is sufficient to consider the transfer function from v2 to the signal x in Figure 13.6.

The signal x corresponds to the inflow of the lower tank.

uFB

uF F

u
r

v2

yx
GFB

GF F

GP1 GP2
∑∑

Figure 13.6 The feed forward in Example 13.2, where the disturbance flow enters the lower

tank.
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The transfer function from v2 to x is obtained from

X = V2 + GP1(UF B +UF F) = GP1UF B + (1+GP1GF F)V2

This yields the optimal feed forward

GF F = −
1

GP1

which results in the feed forward term

UF F = GF F V2 = −
1

GP1

V2

Most processes have low-frequency characteristics, which means that their gains

decrease for high frequencies. It is thus common for process transfer functions to

have more poles than zeros. A previously used model of a tank is e.g. given by

GP1(s) =
1

s+ a

When computing the optimal feedforward transfer function GF F , one always

obtains an expression, which involves inverting the part of the process dynamics

situated between the control signal u and the place where the disturbance enters

the process. In the case of the disturbance v1 this was no problem, since there existed

no such dynamics. This was the case since the disturbance entered the process in

the same place as the control signal. In the actual case, however, the following feed

forward terms is obtained:

UF F = −
1

GP1

V2 = −(s+ a)V2

It means that we have to derive the disturbance flow v2. This is commonly avoided,

since it gives rise to disturbance sensitivity and large variations in the control

signal. Either one can extend the feed forward with a low pass filter or, which is

more common, one can skip the derived terms and suffice with the static feed forward

uF F = −av2

13.3 Delay Compensation

The derivative part of the PID controller is used to predict future values of the

measurement signal. This is done by studying its derivative. Evidently this method

works poorly if the process involves a long delay. In this case one could of course

use a PI controller, with the loss of the prediction provided by the D part. This

is, however, a significant disadvantage, since the prediction of future control errors

is especially useful when we have long process delays. As a consequence special

controllers have been developed, which can predict future control errors also in

processes with long delays. These predictions are, however, not based on deriving

the measurement signal.

The principle of delay compensation controllers is to construct the control er-

ror prediction based on the control signal, rather than the measurement signal.

By devising a model of the process to be controlled and letting the control signal

drive both the real process and the model, one can obtain near-future values of the

measurement signal of the process by studying the measurement signal of its simu-

lation. The most common delay compensation strategy is implemented in the Smith
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Figure 13.7 The working principle of the Smith predictor.

predictor. A schematic sketch, illustrating the working principle of this strategy is

shown in Figure 13.7.

Apart from the usual controller parameters, the Smith predictor needs a model

of the process. Especially, it needs to know the length of the process delay. The figure

shows how the control signal enters the process as well as models of the process,

one with and one without the estimated process delay.

Let us assume that the model is an accurate deception of the process. The two

signals y and y1 will then be identical and therefore cancel each other. The remaining

signal entering the controller is y2, i.e. the signal we would have obtained if there

was no delay in the process. This way the controller works against a simulated

process, identical to the real process, with its delay removed. The control performance

becomes as good as it would have been without the delay, except the fact that the

measurement signal is obviously still delayed.

In reality the model is, however, not a perfect description of the process. Conse-

quently, the signal going back into the controller is not identical to y2. This usually

calls for a more conservative tuning of the controller than one would have chosen if

the delay was not present.

We shall now give an example of control using the Smith predictor.

Example 13.3—The Smith predictor

Figure 13.8 shows the control of a first order process with a delay. The figure shows

the control performance of both the PI controller and the Smith counterpart.

The PI controller is tuned to provide fast control action at step changes in

the setpoint, without overshoots. At the setpoint change the control signal steadily

starts to integrate the control error. The integration is slow enough not to cause any

overshoot.

The delay compensation controller is also tuned not to cause any overshoot. It

responds to setpoint changes and load disturbances significantly faster than the PI

controller. We can especially notice a crucial improvement at setpoint changes, as

compared to the PI case. This is because the Smith predictor issues a control signal

change before the setpoint change is visible in the measurement signal.

At load disturbances none of the controllers can react before the disturbance is

visible in the measurement signal. The only remedy here would be to introduce a

feedforward link from the disturbance.

We shall now conduct a closer study of the Smith predictor. The controller

described by Figure 13.7 is equivalent to the block diagram shown in Figure 13.9.

The transfer function of the process is given by

GP(s) = GP0(s)e−sL

The estimated process is correspondingly described by the transfer function

ĜP(s) = ĜP0(s)e−sL̂
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Lecture 13. Controller Structures and Implementation

The controller GR0, which is part of the Smith controller, is often a PI controller.

From the block diagram in Figure 13.9 the control signal of the Smith controller

can be computed as

U = GR0(R − Y + Y1 − Y2)
= GR0(R − Y + ĜP0e−sL̂U − ĜP0U)
= GR0(R − Y ) + GR0ĜP0(e−sL̂ − 1)U

If GR0 is a PI controller, we see that the Smith controller can be considered as a

PI controller with an added term, which is driven by the control signal u. This is

the term responsible for the prediction. In other words we have replaced the mea-

surement signal derivative based prediction in the PID controller with a prediction

based on the process model ĜP and the control signal.

If the model is identical to the real process, i.e. if ĜP = GP and if we do not

have any process disturbances, the signals y and y1 will be identical. The only signal

re-entering the controller GR0 will then be y2. This yields the control signal

U = GR0(R − Y2) = GR0(R − GP0U) = GR0

1+ GR0GP0

R

Subsequently, the relation between the setpoint and measurement signal is given

by

Y

R
= GPGR0

1+ GP0GR0

= GP0GR0

1+ GP0GR0

e−sL

This means that we have a transfer function identical to the case of a process without

delay, GP = GP0, except from the fact that the measurement signal is delayed by

a time L. Ideally this means that the controller GR0 can be determined as if there

was no process delay. In reality, however, modelling errors and robustness margins

force us to tune the controller more conservatively. In Lecture 6 we motivated that

the cross-over frequency should not be chosen faster than ω c L < 0.2, where L is the

length of the process delay.

Measurement signal

Setpoint

Control signal

Figure 13.8 Comparison between the Smith controller (thick lines) and a PI controller (thin

lines). The figure shows the control performance when a setpoint change is followed by a load

disturbance.
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Figure 13.9 The Smith predictor.

13.4 Sampling

In the 30-ies and 40-ies, when controller manufacturers noticed an upswing due to

the ongoing industrialization, most controllers were implemented using pneumatic

technology. It did not take long before analog electronic controllers were starting to

replace the pneumatic ones. In the middle of the 70-ies another paradigm shift took

place. The analog technology was replaced with digital circuitry. Today pneumatic

controllers are still used in environments where it is not possible or desirable to

introduce electricity. Other than that, mostly all controllers are digital and computer

based.

The fact that almost all controllers are implemented in computers introduces a

whole set of new problems related to how signals are treated. The analog inputs

are discretized by an A/D converter and the digital outputs are converted to analog

signals using a D/A converter.

Figure 13.10 shows an analog measurement signal and its sampled realization.

By sampling a signal, information is lost. The controller obtains no information

regarding the measurement signal between the sampling events. It is therefore

important that the sampling frequency is adequately high.

If the sampling frequency is not adequate, a phenomenon known as frequency

folding or aliasing can occur. The problem is illustrated by Figure 13.11.

The figure shows the signal s with a period of just above a second, which has been

sampled with a period of one second. Due to the relatively low sampling frequency,

the controller will not obtain the signal s, but rather the signal sa, which has a

significantly lower frequency. The signal sa is known as an alias of the signal s. (It

is this effect which causes wheels with spokes and airplane propellers to appear as

if they stand still or move backwards in movies.)

The sampling frequency introduces an upper bound on how high frequencies are

visible to the controller. In Figure 13.11 we see that this frequency, known as the

Figure 13.10 An analog signal and its sampled realization.
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Figure 13.11 Illustration of the folding phenomenon. The figure shows the actual signal s and

its alias sa.

Nyquist frequency, is given by

ω N =
ω s

2

where ω s is the sampling frequency. In other words we must keep the sampling

frequency at least twice as high as the highest frequency relevant to the controller.

Even if we choose the sampling frequency adequately high to represent all fre-

quencies of interest in the system, the problem of high-frequent noise remains. It is

therefore important that the analog signals are low-pass filtered before they enter

the A/D converter, so that frequency components above the Nyquist frequency are

eliminated. If this is not done, there exists a risk that high-frequent disturbances

show up as low-frequent ones in the controller due to aliasing.

13.5 Discretization of the PID Controller

If one wants to implement a continuous controller, e.g. a PID controller, in a com-

puter, one somehow has to approximate the derivations and integrations. This can

be readily done by approximating the derivatives by differences and integrations by

summations. We shall now see how this discretization is carried out.

We begin with the analog PID controller, given by the Laplace transformation

U = K

(

(bR − Y ) + 1

sTi

E − sTd

1+ sTd/N
Y

)

This is the version we arrived at in the previous lecture, after the practical modifi-

cations of the standard form.

The discrete control signal is given by

u(kh) = P(kh) + I(kh) + D(kh)

i.e. a sum of the proportional, integral and derivative parts. The sampling interval

is denoted h and k is an integer. The discrete control signal u(kh) can now be

described as a function of the controller inputs r and y at the sampling instants

t = kh, (k− 1)h, (k− 2)h, . . . . We do this for one term at a time.

Discretization of the P Part

The continuous P part is given by

uP(t) = K(br(t) − y(t))

Since the P part does not contain any dynamics, the discretized version simply

becomes

P(kh) = K(br(kh) − y(kh))
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13.5 Discretization of the PID Controller

Discretization of the I Part

The continuous integral term is given by

uI(t) =
K

Ti

∫ t

0

e(t)dt

Here we have to approximate the integral and do so by replacing it with a sum.

I(kh) = K

Ti
· h

k
∑

i=1

e(ih)

A more useful form of the integral term is the recursive form

I(kh) = I(kh− h) + K h

Ti

e(kh)

Discretization of the D Part

From the transfer function of the PID controller we get the following equation for

the derivative term:
(

1+ sTd

N

)

UD = −KTdsY

Inverse transformation provides the following expression for the derivative term:

uD(t) +
Td

N

duD(t)
dt

= −KTd

dy(t)
dt

Here we have to approximate the derivatives by replacing them by differences.

D(kh) + Td

N

D(kh) − D(kh − h)
h

= −KTd

y(kh) − y(kh− h)
h

The derivative term thus becomes

D(kh) = Td

Td + Nh
D(kh − h) − KTd N

Td + Nh
(y(kh) − y(kh− h))

The obtained discrete PID controller will work just as its continuous counterpart

given that the sampling period is short in comparison to the dominant time constant

of the closed-loop system. A rule of thumb is to choose the sampling period short

enough to allow ten samples during one time constant.

125



Lecture 14

Example: The Ball on the
Beam

This lecture is dedicated to solving a concrete control problem. The objective is to

illustrate a typical approach used in solving control problems. We thus begin with

a modelling part, in which we obtain a mathematical description of the processes

dynamics. Subsequently we analyze the control problem and discuss different pos-

sible solutions. Finally we choose a strategy and conduct the calculations leading to

a controller.

14.1 Model Building

The first task is to understand the process and describe its dynamical properties

mathematically. We begin by describing the process and its functionality.

Process Description

The process is a laboratory process—“The ball on the beam”. It is shown in Fig-

ure 14.1.

The process can be divided into three parts; a ball, a beam with a track in which

the ball can roll, and an electric motor, turning the beam. The aim of the control is

to steer the inclination of the beam via the motor so that the ball tracks a position

setpoint.

The process has one control signal, being the voltage over the motor. There exist

two measurement signals; the angle of the beam with respect to the horizontal plane

and the position of the ball on the beam. The position of the ball is measured by

means of a resistive wire, running along the edge of the beam.

Figure 14.1 The ball on the beam.
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φ

z

Figure 14.2 Schematic description of the beam process with measurement signals φ and z.

u φ z
Gφ Gz

Figure 14.3 Block diagram of the ball on the beam process.

A schematic description of the process is shown in Figure 14.2, where the mea-

surement signals—beam angle φ and ball position z—are both marked. Since there

exist two measurement signals, the transfer function of the process can be divided

into two parts as shown in Figure 14.3. The first partial transfer function Gφ de-

scribes the dynamics between control signal u and angle φ. The second partial

transfer function Gz describes the relation between beam angle φ and ball position

z. In the modelling part we will consider these two parts independently.

The Dynamics between Control Signal and Beam Angle

The motor contains an internal feedback connection, making the control signal

proportional to the angular speed of the beam, i.e.

φ̇ ( kφ u

where kφ is a constant. It is easy to convince oneself of this by conducting step

response experiments on the process. Since it is an integrating process, there exist

only one equilibrium for the control signal, as the beam is still. If a change is made

in the control signal from this equilibrium, the beam will rotate with a constant

angular speed. Gain kφ can be experimentally determined by e.g. studying the step

response or by frequency analysis.

Figure 14.4 shows the result of a frequency analysis conducted on the beam.

The Bode plot shows that the low-frequency process dynamics can be well ap-

proximated by an integrator, i.e. that the transfer function

Gφ(s) =
kφ

s

is a good model of the process. One can also see that pGφ(iω)p = 1 for ω ( 4.5, which

yields the gain kφ ( 4.5. The transfer function Gφ thus becomes

Gφ(s) =
4.5

s

The Bode plot also shows that this simple model is only valid for low frequencies.

For higher frequencies other dynamics starts to influence the system. For frequencies

up to ω ( 10 rad/s the gain curve matches the model well while the phase curve

has decreased from the model value of −90○ to approximately −100○. It is very

important to keep the validity range of the model in mind. If we for some reason

want to work in the higher frequency range further on, we must obtain a new model

describing the process also for these frequencies.
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Figure 14.4 Bode plot of the angle process.

The Dynamics between the Angle and the Position of the Ball

The relation between the ball position z and the beam angle φ can be calculated

using mechanical laws. When the beam is inclined, a momentum causes the ball to

roll. This is illustrated in Figure 14.5. There is also a centrifugal force acting on the

ball, but this force is neglected. The momentum of the ball is given by

M = m�r sinφ

where m is the mass of the ball and r is the ball radius. The momentum of inertia

of the ball with respect to the contact surface is obtained from a table and given by

J = 7mr2

5

From the momentum equation

M = Jω̇

we can now compute the angular acceleration of the ball:

ω̇ = M

J
= 5� sinφ

7r

φ

φ

r

m�

Figure 14.5 The ball on the beam.
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Figure 14.6 Bode plot of the position process. The dashed curves correspond to the model

Gz = 10/s2.

This equation yields the relation between φ and ω. However, we are interested in

the relation between φ and z. Since

ż = rω

this relation is given by

z̈ = rω̇ = 5� sinφ

7
( 7 sinφ ( 7φ

The last approximation assumes small angular variations.

Using the laws of mechanics we have thus arrived at the transfer function

Gz =
7

s2

i.e. a double integrator with gain 7. This transfer function describes the relation

between the angle φ, measured in radians, and the position z, measured in meters.

What we still lack in the transfer function is the conversion factors to volts of

the sensors. Figure 14.6 shows the result of a frequency analysis conducted on the

beam. The Bode plot confirms that the double integrator is an adequate model of the

process. The gain can be determined by e.g. noting that the gain is approximately

one at the frequency ω = 3.2. This gives

pGz(3.2i)p = kz

3.22
( kz

10
= 1

which means that the gain is approximately 10. The transfer function thus becomes

Gz =
10

s2

The figure shows that the model is accurate for frequencies up to ω ( 5 rad/s. Above

this frequency the model is no longer a good representation of the model.

A problem, which is not covered by the model, is that the ball jumps at too fast

angular changes, especially if it lies far away from the pivot point of the beam. The

model does not take the centrifugal force on the ball into account either.
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Figure 14.7 Block diagram of the process.

Summary

The obtained model of the process is shown in Figure 14.7. The first transfer function,

Gφ , is valid for frequencies up to ω ( 10 rad/s while the second transfer function,

Gz, is only valid up to ω ( 5 rad/s.

14.2 Analysis

The process to be controlled has now been modelled as shown in Figure 14.7. The

transfer function from control signal u to ball position z is given by

GP = GzGφ =
45

s3

The process is i.e. well described by a triple integrator and thus unstable. Its

Bode plot has a gain curve with slope −3 and a phase curve showing a constant

−270○ phase for low frequencies.

We have introduced several control strategies throughout the course and we shall

now discuss some alternative ways to control the ball on the beam.

Can the process be controlled using a PID controller? The answer is no. Since

the process has a phase shift of −270○, a controller with a phase lead of more than

90○ is required to obtain a positive phase margin and thus stabilize the process. The

PID controller can theoretically achieve a maximal phase lead of 90○ using the D

part. However, with a filter on the D part, one will never reach 90○.
One possible solution is to combine the PID controller with lead compensation

and in this way obtain a phase advance larger than 90○. Since we have access to

two measurement signals, better solutions can be obtained by using both of them.

One approach is to use two PID controllers cascaded according to Figure 14.8. The

inner PID controller, PID2, can be used to move the integrator of Gφ into the left

half plane. This results in a phase increase for low frequencies from −90○ to 0○.
The outer PID controller, PID1, does no longer control the entire process GP , but

rather a process consisting of two integrators yielding a phase shift of −180○ for low

frequencies. As opposed to GP , this process allows for PID control.

An other approach would be to conduct the controller calculations in the fre-

quency domain, utilizing lead-/lag compensation links. The lead link, which we

studied previously in the course, cannot stabilize GP on its own. However, one can

replace the controller PID1, in the cascade solution above, with a lead link.

A third approach would be state feedback. Since the process is of order three,

this requires at least three states to close the loop over. We only have two available

states, but through Kalman filtering, a third state can be estimated.

We choose to solve the control problem using two cascaded PID controllers ac-

cording to Figure 14.8. When we are done we will study the solution and show that

the obtained controller could just as well have been the result of other synthesis

methods.

14.3 Control

We have now arrived at the actual controller synthesis part. We shall divide it

into two parts. First we determine the secondary controller, PID2, in the cascade
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configuration shown in Figure 14.8. This is done in a way yielding good control

performance of the beam angle. Subsequently we determine the primary controller

PID1 so that good control performance of the ball position with respect to the beam

is obtained.

Angle Control

The transfer function of the angle control part of the process is given by

Gφ =
4.5

s

We shall control this part of the process using a PID controller. Since the process

dynamics are uncomplicated, it will in fact suffice to use the P controller

GR2 = K2

The closed-loop transfer function becomes

G2 =
4.5K2

s+ 4.5K2

= 1

1+ sT2

where T2 = 1/(4.5K2) is the time constant of the closed-loop system. Thanks to the

integrator of the process, the stationary gain is given by G2(0) = 1. This means

that setpoint steps do not result in persisting control errors. Since this part of the

process does not involve any load disturbances, we do not need to introduce integral

action in the controller.

Theoretically the time constant T2 of the closed-loop system can be chosen arbi-

trarily short without causing stability issues. The Bode plot in Figure 14.4, however,

shows that the model is uncertain for frequencies above 10 rad/s. A cross-over fre-

quency of 10 rad/s means that

pG0(iω c)p = pG0(i · 10)p = K2

4.5

10
= 1

i.e.

GR2 = K2 =
10

4.5
( 2.2

This yields the closed-loop time constant T2 = 1/(2.2 · 4.5) ( 0.10 s. The resulting

speed is adequate and does not manifest any major limitations when we move on to

the part of the control problem involving the position of the ball with respect to the

beam.

Ball Position Control

We now move on to the synthesis of the primary controller. Thanks to the cascading

and the secondary controller, the process GP involving at least three integrators has

been simplified into

GP1 =
1

1+ 0.1s
·

10

s2

This transfer function has the low-frequency phase −180○ and can be stabilized by

means of the D part of the PID controller.

PID1 PID2 Gφ Gz
r u1 u φ z

Figure 14.8 Cascade control of the beam process.
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There are many ways to determine the controller parameters. Since the process

has third-order dynamics, the poles cannot be arbitrarily placed. We therefore choose

the controller parameters aided by the Bode plot. The design is simplified if we

assume that the controller is given in the series form

G′
R1 = K ′

(

1+ 1

sT ′i

)

1+ sT ′d
1+ sT ′d/10

From the equations it is evident that the controller contains a filter with time

constant T ′d/10 on its derivative part.

If we compare the equation of G′
R1 to the lead–lag links studied in Lecture 11,

we see that the controller is a product of a lag link and a lead link. The lag link is

given by

1+ 1

sT ′i
= sT ′i + 1

sT ′i
= s+ 1/T ′i

s
= s+ a

s+ a/M

where a = 1/T ′i and M →∞. The lead link is given by

K ′ 1+ sT ′d
1+ sT ′d/10

= K ′ 1+ s/b
1+ s/(bN)

where b= 1/T ′d and N = 10.

We can now determine the controller parameters by means of the methods from

Lecture 11. By determining the parameters of the lead link, we determine the

derivative time T ′d and the gain K ′. Thereafter we determine the integral time T ′i
from the parameter a of the lag link.

Lead Compensation The first step in the lead compensation is to give specifica-

tions on the cross-over frequency and the phase margin. In this case, it is not easy

to find reasonable specifications, since the process has such a large phase lag. The

phase of GP1 goes from −180○ at low frequencies to −270○ at high frequencies.

Suppose that we would like to have a phase margin φm = 40○. It means that the

compensator must provide a phase advance of more than 40○. If we choose N = 10,

Figure 11.11 shows that the lead compensator gives a phase advance of 55○ at the

cross-over frequency. With the rule of thumb a = 0.1ω c, the lag compensator gives a

phase decrease of −6○ at the cross-over frequency. This means that the combination

of the compensators gives a phase advance of 49○ and we can choose a cross-over

frequency where the process has the phase −189○, i.e.

arg GP1(iω c) = −180○ − arctan(0.10ω c) = −189○

This gives the cross-over frequency ω c ( 2 rad/s.

After choosing ω c we can now determine T ′d and K ′ according to the method

described in Lecture 11. The derivative time T ′d is determined first, so that the

maximal phase lead occurs at the cross-over frequency.

b
√

N = ω c [ T ′d =
1

b
=
√

N

ω c
=
√

10

2
= 1.6

Subsequently K ′ is chosen so that ω c really becomes the cross-over frequency, i.e.

so that the magnitude of the open loop transfer function is unity at ω c. This yields

the equation

pG′
R1(iω c)GP1(iω c)p = K ′√N ·

1
√

1+ω2
c T2

2

·

10

ω2
c

= 1

where we have exploited that the magnitude of the compensation link is K ′√N at

the cross-over frequency, cf. Lecture 11. We have also neglected the lag component,

since it has a gain close to one at the cross-over frequency. The equation now gives

us the gain

K ′ =
ω2

c

√

1+ω2
c T2

2

10
√

10
= 22

√
1+ 220.102

10
√

10
= 0.13
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14.3 Control

Lag Compensation Finally we determine the integral time T ′i , using the same

rule of thumb as we learnt in Lecture 11. The integral time is chosen so that the

phase at the cross-over frequency is not decreased by more than 6○. This gives us

the equation

a = 0.1ω c [ T ′i =
1

a
= 1

0.1ω c

= 1

0.1 · 2
= 5.0

Result We have now determined the parameter sets for the two cascaded con-

trollers. The obtained parameters are

GR1 : K ′ = 0.13 T ′i = 5.0 T ′d = 1.6

GR2 : K2 = 2.2

Figure 14.9 shows a Bode plot of the loop transfer function GR1GP1. It shows that

we have obtained the desired cross-over frequency ω c = 2 rad/s and phase margin

φm = 38○.
Figure 14.10 shows the result of a simulation of the beam process, utilizing the

computed controllers. It first shows the response to a setpoint step. At t = 20 a load

disturbance is introduced. The load disturbance corresponds to a suddenly applied

pressure on the ball.

The Bode plot and the simulation shows that the obtained controller is reason-

able. However, the real process involved nonlinearities and unmodeled dynamics and

the implementation of the controller leads to delays and necessitates filters, which

have all been omitted in the above calculations. Hence we should expect deviations

from the simulation. Nevertheless the experiment shows us that these deviations

are small and that the computed controller works well on the real process.

Other Approaches

We have now solved the control problem and chose to do so using two cascaded PID

controllers. As mentioned earlier, we could have used other approaches. We shall

now round off by investigating the obtained controller and showing that it could

well have been obtained through other methods. For example, it could have been the

result of a state feedback from Kalman filtered state estimates. This is illustrated in

Figure 14.11. The block diagram shows a state feedback with integration where the
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Figure 14.9 Bode plot of the open-loop transfer function GR1GP1.
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Lecture 14. Example: The Ball on the Beam

−5 0 5 10 15 20 25 30 35 40

0

0.5

1

−5 0 5 10 15 20 25 30 35 40

0

0.2

Measurement signal y

Control signal u

time

Figure 14.10 The result of a simulation of the beam process. The upper curve shows the ball

position at setpoint and load steps. The lower curve shows the corresponding control signal.
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Figure 14.11 Cascade control of the beam process, interpreted as state feedback from Kalman

filtered state estimates.

speed with respect to the beam, ż, is estimated by the Kalman filter. If we disregard

the filter on the derivative part of the PID controller, it is possible to show that the

control in Figure 14.11 is identical to the two cascaded PID controllers, given the

following choice of parameters

k1 = K2 k2 = K K2Td k3 = K K2

kr = K K2b ki = −
K K2

Ti

Here, GR1 is given in parallel form. The only difference is that the position of the

ball is estimated by the derivative of the measurement signal in the PID case, while

it is estimated by means of a Kalman filter in Figure 14.11.

It would have been possible to obtain the PID parameters through pole placement,

even though we would not have been able to place the outer loop poles arbitrarily.
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We could also have utilized other PID tuning methods.

By this final section we have concluded that the different methods of controller

synthesis, which we have studied, might very well result in the same controller. The

difference between the methods thus lies in their computational methodology, rather

than the resulting controller.

135



Index

aliasing, 123

anti-windup, 114

asymptotic stability, 46

ball on beam, 126

bandwidth, 92

block diagram, 19

Bode plot, 30, 36

specifications, 92

cancellation, 89

cascade control, 116

Cauchy’s argument principle, 57

characteristic polynomial, 18

closed-loop system, 43

control error, 8

control signal, 8

saturation, 114

controllability, 71

controller

implementation, 116

master, 117

on/off, 8

PID, 103

primary, 117

secondary, 117

slave, 117

Smith predictor, 121

state feedback, 68

structure, 116

corner frequency, 33

cross-over frequency, 55, 93

delay, 34, 38

compensation, 120

margin, 56

process, 38

discretization, 124

feed forward, 118

feedback, 8

filter

Kalman, 76

low pass, 114

final value theorem, 63

frequency folding, 123

frequency response, 28

gain margin, 55

impulse response, 21

initial value theorem, 23

input (signal), 8

integrator windup, 114

Kalman filter, 76

lag compensation, 95

Lambda method, 108

Laplace transformation, 17

lead compensation, 98

lead–lag compensation, 92

lag, 95

lead, 98

linearization, 15

load disturbance, 61

loop transfer function, 52

low-pass filter, 114

master controller, 117

measurement (signal), 8

measurement noise, 61

modelling error, 62

momentum equation, 42

Ms-value, 61

multi-capacitive processes, 37

noise, 61

nonlinear processes, 14

Nyquist criterion, 52

Nyquist curve, 29, 36

Nyquist frequency, 124

observability, 77

on/off control, 8

open-loop system, 41

oscillative processes, 37

output (signal), 8

output feedback, 84

parallel form, 103

phase margin, 55

PID controller, 8, 103

derivative part, 11, 114

discretization, 124

filtering, 114
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integral part, 10, 112

integrator windup, 114

parallel form, 103

practical modifications, 111

proportional part, 9, 112

series form, 103

setpoint handling, 112

transfer function, 18

pole, 18, 36

pole placement, 45

pole-zero plot, 36

primary controller, 117

process

delay, 38

integrating, 37

inverse responses, 39

model, 13

multi-capacitive, 37

nonlinear, 14

oscillative, 37

single capacitive, 36

process models, 13

proportional band, 9

reference value, 8

regulator problem, 63

relative damping, 26

rise time, 42

root locus, 48

sampling, 123

saturation, 114

secondary controller, 117

sensitivity function, 60

series form, 103

servo problem, 63

setpoint, 8

handling, 109

setpoint (value)

handling, 112

single-capacitive process, 36

singularity plot, 36

slave controller, 117

Smith predictor, 121

solution time, 42

stability, 41

stability margin

delay, 56

gain, 55

phase, 55

state feedback, 68

from estimated states, 84

integral action, 76

state-space model, 13

static gain, 23

stationary errors, 62

stationary point, 15

steam engine, 41

P control, 43

PI control, 44

step response, 22, 36, 42, 106

time constant, 24, 42

transfer function, 17

transient analysis, 21

two degrees of freedom, 110

weighting function, 21

windup, 114

zero, 18, 36

zero-pole cancellation, 89

zeros, 110

Ziegler–Nichols’ methods

frequency method, 107

step response method, 106
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