
Institutionen för

REGLERTEKNIK

Reglerteknik AK

Exam 23 October 2023, 14-19

Points and Grades

All answers must include a clear motivation and a well-formulated answers. Answers
may be given in English or Swedish. The total number of points is 25. The maximum
number of points is specified for each subproblem.

Betyg :
Grade 3: at least 12 points
Grade 4: at least 17 points
Grade 5: at least 22 points

Accepted aids

Standard mathematical tables (TEFYMA or equivalent), the authorized formula
sheets in Reglerteknik AK. Pocket calculator without communication devices and
that is not pre-programmed.

Results

The result of the exam will become accessible through LADOK. The solutions will
be available in Canvas. An exam-viewing session will be announced in Canvas.

GOOD LUCK!
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1. A PID controller should be designed for an unknown process. When the process
is controlled by a proportional controller with K = 0.6 the step response in Fig.
1 is obtained. Use Ziegler-Nichols frequency method to design a PID controller.

(2 p)

Figur 1: Step response for the closed loop system with K = 0.6 in Problem 1.

Solution
The period time is obtained from the graph and is T0 ≈ 6. In additionK0 = 0.6.
According to Ziegler-Nichols frequency method one obtains:

K = 0.6K0 = 0.36

Ti = T0/2 = 3

Td = T0/8 = 0.75

2. Six different Nyquist-diagrams are shown in Figure 2. Match these with the
transfer functions below. Full motivation is required. (TIP: think in Bode plot
terms) (3 p)

G1(s) =
5

s+ 2

G2(s) =
5

s2 + 2s+ 2

G3(s) =
0.2

s(s2 + 0.2s+ 0.5)

G4(s) =
s+ 10

2s2

G5(s) =
5

s+ 2
e−s

G6(s) =
s+ 5

10(s+ 1)(s2 + 0.2s+ 0.5)

Solution

G1(s) is a first order system, i.e., the Nyquist curve lies entirely in the fourth
quadrant, and has static gain 2.5. The only curve that matches this is D, i.e.,
G1(s) → D.
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Figur 2: Nyquist-diagrams for Problem 2.

G2(s) is a second order system with static gain 2.5. The curve should start
in 2.5, continue first in the fourth quadrant and then in the third. It should
approach the origin along the negative real axis when ω → ∞. The only curve
that matches this is A, i.e., G2(s) → A.

G3(s) is a third order system with one integrator pole. For small ω The curve
lies along the negative imaginary axis (phase = −90◦). The only curve that
matches this is C, i.e., G3(s) → C.

G4(s) is a second order system with two integrators. For small ω the curve
comes along the negative real axis (phase = −180◦). The only curve that
matches this is B, i.e., G4(s) → B.

G5(s) contains a time delay, i.e., the curve will spiral towards the origin Hence,
G5(s) → F .

G6(s) has one real pole, two complex conjugated poles and one real zero. The
phase should go from 0◦ to −180◦, but can temporarily be less than −180◦.
This corresponds curve E, i.e., G6(s) → E.

3.

a. Assume that you are using a PID controller in standard form, i.e.,

U(s) = K(E(s) +
1

TIs
E(s) + TDsE(s))
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to control the level in the lower tank in Lab 2. Assume further that the control
loop is in stationarity without any disturbances and that the control signal has
not hit any limitations. Which (one or several) of the terms in the controller,
i.e., the P-term, the I-term, and the D-term, contribute to the control signal,
u(t), of the controller? (1 p)

b. Assume instead that you use a PID controller with setpoint weighting in the
P-term, i.e., the P-term now is K(bR(s) − Y (s)), and that b ̸= 1. Under the
same assumptions, which (one or several) of the terms now contribute to the
control signal? (1 p)

Solution

a. In stationarity all signals are constant, including the reference signal. Since we
have integral action in the controller the stationary error and the derivative of
the error are both zero, i.e., both the P-term and the D-term will be zero and
it is only the I-term that contributes to the control signal.

b. When b ̸= 1 the P-term is different from zero also when the error is zero. Hence,
the control signal is obtained by the P-term and the I-term.

4. Given the following state space description(
ẋ1

ẋ2

)
=

(−2 0

2 −3

)(
x1

x2

)
+

(
2

0

)
u

y = ( 0 1 )

(
x1

x2

)
a. Determine a control law

u = krr −Kx

for the system such that the poles of the closed loop system are placed in -11
and the stationary gain is 1 between r and y. (2 p)

b. Determine a Kalman filter

dx̂

dt
= Ax̂+Bu+ L(y − Cx̂)

for the system such that the poles of the observer are at -19. (1 p)

Solution

a. If u = krr −Kx the system becomes.

ẋ = Ax+B(krr −Kx) = (A−BK)x+Bkrr

K should be chosen so that the eigenvalues of (A−BK) are in -11. The eigen-
values of (A−BK) are calculated by solving the characteristic equation

det(sI −A+BK) = det

(
s+ 2 + 2k1 2k2

−2 s+ 3

)
= (s+ 2+ 2k1)(s+ 3)+ 4k2 =
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= s2 + (5 + 2k1)s+ 6 + 6k1 + 4k2 = 0

If the requested eigenvalues should be places at -11 the characteristic equation
should equal to

(s+ 11)2 = s2 + 22s+ 121

= s2 + (5 + 2k1)s+ 6 + 6k1 + 4k2 = s2 + 22s+ 121

This gives two equations namely

5 + 2k1 = 22

6 + 6k1 + 4k2 = 121

solving this system of equations gives k1 = 8.5 and k2 = 16.

kr is calculated by constructing the transfer function between r and y and
choosing kr so that the static gains of this transfer function is 1. This is done
by Laplace transforming the system.

sX = (A−BK)X +BkrR → X = (sI −A+BK)−1BkrR

Y = CX → C(sI −A+BK)−1BkrR

The transfer function from R to Y is

G(s) = C(sI −A+BK)−1Bkr

The static gain should 1 which means that

G(0) = C(−A+BK)−1Bkr = 1

kr =
1

C(−A+BK)−1B

To find kr one should calculate C(−A+BK)−1B and take the inverse of it.

C(−A+BK)−1B = ( 0 1 )

(
19 32

−2 3

)−1( 2

0

)
=

4

121

kr =
121

4
= 30.25

The control law is
u = 30.25r − ( 8.5 16 )x

b. The eigenvalues of the Kalman filter are calculated by calculating the eigenva-
lues of (A− LC). This is done by solving the characteristic equation.

det(sI −A+ LC) = det

(
s+ 2 l1

−2 s+ 3 + l2

)
= (s+ 2)(s+ 3 + l2) + 2l1 =

s2 + (5 + l2)s+ 6 + 2l2 + 2l1 = 0

If the requested eigenvalues should be places at -19 the characteristic equation
should equal to

(s+ 19)2 = 22 + 38s+ 361
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s2 + (5 + l2)s+ 6 + 2l2 + 2l1 = 22 + 38s+ 361

This gives two equations namely

5 + l2 = 38

6 + 2l2 + 2l1 = 361

solving this system of equations gives l1 = 144.5 and l2 = 33.

L =

(
114.5

33

)

5. Given the system
ÿ

10
= −y − 11ẏ

10
+ u

a. Write the system as a transfer function (0.5 p)

b. Factorize the transfer function to obtain the following form. (1 p)

G(s) =
c

(as+ 1)(bs+ 1)

c. Pick the right Bode plot for the system transfer function from the figures
provided bellow [A-D] in figure 3. (1 p)
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Figur 3: Bode plots for Problem 4.c.

1. INFO: For full credit you must motivate your answer.

d. What is the output signal if the input signal is u = 3 sin(0.05t) + 2 sin(100t).
(1.5 p)

1. INFO: Both calculations or using the Bode plot will give full credit. Pick
the method you prefer.

2. INFO: If you have not succeeded in finding/factoring the transfer function
or finding the right Bode plot, use the following transfer function instead.
Please note that this is not the answer one obtains from the problem
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formulation i.e you can not use the Bode plot:

G(s) =
1

( s
11 + 1)(s+ 1)

3. TIP:Use the linearity property of a transfer function.

Solution

a. 1. Laplace transform ÿ
10 = −y − 11ẏ

10 + u

s2Y

10
= −Y − 11sY

10
+ U

2. Move Y over to the left-hand side and isolate Y.(
s2

10
+ 1 +

11s

10

)
Y = U

3. Move everything except Y over to the right-hand side.

Y =
1(

s2

10 + 1 + 11s
10

)U
G(s) =

1(
s2

10 + 11s
10 + 1

) =
10

s2 + 11s+ 10

b. If we factorize the denominator polynomial s2 + 11s+ 10, i.e. solve the corre-
sponding quadratic equation, we get

s1,2 = −11

2
±
√

(
11

2
)2 − 10,

i.e. s = −10 and s = −1. This means that

G(s) =
10

(s+ 10)(s+ 1)
=

1

( s
10 + 1)(s+ 1)

,

i.e c = 1, a = 0.1, and b = 1.

c. The phase curve must go from 0◦ to −180◦, i.e. diagram A is excluded. The
gain at low frequencies is 1, i.e. diagram C is excluded. The amplitude curve
must have two breaking frequencies at ω = 1 rad/s and one at ω = 10 rad/s.
Chart D appears to have two break frequencies but these are at ω = 1 rad/s
and ω = 100 rad/s. The only thing left is the Bode plot B.

d. 1. Given that the transfer function is linear, you can look at each input signal
separately and then add their output.
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2. If u = 3 sin(0.05t) then we know that G(s) can be approximated as 1.
Given that

1

( i0.0510 + 1)
≈ 1

1

(i0.05 + 1)
≈ 1

That is, the gain is 1 and the phase shift becomes 0 so the output signal
is 3 sin(0.05t). This can also be seen from the Bode plot.

3. If u = 2 sin(100t)

|G(iw)| = | 1

( iw10 + 1)(iw + 1)
|

|G(i100)| = | 1

(i10 + 1)(i100 + 1)
| = 1√

102 + 1
√
1002 + 1

=

1√
101

√
10001

≈ 0.001

arg(G(i100)) = arg(
1

(i10 + 1)(i100 + 1)
) = arg(

1

110i− 999
)

= arg(
−999− 110i

1102 + 9992
) = arctan(

110

999
)− π = −3.03rad = −174◦

4. The output signal will be 0.002 sin(100t − 3.03). This can also be seen
from the Bode plot.

5. The final output will be

y = 3 sin(0.05t) + 0.002 sin(100t− 3.03)

ALTERNATIVE ANSWER:

1. Given that the transfer function is linear, you can look at each input signal
separately and then add their output.

2. If u = 3 sin(0.05t) then we know that G(s) can be approximated as 1.
Given that

1

( i0.0511 + 1)
≈ 1

1

(i0.05 + 1)
≈ 1

That is, the gain is 1 and the phase shift becomes 0 so the output signal
is 3 sin(0.05t).

3. If u = 2 sin(100t)

|G(iw)| = | 1

( iw11 + 1)(iw + 1)
|

|G(i100)| = | 1

( i10011 + 1)(i100 + 1)
| = 1√

1002

112
+ 1

√
1002 + 1

=

1√
83.6

√
10001

≈ 0.001

arg(G(i100)) = arg(
1

( i10011 + 1)(i100 + 1)
) = arg(

1

109i− 908
)

= arg(
−908− 109i

1092 + 9082
) = arctan(

109

908
)− π = −3.02rad = −173◦
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4. The output signal will be 0.002 sin(100t− 3.02).

5. The final output will be

y = 3 sin(0.05t) + 0.002 sin(100t− 3.02)

6. Consider the following linear state-space system.

[
ẋ1

ẋ2

]
=

[−1 0

0 2

] [
x1

x2

]
+

[
0

3

]
u

y = [−1 0 ]

[
x1

x2

]

a. Calculate the transfer function G(s) for the system. (1 p)

b. Explain why you get the result that you get. (1 p)

Solution

a.

G(s) = C(sI −A)−1B = [−1 0 ]

[
s+ 1 0

0 s− 2

]−1 [ 0
3

]
=

[−1 0 ]

(s+ 1)(s− 2)

[
s− 2 0

0 s+ 1

] [
0

3

]
=

0

(s+ 1)(s− 2)
= 0

b. Since the A-matrix is on diagonal form one can directly see that state x1 is
not controllable and state x2 is not observable. Hence, none of the states are
visible in the transfer function.

7. A system that controls the mean arterial pressure during anesthesia has been
designed and tested. The level of arterial pressure is postulated to be a proxy
for depth of anesthesia during surgery. A block diagram of the system is shown
in Figure 4, where the impact of surgery is represented by the disturbance
Td(s).
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Figur 4: Block diagram for Problem 7.

a. Determine the transfer function from Td(s) to Y (s). (1 p)

b. For what values of k is the system asymptotically stable? (1 p)

c. Determine the steady-state error due to a unit step disturbance. (1 p)

d. Determine the transfer function from the input R(s) to Y (s). (1 p)

e. Determine the steady-state error for a ramp input. (1 p)

f. What is the range of k for which we get a steady-state error less than 0.25 due
to ramp inputs. (1 p)

Solution

a. The transfer function from the disturbance Td(s) to the output Y (s) is found
by setting R(s) = 0. We get

Y (s)

Td(s)
=

−s

s3 + 4s2 + 4s+ k
.

b. The characteristic polynomial is of third order and takes the form D(s) =
s3+a2s

2+a1s+a0. For asymptotic stability we require a0, a1, a2 to be positive
and also a2a1 > a0. This translates to k > 0 and k < 16 and hence k should
be in the range 0 < k < 16.

c. Assume k lies in the range 0 < k < 16 we could use the final value theorem to
obtain the steady state error. Having a unit step disturbance means Td(s) =

1
s .

We get

ess = lim
s→0

s

(
0 +

s

s3 + 4s2 + 4s+ k

)
1

s
= 0.

Note that in this case the desired output to a unit step disturbance is 0.
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d. The closed-loop transfer function is

G(s) =
Y (s)

R(s)
=

k

s3 + 4s2 + 4s+ k
.

e. The steady-state error when R(s) = 1
s2

using the final value theorem is given
by

ess = lim
s→0

s (1−G (s))
1

s2
=

4

k
.

This result is obtained by applying L’Hôpital’s rule (by differentiating the
numerator and denominator one ti me and then taking the limit).

f. If we want the error to be less than 0.25, this translates to ess = 4
k < 0.25 ↔

k > 16. Intersecting this condition with the stability condition yields that there
are no values of k such that this error reduction level is attained.

8. A process, denoted as P, is controlled by a controller, denoted as C. While the
phase margin of the entire system is acceptable, the system’s speed is too slow.
Your task is to design a lead compensation link that will double the crossover
frequency, wc, while keeping the phase margin, φm, unchanged.

The system can be described as follows:

P =
2

s+ 1
exp−0.25s , C =

1√
2

(3 p)

Solution
The original crossover frequency, denoted as wc, is calculated using

|P (iwc)C(iwc)| =
∣∣∣∣ 2√

2(iwc + 1)
exp−0.25iwc

∣∣∣∣ = 1

Since
∣∣∣ 2√

2

∣∣∣ = 2√
2
and

∣∣exp−0.25iwc
∣∣ = 1, we are left with:

2√
2|(iwc + 1)|

=
2√

2
√
w2
c + 1

= 1

2√
2
=

√
w2
c + 1

2 = w2
c + 1

wc = 1

The original phase margin, denoted as φm, is calculated using the argument of
P (iwc)C(iwc).

arg(P (iwc)C(iwc)) = arg

(
2√

2(iwc + 1)
exp−0.25iwc

)
=
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arg

(
2√

2(iwc + 1)

)
+ arg

(
exp−0.25iwc

)
= arg

(
2− 2iwc√
2(w2

c + 1)

)
− 0.25wc

arctan(−wc)− 0.25wc

Insertion of the crossover frequency gives:

arctan(−1)− 0.25 = −1.035 rad ≈ −60◦

φm = 180− 60 = 120◦

To solve the problem.

1. Decide on the new crossover frequency, denoted as wn
c , and on the new

phase margin, denoted as φn
m.

wn
c = 2wc = 2

φn
m = φm

2. Calculate how much phase is in the new crossover frequency, calculate
how much the phase there should be increased to meet the specifications
given in step 1 and choose an N that gives this phase increase.

(a) The phase at the new crossover frequency, denoted φ, is calculated
using the exact same method as shown above:

arctan(−wn
c )− 0.25wn

c = arctan(−2)− 0.5 = −1.61 ≈ −92◦

φ = 180− 92 = 88◦

(b) How much the phase should be increased, denoted ∆φ, is calculated
using:

∆φ = φn
m − φ = 120− 88 = 32◦

(c) N is chosen to increase the phase. In this case, the phase should be
increased by approximately 30◦, which, with the help of the formula
sheet, gives us N equal to 3.

3. Choose b so that the top of the newly created phase increase coincides
with the new crossover frequency:

wn
c = b

√
N → b =

wn
c√
N

=
2√
3
≈ 1.15

4. Choose Kk so that |P (iwn
c )C(iwn

c )Gk(iw
n
c )| = 1, where Gk is the lead

compensation link and |Gk(iw
n
c )| = Kk

√
N .

|P (iwn
c )C(iwn

c )Gk(iw
n
c )| = |P (iwn

c )C(iwn
c )|Kk

√
N = 1

2√
2
√

(wn
c )

2 + 1
Kk

√
N = 1

Kk =

√
(wn

c )
2 + 1

2N
≈ 0.91

So the final compensation link looks like:

Gk(s) = KkN
s+ b

s+ bN
= 2.73

s+ 1.15

s+ 3.46
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