
Institutionen för

REGLERTEKNIK

Automatic Control, Basic Course FRTF05

Exam March 17 2021, 08:00–13:00

Points and grades
All solutions must be well motivated. The exam total is 25 points. The number of
points are presented after each problem.

Preliminary grades:

Grade 3: at least 12 points
4: at least 17 points
5: at least 22 points

Allowed aids
All course material, other material, and computer resources are allowed (including
lecture notes, exercise manual, Matlab, ...) but no collaboration or communication.

Results
Exam results are communicated via LADOK.
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1. A system is described by the following differential equation

ÿ + ẏ + sin y = u.

a. Introduce the state variables x1 = y and x2 = ẏ, and write down the corre-
sponding state-space form for the system. (1 p)

b. Determine all stationary points (x0
1, x

0
2, u

0) for the system for which u0 = 1.
(1 p)

c. Linearize the system around the stationary point which has the smallest posi-
tive value for x0

1. (1 p)

Solution

a. With the state variables x1 = y and x2 = ẏ, we get the state-space form

ẋ1 = x2 =: f1(x1, x2, u)
ẋ2 = −x2 − sin x1 + u =: f2(x1, x2, u)
y = x1 =: g(x1, x2, u).

b. Stationary points are the points for which ẋ1 = 0 and ẋ2 = 0, i.e. the points
that fulfil {0 = x2

0 = −x2 − sin x1 + u.

All such points with u0 = 1 are given by (x0
1, x

0
2, u

0) = (π2 + 2πn, 0, 1), for
n = 0,±1,±2, ....

c. The stationary point with smallest positive value of x0
1 is (x0

1, x
0
2, u

0) = (π2 , 0, 1).
The partial derivatives for the system equations are

∂f1
∂x1

= 0, ∂f1
∂x2

= 1, ∂f1
∂u

= 0,

∂f2
∂x1

= − cosx1,
∂f2
∂x2

= −1, ∂f2
∂u

= 1,

∂g

∂x1
= 1, ∂g

∂x2
= 0, ∂g

∂u
= 0.

With x = [ x1 x2 ]T , we introduce the variables ∆x = x − x0, ∆u = u − u0

and ∆y = y − y0, giving

d∆x
dt =

[ ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]∣∣∣∣∣
(x0

1,x
0
2,u

0)
∆x+

[ ∂f1
∂u
∂f2
∂u

]∣∣∣∣∣
(x0

1,x
0
2,u

0)
∆u

=
[

0 1
0 −1

]
∆x+

[
0
1

]
∆u

∆y = [ ∂g
∂x1

∂g
∂x2

]|(x0
1,x

0
2,u

0) ∆x+ ∂g

∂u

∣∣∣∣
(x0

1,x
0
2,u

0)
∆u = [ 1 0 ] ∆x.
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Figur 1 Bode diagrams for problem 2.

2. Consider the following three systems:

Gα(s) = 20
s+ 20 , Gβ(s) = 4

(s+ 2)2 ,

Gγ(s) = 1
(1 + s/(1− 20i))(1 + s/(1 + 20i)) .

a. State which of the Bode diagrams A-F in Figure 1 that belong to each of the
three transfer functions. Motivate your answers. (1.5 p)

b. State which of the three step responses 1-6 in Figure 2 that belong to each of
the three transfer functions. Motivate your answers. (1.5 p)

c. State which of the three transfer functions that is described by the Nyquist
diagram in Figure 3. Motivate your answer. (1 p)

Solution

a. Gα(s) is a first-order system, which means that the phase curve cannot go lo-
wer than to −90◦. The system must therefore correspond to E or F. The pole
in s = −20 gives a break frequency ω = 20 in the Bode diagram, which we
have for diagram F. Hence we have Gα(s)↔ F.

Gβ(s) is a second-order system with real poles. Since we have two poles and
no zeros, the phase curve must go down to −180◦. The diagrams E and F can
thus be excluded. In A and B, distinct resonance peaks can be seen, which
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Figur 2 Step responses for problem 2.

Figur 3 Nyquist diagram for problem 2.

requires complex poles with a large imaginary part. These can therefore also
be excluded. The static gain is given by G(0), and we see that Gβ(0) = 1. The
one of the diagrams C and D that has static gain (gain at low frequencies) 1
is D, so we therefore have Gβ(s)↔ D.

Gγ(s) is a second-order system with two complex conjugated poles with large
imaginary part. A large imaginary part relative to the real part means that
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the system is resonant, and this scan be seen as a resonance peak in the Bo-
de diagram. The system must thus correspond to A or B. When the relative
damping ζ for the complex conjugated pole pair is close to zero, the resonance
frequency of the system is approximately gives as the distance of the poles
from the origin: ω0 =

√
(−1)2 + 202 ≈ 20. Thus, the system has a resonance

frequency of about 20 rad/s, which is the position of the resonance peak in
diagram A. We therefore have Gγ(s)↔ A.

b. The system Gα(s) is a first-order system, and therefore does not have any
complex poles. Since it neither has any zeros, we cannot get any resonances
in the step response, and step responses 2 and 5 can thus be excluded. For
a first-order system, the derivative for a step response at t = 0 is non-zero.
This can be shown by the initial value theorem. Therefore, 3 and 6 can be
excluded. Alternatively, we could look up the function for the step response in
the collection of formulae, as the inverse Laplace transform of Y (s) = 20

s+20
1
s ,

which is y(t) = 1− e−20t, and note that the derivative ẏ(t) = 20e−20t is strictly
decreasing, which also excludes 3 and 6. The time constant for the system is
T = 1/20. This is the time it takes for the step response to reach approximately
63% of its final value (which follows from y(T ) = 1− e−20T = 1− e−1 ≈ 0.63).
This should therefore take about 0.05 seconds, and we then see that Gα(s)↔ 1.

Gβ(s) is a second-order system with real poles. Since it has two poles and
no zeros, the initial value theorem gives that the initial derivative is 0. We
can then exclude 1 and 4. Since we have real poles only and no zeros, we can-
not get an overshoot, so 2 and 5 can therefore be excluded. The static gain is
Gβ(0) = 1, so the stationary value of the step response should be 1. Thus we
must have Gβ(s)↔ 6.

Since Gγ(s) is a strongly resonant system, we should see resonances in the
step response. So it cannot be 2 or 5. The frequency of the resonances in the
step response should correspond to the resonance frequency of the system.
We see in 5 that the step response resonates with about 6.5 periods in 2 se-
conds, giving a frequetncy f = 6.5/2 = 3.25 Hz. The angular frequency is then
ω = 2πf ≈ 20 rad/s. An analogue calculation for 2 gives an angular frequency
that is about a tenth as large. So we must have Gγ(s)↔ 5.

c. The only one of the transfer functions that has a gain |G(iω)| > 1 for any ω
is Gγ(s), because of the resonance peak. Since the distance to the origin from
some of the points on the Nyquist curve is larger than 1, the Nyquist curve
must hence correspond to the system Gγ(s).

3. A closed-loop system (simple feedback) has the open-loop transfer function
G0(s), without poles in the right half plane, for which the Bode diagram is
shown in Figure 4. State whether each of the statements below is true or false,
and motivate your answers.

a. The open-loop system G0(s) has a pole in s = 0. (0.5 p)

b. The open-loop system G0(s) contains an integrator. (0.5 p)
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Figur 4 Bode diagram for open-loop system G0 in Problem 3.

c. The open-loop system G0(s) contains a delay. (0.5 p)

d. The open-loop system has at least three poles. (0.5 p)

e. If G0(s) is replaced by 5G0(s), then the closed-loop system becomes unstable.
(0.5 p)

f. If we in G0(s) add a delay of 3 seconds, then the closed-loop system becomes
unstable. (0.5 p)

Solution

a. True. We see that the gain curve goes to infinity when ω → 0, or equivalently
that the low-frequency asymptote has a negative slope. This means that we
have a pole in s = 0, since a factor 1/s in the transfer function gives a factor
1/ω in the gain |G(iω)|, which is required for the gain to go to infinity when
ω → 0.

b. True. A pole in s = 0 is equivalent to that the system contains an integrator.

c. False. A delay gives a phase curve that goes to −∞ for large frequencies, but
the phase curve does not go lower than to −270◦.
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d. True. Each pole can decrease the phase with at most 90◦. Since the phase
decreases to −270◦, we must have at least three poles (since the system does
not have any delay, which would be the other way to decrease the phase). Alter-
natively we can see that the gain curve has the slope −3 for large frequencies,
which requires at least three poles, even if the system would have a delay.

e. False. We can compute the amplitude margin of the system asAm = 1/|G0(iω0)| ≈
1/0.1 = 10, where ω0 is the frequency for which argG0(iω0) = −180◦. Since
the amplitude margin is 10, we can multiply G0(s) with a positive constant
that is less than 10 without making the system unstable.

f. False. The delay margin for the system is given by Lm = ϕm/ωc, where ωc is
the cut-off frequency, i.e. the frequency for which |G0(iωc)| = 1, and ϕm = π−
| argG0(iωc)| is the phase margin. We see that ωc ≈ 0.2 and the phase margin is
approximately ϕm = (3/4)·(π/2) = 3π/8. We then get Lm ≈ (3π/8)/0.2 ≈ 5.9,
so the delay margin is about 6 seconds, which means that we can add a delay
of 3 seconds without making the system unstable.

4. Consider the block diagram of Figure 5.

a. Find the transfer functions from d to u and from n to u. (1 p)

b. We can describe the output y as

y = Gy/rr +Gy/dd+Gy/nn.

Find the transfer functions Gy/r, Gy/d, and Gy/n. (1.5 p)

c. Let d = 0, n = 0, and

P (s) = 1
s2 + 2s− 2 C(s) = K(1 + 1

Tis
).

Find valid ranges of K and Ti such that the closed loop system becomes stable.
(2 p)

d. Let K = 4, Ti = 10, and H = 0. What is the stationary value of the output y
when all the inputs are unit steps, i.e. r(t) = d(t) = n(t) = 1 for all t ≥ 0.

(1.5 p)

e. Again let K = 4, Ti = 10, and H = 0. What is the stationary value of the
output y when all the inputs are unit ramps, i.e. r(t) = d(t) = n(t) = t for all
t ≥ 0. (1.5 p)

Solution

a. For the transfer function from d to u we have

−C(P (Hd+ u) + d) = u ⇒ −CPHd− Cd = CPu+ u

⇒ u = −C(PH + 1)
1 + CP

d

and for the transfer function from n to u we get

−C(Pu+ n) = u ⇒ u = −C
1 + CP

n

7



C ++ P

H

+u v y

+
n

−

r

d

Figur 5 The control loop in Problem 4.

b.

P (C(r − n− y) +Hd) + d = y ⇒ y = PC

1 + PC
r + 1 + PH

1 + PC
d+ −PC

1 + PC
n

c. The characteristic polynomial is

Tis(s2 + 2s− 2) +KTis+K = Tis
3 + 2Tis2 + Ti(K − 2)s+K = 0

reformulating the characteristic polynomial gives

s3 + 2s2 + (K − 2)s+K/Ti = 0 ⇒
K − 2 > 0, K/Ti > 0, 2(K − 2) > K/Ti

which give

K > 2, Ti >
K

2(K − 2)

d. To find the stationary value, we can use the final value theorem (the conditions
are satisfied)

y(∞) = lim
s→0

sY (s) = lim
s→0

s( PC

1 + PC
+ 1 + PH

1 + PC
+ −PC

1 + PC
)1
s

= lim
s→0

(PC + 1− PC
1 + PC

) = lim
s→0

( 1
1 + PC

) = lim
s→0

Tis(s2 + 2s− 2)
Tis(s2 + 2s− 2) +K(1 + Tis)

= 0

e. To find the stationary value, we can use the final value theorem (the conditions
are satisfied)

y(∞) = lim
s→0

sY (s) = lim
s→0

s( PC

1 + PC
+ 1 + PH

1 + PC
+ −PC

1 + PC
) 1
s2

= lim
s→0

(PC + 1− PC
1 + PC

)1
s

= lim
s→0

( 1
1 + PC

)1
s

= lim
s→0

Tis(s2 + 2s− 2)
Tis(s2 + 2s− 2) +K(1 + Tis)

1
s

= −2Ti
K

= −5
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5. Kim wants to control the system

ẋ =
[

1 2
2 1

]
x+

[
0
2

]
u

y = [ 1 0 ]x

with a state-feedback controller, and has designed the following control law

u = −Lx+ lrr,

where lr = 13 and
L = [ 17.25 7 ]

Afterwards, Kim realizes that all states are not measurable and thinks that
the control design has failed. Luckily you are there to tell him that it might be
possible to use the control law anyway, this by designing an observer.

a. Show that the system is observable. (1 p)

b. Help Kim by designing an observer suitable for the system and the proposed
controller (motivate your design choices). (3 p)

Solution

a. To find out whether the system is observable or not, we construct the obeser-
vability and matrix check for linear dependency in it’s columns.

Wo =
[
C

CA

]
=
[

1 0
1 2

]

As Wo is a 2x2 matrix and
rank(Wo) = 2

we have full rank and thus linearly independent columns, and the system is
observable. Another way to verify this would be to ensure that det(Wo) 6= 0.

b. A rule of thumb is to place the poles of the observer at the same angle as the
closed loop system poles but at least 2 times further away from the origin.
We start by finding the poles of the closed loop system with the given control
law. For a system

ẋ = Ax+Bu

y = Cx

with the control law
u = −Lx+ lrr

the closed loop transfer-function is given by

G(s) = Y (s)
U(s) = C(sI − (A−BL))−1Blrr.

The poles are found by solving

det(sI − (A−BL)) = 0.
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For the given values, we have

0 = det
([

s 0
0 s

]
−
[

1 2
2 1

]
+
[

0
2

]
[ 17.25 7 ]

)
= det

([
s− 1 −2
32.5 s+ 13

])
= (s− 1)(s+ 13)− (−65)
= s2 + 12s− 13 + 65.

Solving for s yields:
s = −6± 4i.

The observer should be designed such that the poles are at least 2 times faster
than the poles of the closed loop system with state feedback. We select exactly
twice as fast and place the observer poles at p1,2 = −12± 8i.
The observer is of the form

˙̂x = Ax̂+Bu+K(Cx− Cx̂).

The dynamics for the error between the real states and the estimated states is

˙̃x = ẋ− ˙̂x = Ax+Bu−Ax̂−Bu−K(Cx− Cx̂)
= (A−KC)x̃.

We will now find K such that (A −KC) gets the desired eigenvalues, p1,2 =
−12± 8i by solving det(sI − (A−KC)) = (s− p1)(s− p2):

det
([

s 0
0 s

]
−
[

1 2
2 1

]
+
[
k1

k2

]
[ 1 0 ]

)
= det

([
s− 1 + k1 −2
−2 + k2 s− 1

])
= (s− 1 + k1)(s− 1)− (−2(−2 + k2))
= s2 + s(k1 − 2)− 3− k1 + 2k2

Expanding the desired characteristic polynomial

(s− p1)(s− p2) = (s+ 12 + 8i)(s+ 12− 8i) = s2 + 24s+ 64 + 144

and matching coefficients gives

{
k1 − 2 = 24
−3− k1 + 2k2 = 208

⇔


k1 = 26

k2 = 237
2 = 118.5.

6. This problem is about compensation links.

a. The system
G1(s) = 1

s(s+ 1)(s+ 0.5)
is controlled with simple proportional feedback (gain 1) but does not behave as
intended. Design a compensation link that makes the system 2 times faster (i.e.
the crossover frequency ωc should be doubled) while having a phase margin of
φm = 12.5◦. (2.5 p)

b. Consider a phase lead compensation link and let N → ∞. What kind of con-
troller do we have now? Which problem might arise from this control structure?
How can we solve this problem? (1 p)
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Solution

a. From the specifications it is clear that we want to design a phase lead compen-
sation link, having the form

Gr(s) = KkN
s+ b

s+ bN
= Kk

1 + s/b

1 + s/(bN) N > 1.

First we need to find our nominal crossover-frequency:

1 = |G1(iωold
c )| = 1

|ωold
c |(

√
(ωold
c )2 + 1)(

√
(ωold
c )2 + 0.52))

.

Solving numerically, we find that ωold
c ≈ 0.815. Thus ωnew

c ≈ 1.63.
Next, we will calculate how much the phase must increase in order to reach a
phase margin of 12.5◦. This given our new crossover-frequency ωnew

w .

∆φm = arg(Gr(iωnew
c )) = φnew

m − (180 + arg(G0(iωnew
c ))

= 12.5− (180 + (−90− 180
π

(arctan(ωnewc ) + arctan(ω
new
c

0.5 )))

= 53.81◦,

where φnew
m is our desired phase margin and ∆φm = arg(Gr(iωnew

c )) is the
desired phase shift for the the compensation link at ωnew

c .
From the lecture compendium, we conclude that N = 9 is suitable. The next
step is to find b such that the top of the phase curve for the compensation link
is at ωnew

c . This is found from the following relationship

b
√
N = ωnewc

⇔ b = ωnewc√
N

= 1.63
3 = 0.542.

The final step is to find the gain Kk. We know from the definition of the
crossover frequency that

1 = |Gr(iωnew
c )G1(iωnew

c )| = Kk

√
N |G1(iωnew

c )|.

Since

|G1(iωnew
c )| = 1

|ωnew
c |(

√
(ωnew
c )2 + 1)(

√
(ωnew
c )2 + 0.52))

≈ 0.1894,

we conclude
Kk = 1

0.1894
√
N
≈ 1.76.

b. If N goes to infinity we have designed a PD-controller, since then

Gr(s) = Kk
1 + s/b

1 + s/(bN) ≈ Kk(1 + s/b).

A pure PD-controller can amplify noise too much due to large high frequency
gain. This can be alleviated by adding a low pass filter with a relatively fast
pole (faster than any zero/pole added from the PD-controller or compensation
link) to the controller.
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