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Solutions to Automatic Control Exam January 17, 2025

1. This problem deals with PID control of the double-tank process.

a. Write down the transfer function of the (ideal) PID controller. (2 p)

b. You are controlling a double-tank process with a PID controller and are not
happy with the result—the lower tank level is oscillating too much. Which of
the following choices is/are likely to reduce the oscillations?

• Increase K

• Decrease Ti

• Increase Td (3 p)

c. The D-part can cause problems if there are step changes in the reference signal.
Briefly describe what the problem is and how the controller can be modified
to deal with the problem. (2 p)

d. You invest in an extra sensor that can measure an external disturbance flow
that enters the upper tank. Explain how the control law should be modified
to compensate for this disturbance. Draw a block diagram that explains your
solution. (3 p)

Solution

a. GR(s) = K

(

1 +
1

sTi
+ sTd

)

b. • Increasing K typically means a faster system but worse stability margins.

• Decreasing Ti means more integral action, which usually means worse
stability margins.

• Increasing Td increases the damping, which usually means better stability
margins.

The only correct answer is hence to increase Td. (Note that the effect of chang-
ing K and Ti must be commented to receive full point)

c. The derivative part is given by

D(t) = KTd
de(t)

dt
= KTd

(
dr(t)

dt
−

dy(t)

dt

)

If r(t) changes as a step, then D(t) will be unlimited. A simple solution is to
let the derivative part act only on the output:

D(t) = −KTd
dy(t)

dt

d. If the measured disturbance flow has the same units as the control signal, the
controller should simply subtract the disturbance flow from the control signal.
In the block diagram below, this would mean chosing GFF = −1 to eliminate
the influence of the disturbance v1 entering the upper tank GP1.
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2. The population dynamics of two species of fish is given by

ẋ1 = x1(40− x1)− 2x1x2

ẋ2 = x1x2 − 20x2

a. Find the three stationary points of the system. (3 p)

b. Linearize the system around one of the stationary points you found in a. (4 p)

c. Determine the stability of the linearized system you found in b. (2 p)

Solution

a. We have

ẋ1 = x1(40− x1)− 2x1x2 = f1(x1, x2)

ẋ2 = x1x2 − 20x2 = f2(x1, x2)

In a stationary point (x01, x
0
2), all time derivatives should be zero. We have

0 = x01(40− x01)− 2x01x
0
2

0 = x01x
0
2 − 20x02

with the solutions (x01, x
0
2) = (0, 0), (x01, x

0
2) = (40, 0), and (x01, x

0
2) = (20, 10).

b. Compute the partial derivatives:

∂f

∂x
=





∂f1
∂x1

∂f1
∂x2

∂f2
∂x2

∂f2
∂x2



 =




40− 2x1 − 2x2 −2x1

x2 x1 − 20





Evaluate in a stationary point. The three possible solutions are:

∂f

∂x
(0, 0) =




40 0

0 −20



 = A1

∂f

∂x
(40, 0) =




−40 −80

0 20



 = A2

∂f

∂x
(20, 10) =




−20 −40

10 0



 = A3

After a change in variables, ∆x1 = x1−x01, ∆x2 = x2−x02, we get the linearized
system

∆ẋ = Ai∆x

for one of the A matrices found above.
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c. Stability is determined by the eigenvalues of the A matrix. For the diagonal
A1 and the triangular A2, we immediately see that one eigenvalue is positive
(40 and 20, respectively). For A3, we get the characteristic polynomial

det(sI −A3) = det




s− 20 40

−10 s



 = s2 − 20s+ 40

Since one coefficient is negative, the linearized system is unstable.

3. You have designed a state feedback control law

u = −Kx+ krr = −x1 − 2x2 + 2r

for the process

ẋ =




0 1

−2 0



x+




0

2



u

y =


 c1 c2



x

a. Where are the poles of the closed-loop system placed? (2 p)

b. For which values of c1 and c2 is the system not observable? (2 p)

c. Design an observer (Kalman filter) for the system assuming c1 = 1 and c2 = 0.
Motivate any necessary design choices. (4 p)

Solution

a. The characteristic polynomial of the closed-loop system is given by

det(sI −A+BK) =

∣
∣
∣
∣

s −1

2 + 2k1 s+ 2k2

∣
∣
∣
∣
= s2 + 4s+ 4 = (s+ 2)2

Both poles of the closed-loop system are hence located in s = −2.

b. The observability matrix is

W0 =




C

CA



 =




c1 c2

−2c2 c1





By inspection, we note that the rows are linearly indepdendent unless both c1
and c2 are zero. Alternatively, computing the determinant,

detW0 = c21 + 2c22,

we note that the determinant can only be zero if both c1 and c2 are zero. The
system is thus not observable only when c1 = c2 = 0.

c. We should design an observer

˙̂x = Ax̂+Bu+ L(y − Cx̂)

As a rule of thumb, the poles of the observer should be twice as fast as the
poles of the state feedback. (Selecting any other poles that are faster than the
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closed-loop poles in a is also fine.) The characteristic polynomial of the observer
is given by

det(sI −A+ LC) =

∣
∣
∣
∣

s+ l1 −1

2 + l2 s

∣
∣
∣
∣
= s2 + l1s+ 2 + l2

Comparing with a desired characteristic polynomial of (s+4)2 = s2 +8s+16,
we obtain l1 = 8 and l2 = 14.

4. Figure 1 shows the pole-zero maps of four systems, and Figure 2 shows the step
responses of the same systems, but not necessarily in the same order. Match
the pole-zero maps 1–4 with the corresponding step responses A–D. Motivate!

(4 p)

Solution

Since all poles are imaginary, the transfer function of each system can be writ-
ten in the form

G(s) =
∼

s2 + 2ζω0s+ ω2
0

Larger ω0 gives faster step response, and poles further away from the origin.
Larger ζ gives a more damped step response, and smaller angle between the
poles and the negative real axis. Pole–zero maps 1 and 3 have a smaller ζ and
only differ by ω0 (3 being faster than 1). Pole–zero maps 2 and 4 have a larger
ζ and only differ by ω0 (4 being faster than 2).

In conclusion, the correct matching is 1–D, 2–C, 3–B, 4–A.

5. A controller structure known as “mid-ranging control” is shown in Figure 3.

a. Calculate the transfer function from r to y. (3 p)

b. Assume that GP1(s) =
1

s− 1
, GP2(s) =

1

s+ 2
, GR1(s) = 1, and GR2(s) =

1

s
.

Calculate the stationary value of y, if it exists, when r(t) = 1 and uref(t) = 0.
(3 p)

Solution

a. Setting uref = 0, we obtain

Y = (GP1 +GP2GR2)GR1(R− Y )

Solve for Y :

Y =
(GP1 +GP2GR2)GR1

1 + (GP1 +GP2GR2)GR1

R

b. Inserting R(s) = 1

s
, GP1 =

1

s−1
, GP2 =

1

s+2
, GR1 = 1, and GR2 =

1

s
we get

Y =

(
1

s−1
+ 1

s+2

1

s

)

1 +
(

1

s−1
+ 1

s+2

1

s

) ·
1

s
=

s2 + 3s− 1

s3 + 2s2 + s− 1
·
1

s
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Figure 1 Pole-zero maps for Problem 4
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Figure 2 Step responses for Problem 4
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Figure 3 The controller structure in Problem 5.

Attempt to apply the final-value theorem:

y(∞) = lim
s→0

sY (s) = lim
s→0

s2 + 3s− 1

s3 + 2s2 + s− 1

Here we note that sY (s) is unstable (since one coefficient in the denominator
is negative). Hence, no stationary value exists.

6. By making frequency response experiments on a mechanical system, you have
experimentally obtained the Bode magnitude plot shown in Figure 4.
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Figure 4 Experimentally obtained Bode magnitude plot in Problem 6

.

a. Estimate the transfer function of the system. Assume that the transfer function
does not contain any poles or zeros in the right-half plane and no time delays.

(4 p)

b. Sketch the Bode phase plot of the system. (Only the low and high frequency
asympototes of the phase plot need to be completely accurate.) (2 p)
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Solution

a. By studying the asymptotes of the gain curve and the estimating corner fre-
quencies to about ω = 10 and ω = 100 respectively, we deduce that the transfer
function has a zero in s = −10 and a pole in s = −100. The transfer function
can be written

G(s) =
K(s+ 10)

s+ 100

where the gain K remains to be determined. By studying the low-frequency
asymptote, we see that the system has the static gain G(0) = 3. We hence get

G(s) =
30(s+ 10)

s+ 100

b. The low-frequency asymptote of the gain curve has the slope 0, hence the phase
curve starts at 0◦ for small ω. It then increases by 90◦ around the location of
the zero at ω = 10 and then decreases by 90◦ around the location of the pole at
ω = 100, finishing at 0◦ again. The maximum phase lead will be smaller than
90◦, but the exact value need not be computed. (Noting that the system is a
lead link with N = 10, it is possible to deduce that the maximum phase lead
is 55◦.) The phase curve is shown below.
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7. You have designed a controller GR(s) for some process GP (s). The Bode plot
of the open-loop system G0(s) = GP (s)GR(s) is shown in Figure 5. You have
simulated the closed-loop system and are happy with the resulting speed and
robustness.

a. Unfortunately, due to a slow Internet connection, the implementation of the
controller introduces a delay of 32 ms in the control loop, causing the perfor-
mance to deteriorate. Design a compensation link GK(s) such that the original
cross-over frequency and phase margin are recovered. (5 p)

b. Having recovered the original cross-over frequency and phase margin using the
compensator, is the compensated system as good as the original one? Or are
there some other performance differences? (2 p)

Solution

a. From the Bode plot, we see that the original phase margin is ϕm = 45◦ and
that the original cross-over frequency is ωc = 20 rad/s. A loop delay e−sL,
where L = 0.032, will decrease the phase margin by

ωcL = 0.64 rad = 37◦
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Bode Diagram
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Figure 5 The open-loop Bode diagram in Problem 7

To recover the phase loss, we can use a lead link

GK(s) = KKN
s+ b

s+ bN

with N = 4 (taken from the graph in the Collection of Formulae). The param-
eter b is given by

b =
ωc
√
N

= 10

To get the correct cross-over frequency, it should hold that

GK(iωc)
︸ ︷︷ ︸

=KK

√
N

G0(iωc)
︸ ︷︷ ︸

=1

= 1

which implies KK = 1√
N

= 0.5. The final link is hence

GK(s) = 2
s+ 10

s+ 40

b. Some possible answers are:

- The time delay cannot be negated by the compensation link, even if the phase
margin and cross-over frequency are recovered. The response to a reference
change or a disturbance will necessarily be delayed by 32 ms, no matter what
controller is used.

- The lead link will decrease the low-frequency gain of the system (asymptotic
gain of 0.5), which means that static disturbances will be eliminated more
slowly.

- The lead link will increase the high-frequency gain of the system (asymptotic
gain of 2), which means that the system will be more sensitive to measurement
noise.
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