
Department of
AUTOMATIC CONTROL

Exam FRTF01 - Physiological Models and
Computation

January 13 2020, 8-13

Points and grades
All answers must include a clear motivation. The total number of points is 25. The
maximum number of points is specified for each subproblem. Preliminary grades:

Grade 3: 12 – 16.5 points
4: 17 – 21.5 points
5: 22 – 25 points

Accepted aid
Lecture slides, any books (without relevant exercises with solutions), standard
mathematical tables and “Formelsamling i reglerteknik”. Calculator.

Results
The result of the exam will be posted in LADOK no later than January 27. In-
formation on when the corrected exam papers will be shown, will be given on the
course homepage.
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1. Consider the following state-space model

ẋ =
[
−2 −1
3 1

]
x+

[ 1
0

]
u

y = [ 1 0 ] x

a. Calculate the transfer function and determine the static gain. (1 p)

b. Insert output feedback with a P controller u(t) = k(r − y). Sketch the block
diagram and calculate the closed-loop transfer function. (1.5 p)

c. For which values of k is the closed-loop system asymptotically stable? (1.5 p)

d. Choose k such that the closed-loop static gain becomes 0.25. (1 p)

Solution

a. The transfer function is calculated using the formula

G(s) = C (sI − A)−1 B+ D

which in our case yields
G(s) = s− 1

s2 + s+ 1
.

The static gain can be calculated from the final value theorem by letting u(t)
be a unit step

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

sG(s)U(s)

[ G(0) = −1

b. The block diagram of the closed loop system becomes

Σ k G(s)

−1

r e y

its transfer function can be calculated as

Y (s) = G(s)k(R(s) − Y (s))

[ Y (s) = kG(s)
1+ kG(s)

R(s)

[ Gcl(s) =
kG(s)

1+ kG(s)
=

k(s− 1)
s2 + (k+ 1)s+ 1− k

c. The closed-loop transfer function is asymptotically stable if its poles has
negative real part. For a second order characteristic polynomial s2 + as + b
this occurs when a, b > 0. Thus −1 < k < 1 for the closed-loop system to be
asymptotically stable.
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d. The closed-loop static gain can be calculated using the final value theorem by
letting r(t) be a unit step.

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

sGcl(s)R(s)

[ Gcl(0) =
−k

1− k
= 0.25

which gives that k = −1/3.

2.

a. Draw a 3-compartment model (gut, blood and tissue) that describe a drugs
path through the body, including and input u to the gut compartment and
elimination from the blood compartment. (1 p)

Table 1: Compartment data for problem 2.a

Parameter Description
VG Distribution volume gut [l]
VB Distribution volume blood [l]
VT Distribution volume tissue [l]
kGB Kinetics coefficient, gut to blood [min−1]
kBT Kinetics coefficient, blood to tissue [min−1]
kT B Kinetics coefficient, tissue to blood [min−1]
ke,B Elimination coefficient, blood [min−1]

b. Build a state space model from the compartments in 2.a where the input u
is the rate at which the drug is added to the gut and the output y is the
measured concentration of the drug in the blood. (1 p)

c. A drug bolus dissolves in the gut according to the Noyes-Whitney equation,

q̇ = DA
d
(Cs − Cb),

where q is released drug mass. Assume the dissolution to be constant for the
time range considered in this problem. What is the steady state value of the
measured concentration of the drug in the blood? (2 p)

Solution

a. See Figure 1 for the compartment model.

b. We get

Ġ = −kGBG + u
Ḃ = kGBG − (kBT + ke,B)B+ kT BT
Ṫ = kBT B− kT BT

y = 1
VB

B
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kGB

kBT

kT B

ke,B

Figure 1: Compartment model for problem 2.a

or with x = [G, B, T]T

ẋ =


−kGB 0 0

kGB −kBT − ke,B kT B

0 kBT −kT B


 x+


 1

0
0


u

y = [ 0 1
VB

0 ] x

c. We note that u = q̇ since both represent the rate at which the drug is added
to the gut. In steady state we have that ẋ = 0 and we can then see that
0 = Ġ + Ḃ+ Ṫ = u− ke,B B.

u = DA
d
(Cs − Cb)

B = 1
ke,B

u = DA
ke,Bd

(Cs − Cb)

y = 1
VB

B = DA
VBke,Bd

(Cs − Cb)
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Figure 2: Bode diagram for problem 3.

3. The model of a certain biomedical apparatus has the following transfer func-
tion

G(s) = 2 s+ 2
(s+ 10)2

e−0.2s

describing the relation between input signal u(t) and output signal y(t).

a. Calculate y(t) for the input u(t) = sin(4t). (2 p)
The model parameters are tweaked to provide a more accurate transfer func-
tion. The Bode diagram of the tweaked model can be seen in Figure 2.

b. Use this Bode diagram to determine the new output for the input u(t) =
sin(4t). (1 p)

Solution

a. If the input is of the type u(t) = sin(wt), then the output becomes y(t) =
pG(iw)p sin (wt+ arg G(iw)). From our transfer function we get that

pG(iw)p = pi2w+ 4p
piw+ 10p2

pe−0.2iwp

=

√
4w2 + 16

w2 + 100
arg G(iw) = arg(i2w+ 4) − 2 arg(iw+ 10) − arg

(
e−i0.2w)

= tan−1
(

2w
4

)
− 2 tan−1

( w
10

)
− 0.2w

[ pG(iw = i4)p = 0.0771
[ arg G(iw = i4) = −0.4539 rad/s

which yields the output

y(t) = 0.0771 sin(4t− 0.4539)
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b. The magnitude and phase can be read directly from the Bode diagram. For
w = 4, we get that y(t) = 0.1 sin(4t).

4. In this problem we consider the differential equation

ÿ+
√

y− 1− ẏy = u2

where u is the input and y is the output.

a. Introduce the variables x1 = y and x2 = ẏ and write the system on state
space form. (1 p)

b. Find the stationary point for u0 = 1. (1 p)

c. Linearize the system around the stationary point (x0
1, x0

2, u0) using the values
you found in 4.b. (2 p)

Solution

a. A state-space model with x1 = y and x2 = ẏ is

ẋ1 = x2

ẋ2 = −
√

x1 − 1+ x1x2 + u2

y = x1

b. Setting the derivatives to zero gives us the equations

0 = ẋ1 = x0
2

0 = ẋ2 = −

√
x0

1 − 1+ x0
1x0

2 + (u0)2 = −

√
x0

1 − 1+ 1.

The solution of these equations gives us the stationary point (x0
1, x0

2, u0) =
(2, 0, 1).

c. First calculate the partial derivatives.

� f1
�x1

= 0 � f1
�x2

= 1 � f1
�u

= 0

� f2
�x1

= x0
2 −

1

2
√

x0
1 − 1

= −
1
2

� f2
�x2

= x0
1 = 2 � f2

�u
= 2u0 = 2

��

�x1
= 1 ��

�x2
= 0 ��

�u
= 0

Then introduce the linearized variables ∆x = x− x0...

∆̇x =
[ 0 1
−0.5 2

]
∆x+

[ 0
2

]
∆u

∆u = [ 1 0 ] ∆x
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Figure 3: Nyquist diagram for problem 5.

5.

a. Find the gain and phase margins from the Nyquist diagram in Figure 3.
Motivate your answer. (2 p)

b. Which of these transfer functions is the source of the Nyquist diagram in
Figure 3? Motivate your answer. (2 p)

G1(s) =
1

s+ 2

G2(s) =
1

s(s+ 1)

G3(s) =
e−s

s+ 1

Solution

a. The phase margin φm = 51.8 and is calculated as the angle between the
negative real axis and the line through the origin and the point where the
curve crosses the unit circle. The gain margin Am = ∞ since the curve never
crosses the negative real axis.

b. The correct answer is G2(s). Since one end of the curve disappears with
seemingly infinite imaginary part we conclude it can’t be a first order process
G1(s), and neither a first order process with a time delay G3(s). There are
more ways to motivate this.

6. A simplified version on how the glucose and insulin levels in the bloodstream
depends on the food intake is given by the following model
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Ġ f (t) = −kfoodG f (t) + u f (t)
Ġb(t) = kfoodG f (t) − kins I(t)

İ(t) = kprodGb(t) − khalf I(t)

where G f (t) is the glucose level in the ingested food, Gb(t) and I(t) the glucose
and insulin levels in the bloodstream and u f (t) the food intake.
People suffering from diabetes type I and II has reduced production of insulin,
represented in the model with the parameter kprod. For the conditions kprod
lies within the interval stated in the table below.

Condition kprod interval
Diabetes type I [0, 0.05]
Diabetes type II [0.05, 0.2]
Healthy [0.2, 0.4]

The remaining parameters can be assumed to be kfood = 0.1, kins = 0.1,
khalf = 0.5.

a. Find the intervals where the poles reside for the system corresponding to a
patient with diabetes type II. (1.5 p)
Hint: The system has one pole in s = −0.1, independent on the value kprod.
Glucose levels in patients can be controlled via an artificial pancreas. Since we
cannot affect G f (t) by changing the insulin level, the model can be simplified
by disregarding this state, yielding

Ġb(t) = −kins I(t) + ub(t)
İ(t) = kprodGb(t) − khalf I(t) + uI(t)

b. Introduce an artificial pancreas as a state feedback controller, such that a
patient with kprod = 0.1 gets the same poles as an healthy person with
kprod = 0.3. You may assume that ub(t) = 0. (1.5 p)

c. Assume that we can only measure the glucose level in the blood, y(t) = Gb(t),
but would want to know the insulin level of our patient with kprod = 0.1.
Introduce the state estimator

˙̂x(t) = Ax̂(t) + Bu(t) + K(y(t) − Cx̂(t))

and choose K such that the poles for the dynamics of the estimation error
x̃(t) = x(t) − x̂(t) becomes p = (−0.1,−0.6). (2 p)

Solution
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a. The state-space form of the model is

ẋ =


−0.1 0 0

0.1 0 −0.1
0 kprod −0.5


 x+


 1

0
0


u f

Calculating the determinant sI − A yields the characteristic polynomial

det(sI − A) = s3 + 0.6s2 + (0.05+ 0.1kprod)s+ 0.01kprod.

From the hint it is known that s = −1 is a pole. The polynomial can thus be
factorized as

(s+ 1)(s2 + as+ b) = s3 + 0.6s2 + (0.05+ 0.1kprod)s+ 0.01kprod

which gives a = 0.5 and b = 0.1kprod. The remaining poles thus becomes

p2,3 = −0.25±
√

0.25
4
− 0.1kprod

which gives the pole intervals

Condition kprod interval pole interval

Diabetes type II [0.05, 0.2]


p1 = −0.1
p2 = [−0.0438,−0.0102]
p3 = [−0.4898,−0.4562]

b. The new state-space representation becomes

ẋ =
[ 0 −0.1

kprod −0.5

]
x+

[ 0
1

]
u(t)

Setting kprod = 0.1 and inserting the state feedback controller u(t) = −Lx+lrr
gives that

ẋ =
[ 0 −0.1

0.1 −0.5

]
x−

[ 0
1

]
[ l1 l2 ] x+

[ 0
1

]
lrr

[ ẋ =
[ 0 −0.1

0.1− l1 −0.5− l2

]
x+

[ 0
1

]
lrr

easy way: It is easily argued that letting L = [−0.2, 0] gives the desired
value of kprod.
hard way: The healthy person has poles in p = (−0.0697,−0.4303). The
characteristic polynomial of the system under state feedback becomes

det(sI − A+ BL) = s2 + (0.5+ l2)s+ 0.01− 0.1l1 = (s+ 0.0697)(s+ 0.4303)

which yields L = [−0.2, 0].
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c. The dynamics of the estimation error becomes

˙̃x = ẋ− ˙̂x = Ax+ Bu− Ax̂− Bu− K(Cx− Cx̂)
= A(x− x̂) − KC(x− x̂)
= (A− KC)x̃

The characteristic polynomial becomes

det(sI − A+ KC) = s2 + (0.5+ k1)s+ 0.5k1 − 0.1k2 + 0.01

which should have the same zeros as (s + 0.1)(s + 0.6) = s2 + 0.7s + 0.06.
Matching coefficients yields that K = [0.2, 0.5].

Good Luck!
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