Automatic Control, Basic Course

Bo Bernhardsson

Department of Automatic Control Lund University Sweden

Lecture 1 - Content

- Presentation: Control Department and Myself
- Course Overview
- Introduction to Automatic Control
- The PID controller (=Chapter 1)
- Laboration 1

Dept. of Automatic Control at Lund University

- Founded in 1965 by Karl Johan Åström
- Approx. 55 persons and 60 MSEK

Dept. of Automatic Control at Lund University

Basic and advanced control education for almost all engineering disciplines at the Faculty of Engineering (\approx 1000 students/year)

Our research

- Large-scale Systems and Learning
- Autonomous Real-Time Systems
- Innovative Control Applications

For more info, have a look on the department home page

Bo Bernhardsson

Academia

- LTH E81, MSc 1986
- PhD in Automatic Control, Lund University, 1992.
- Post-doc at Univ. of Minnesota 1992-93
- Researcher Lund University, 1993-1999
- Professor 1999-now, on leave 2001-2010

Industry

- Ericsson 2001-2010, Expert "Mobile System Design and Optimization"
- 30 granted patents and 10⁹ control loops

Recently: ESS and WASP Graduate School Management

Aim of the Course

The aim of the course is to give knowledge about the **basic principles** of feedback control.

The course will give insight into what can be achieved with control—the possibilities and limitations.

The course focuses on linear continuous-time systems.

Course Program

15 Lectures

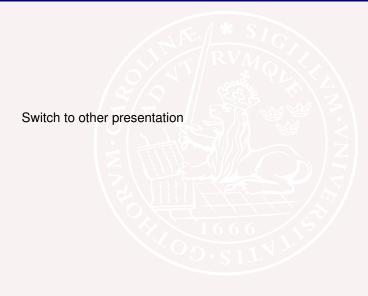
15 Exercises

3 Mandatory Laborations, sign up for lab1 asap

Literature

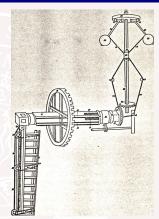
Exam

Like More Control Theory?

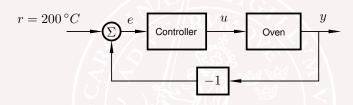

Follow the parallel course

Control Theory 3hp

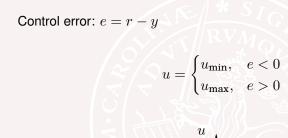
6 additional lectures, 2 handins, no exam


First Lecture: Thursday 30/1 at 15.15-17, M:2112B (seminar room)

Introduction to Control


Lecture 1, Intro - The PID Controller

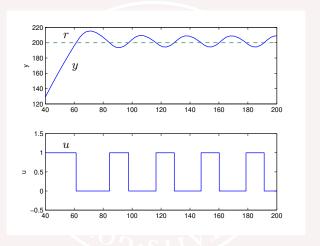
- The oldest controller type
- The most widely used
 - Pulp & paper industry 86%
 - Steel industry 93%
 - Oil refineries 93%



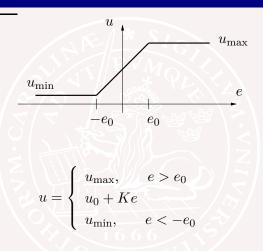
Example: Oven

- y actual temperature
- r − desired temperature
- e control error
- u heating element power $(0 \le u \le 1)$

On/Off Control

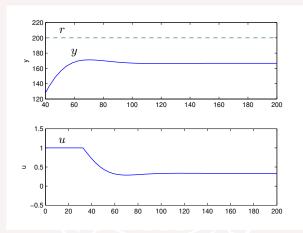


 u_{\min}


 $u_{\rm max}$

On/Off Control - Oven Example

Oscillations


Proportional Control

K – proportional gain

 u_0 – bias term (often 0)

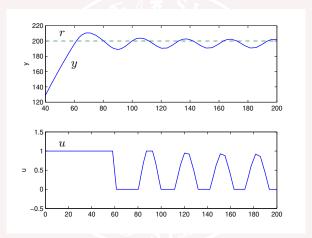
P Control – Oven Example

Stationary error

(What is the value of K in the simulation above, $u_0 = 0$?)

Stationary Error with P Control

Assume the controller works within the proportional band $(-e_0 < e < e_0)$. Then


$$e = \frac{u - u_0}{K}$$

Two ways to reduce the stationary control error e:

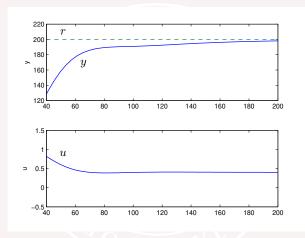
- Make K larger
- Adjust u_0

P Control – Oven Example

Increased gain K:

- Smaller stationary error
- Larger oscillations

Proportional-Integral Control


Add automatic adjustment of the bias term ("automatic reset") Keep adjusting the control signal as long as there is an error

PI-controller:

$$u(t) = K\left(e(t) + \frac{1}{T_i} \int_0^t e(s)ds\right)$$

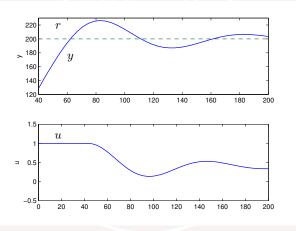
 T_i is called "integral time"

PI Control – Oven Example

No stationary error

The Amazing Property of Integral Action

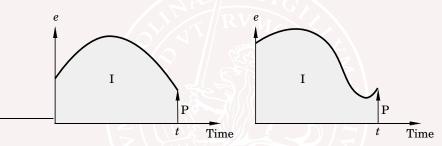
Consider a PI-controller:


$$u(t) = Ke(t) + K_i \int_0^t e(s)ds$$

Assume that there is an equilibrium with constant $e(t)=e_0$ and $u(t)=u_0$. Then we must have $e_0=0$!

Can you explain this?

PI Control


Smaller integral time T_i (i.e. larger integral action):

Larger oscillations

A Limitation of PI Control

A PI controller gives the same control signal in these two cases:

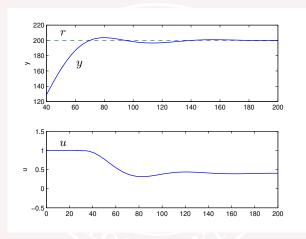
Problematic for processes with inertia, e.g.

- temperature
- position

PID Control

Add prediction of the control error

replacements



PID-controller:

$$u(t) = K\left(e(t) + \frac{1}{T_i} \int_0^t e(s)ds + T_d \frac{de(t)}{dt}\right)$$

 T_d – derivative time

PID Control – Oven Example

Reduced oscillations

Laboratory Exercise 1

Control of the water level in the upper or lower tank

- Open-loop and closed-loop control
- Manual and automatic control
- Empirical tuning of P, PI and PID controllers

Laboratorions - Lab 1

The manuals for Labs 2 and 3 contain **preparatory assignments** that must be solved before the laboratory exercise.

At the start of Lab 2, a **quiz** with two review questions will also be given. You must give correct answers to both questions in order to proceed with the laboratory exercise.

Signup for laboration 1 at home page now.

No written lab report.

What You Should Do Now

- Sign up for Lab1 asap!
- Read course program and get all material
- Read math repetition material if needed
- Read first lecture in [TH]