
Department of

AUTOMATIC CONTROL

Automatic Control, Basic Course

Exam 23 April 2019, 8:00-13:00

Points and grades
All solutions must be well motivated. The whole exam gives 25 points. The number
of points are presented after each problem. Preliminary grades:

Grade 3: at least 12 points,
4: at least 17 points,
5: at least 22 points.

Aids
Mathematical collections of formulae (e.g. TEFYMA), collections of formulae in
automatic control, and calculators that are not programmed in advance.

Results
The results are presented through LADOK. Time and place for exam presentation
will be announced on the course web page.

Good Luck!
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Solutions to the exam in Automatic Control, Basic Course, 2019-04-23

1. A system is described by the following transfer function:

G(s) = Y (s)
U(s) = 2

(s+ 1)(s+ 5)

a. Write the system as a differential equation. (1 p)

b. Write the system in state-space form. State the matrices A, B, and C. (1 p)

c. Is the system controllable? (1 p)

Solution

a.

Y (s)(s+ 1)(s+ 5) = 2U(s)
s2Y (s) + 6sY (s) + 5Y (s) = 2U(s){inverse Laplace transform}⇒

ÿ(t) + 6ẏ(t) + 5y(t) = 2u(t)

b. We choose x1 = y och x2 = ẋ1 = ẏ Therefore,

ẋ2 + 6x2 + 5x1 = 2u

ẋ =
{
ẋ1 = x2

ẋ2 = −6x2 − 5x1 + 2u
⇒ ẋ =

[
0 1
−5 −6

]
︸ ︷︷ ︸

A

x+
[

0
2

]
︸ ︷︷ ︸

B

u

y = x1 ⇒ y =
[

1 0
]

︸ ︷︷ ︸
C

x

c. The system is controllable if the controllability matrix Ws has linearly inde-
pendent columns (is full rank). Ws is given by

Ws =
[
B AB

]
=
[

0 2
2 −12

]
.

The system has linearly independent columns if the determinant Ws is non-
zero:

det
[

0 2
2 −12

]
= 0− 4 6= 0.

Therefore the system is controllable.

2. Consider the system

ẋ1 = −x1 + u2

ẋ2 = x2
1 − x2 + 1

y = x2
1 + x2
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a. Find all the stationary points (x0
1, x

0
2, u

0) of the system. (1 p)

b. Linearize the system for u0 = 1. (2 p)

c. Is the linearized system asymptotically stable? (1 p)

Solution
To simplify the expression we introduce f1(x1, x2, u), f2(x1, x2, u) and g(x1, x2, u)
so that the system can be written as

ẋ1 = f1(x1, x2, u)
ẋ2 = f2(x1, x2, u)
y = g(x1, x2, u)

a. We find the stationary point by setting ẋ1 = ẋ2 = 0. The equation f1(x1, x2, u)) =
0 then gives x0

1 = (u0)2. We insert f2(x1, x2, u)) = 0 and get 0 = (x0
1)2−x0

2 + 1
which gives x0

2 = (x0
1)2 + 1 = (u0)4 + 1. In summary, the stationery points are

given by
(x0

1, x
0
2, u

0) =
(
(u0)2, (u0)4 + 1, u0

)
b. For u0 = 1 the stationary point is (x0

1, x
0
2, u

0) = (1, 2, 1).
We introduce new variables ∆x1 = x1 − x0

1, ∆x2 = x2 − x0
2, ∆u = u− u0, and

∆y = y − y0. The linearized system is then given by∆ẋ1

∆ẋ2

 = A

∆x1

∆x2

+B∆u

∆y = C

∆x1

∆x2

+D∆u

where

A =
 ∂f1

∂x1
∂f1
∂x2

∂f2
∂x1

∂f2
∂x2


∣∣∣∣∣
x0

1,x0
2,u0

=
 −1 0

2x0
1 −1

 =
−1 0

2 −1


B =

 ∂f1
∂u
∂f2
∂u


∣∣∣∣∣
x0

1,x0
2,u0

=
 2u0

0

 =
 2

0


C =

 ∂g
∂x1

∂g
∂x2

∣∣∣
x0

1,x0
2,u0

=
 2x0

1 1
 =

 2 1


D = ∂g

∂u

∣∣∣∣
x0

1,x0
2,u0

= 0

c. Yes, since the A matrix has eigenvalues {−1,−1}, i.e. both lie strictly in the
left half-plane.

3. Consider the Bode diagram for a transfer function is shown in Figure 1.

a. What are the poles and zeros of the transfer function? (1 p)

b. What are the phase and gain margin? (1 p)

c. Assume that we use simple feedback with a P-controller with gain K = 1. Is
the closed-loop system stable? Motivate your asnswer. (1 p)
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Figure 1: Bode diagram for the transfer function in problem 3.

Solution

a. In the Bode diagram we can see that the system has corner freqencies at ω =
20rad/s och ω = 0.1rad/s. We also see that the Bode diagram has a slope of
-1 and phase = 90◦ as ω → 0. This corresponds to poles at s = 0, s = −0.1,
and s = −20, and no zeros.

b. Phase margin φm = 27.5◦, gain margin: gm = 50.3.

c. Yes, we have positive phase and amplitude margins.

4. The Nyquist diagram for a stable process is shown in figure 2. Determine with
the help of the digram if each of the following statements are true, false, or if
you do not have enough information about the system to answer. The system is
assumed to be minimal, i.e. no pole-zero cancellation has occured. All answers
must be motivated. Each correct answer gives 0.5p.

a. If the system is connected through negative feedback with a P-controller med
gain K = 2 the system will be unstable.

b. The system’s phase margin is less than 60◦.
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Figure 2: Nyquist diagram for the system in 4.

c. The system’s lag margin is greater than 0.1 s.

d. The process’ static gain is 2.

e. The process has an integrator.

f. The process is a second order system with a time delay.

Solution

a. True. The amplitude margin kan be read from the Nyquist diagram as Am ≈
1.2. A P-controller with K = 2 > Am should therefore make the closed-loop
system unstable.

b. True. the phase margin can be read from the diagram as φm ≈ 30◦ < 60◦.

c. Not enough information. To calculate the systems lag margin, we must know
the systems cross-over freqency, which is not visable in the diagram.

d. True. The systems stationary gain can be read from the start of the curve in
the diagram, i.e. 2 where ω = 0.

e. False. If the system had an integrator, the phase at low frequencies would have
been −90◦.

f. Not enough information. The time-delay makes it impossible to determine the
order of the system from the Nyquist diagram.
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Figure 3: The closed-loop system for problems 5 and 6

5. A third order system, G(s) = 1
s3+2s2+3s+1 , is connected via negative feedback

to a P-controller with gain K (see figure 3).

a. For which values ofK is the closed-loop system asymptotically stable? Consider
both positive and negative values of K. (2 p)

b. For which values of K is the stationary error less than 0.1 if the reference signal
is a unit step? What is the lowest possible stationary error? (2 p)

Solution

a. The closed-loop system’s transfer function from reference to measurement sig-
nal is KG

1+KG = K
s3+2s2+3s+1+K

. The closed-loop system is asymptotically stable
if all poles lie in the left half-plane (i.e. they have negative real parts). This is
true only if both a1, a2, a3 > 0 and a1 ·a2 > a3 for the characteristic polynomial
s3 + a1s

2 + a2s+ a3. From this follows the conditions

a1 = 2 > 0 (OK),
a2 = 3 > 0 (OK),
a3 = 1 +K > 0⇒ K > −1

a1 · a2 = 6 > a3 = 1 +K ⇒ K < 5.
−1 < K < 5

b. The transfer function from reference to control error is 1
1+KG = s3+2s2+3s+1

s3+2s2+3s+1+K
and has the same poles as the transferfunction from reference to measurement
signal. We can use the final value theorum is the system is stable (−1 < K < 5).

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s3 + 2s2 + 3s+ 1
s3 + 2s2 + 3s+ 1 +K

= 1
1 +K

< 0.1⇒ K > 9

Therefore, there is no K that gives a stationary error of less than 0.1.
The lowest possible stationary error is limK→5

1
1+K = 1

6 .

6. A system has the transfer function

G(s) = 1
s(s+ 1)(s+ 2) ,

and is controlled by a P-controller, K (see figure 3).
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a. Set K = 1 (which gives a stable system) and assume that

r(t) =
{
t, t ≥ 0
0, t < 0

Design a compensation link

Gk(s) = M
s+ a

Ms+ a
(1)

so that the stationary error is reduced by a factor of 3, without reducing the
phase margine by more than 6◦. Show the equation for the cross-over freqency
(ωc) of G(s) and show that ωc ≈ 0.45. (2 p)

b. Assume that you want the compensation link to have even less impact on the
phase margin, compared to your design in a). How would you need to change
M and/or a in (1)?
Note: you do not need to calculate new parameters, only clarify if you would
increase or decrease them and why. (1 p)

Solution

a. To minimize the stationery error by a factor of 3 we must choose M = 3. The
uncompensated transfer function is

G(s) = 1
s(s+ 1)(s+ 2) .

The cross-over frequency ωc is given by

|Go(iωc)| = 1

|Go(iωc)| =
1

ωc

√
1 + ω2

c

√
4 + ω2

c

ω2
c (1 + ω2

c )(4 + ω2
c ) = 1
ωc ≈ 0.45.

According to the rule-of-thumb the phase margin does not decrease with more
than 6◦ if we choose a = 0.1ωc = 0.045. We thus get the transfer function for
the compensation link as

Gk(s) = M
s+ a

Ms+ a
= 3 s+ 0.045

3s+ 0.045

b. M could have been decreased to diminish the effect on the phase margin, but
M must not be changed due to the constraint to decrease the stationary error.
The only other possibility is to decrease a. The reason is that for each ω > 0
we have that:

lim
a→0
|Gk(iω)| = 1 och lim

a→0
arg{Gk(iω)} = 0.

and thus we can decrease the influence of Gk on the phase margin arbitrarily
low by just decreasing a enough (see figure 11.6 in Lecture Notes in Automatic
Control, Tore Hägglund, 2017)
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7. Consider

ẋ =
[
−1 2
0 −3

]
x+

[
0
4

]
u.

a. Determine the poles for the (open-loop) system. (1 p)

b. Determine a control law
u = −Lx,

such that the closed-loop system poles will be twice as fast as the open-loop
system’s fastest pole. (2 p)

c. Assume that we cannot measure all states, but that we access to an output
signal

y = Cx = [c1 c2]x.
We want to use the output signal y to estimate the two states of the system
x = [x1, x2]. What constraints does this impose on c1 and c2? (2 p)

Solution

a. The characteristic polynomial

det(sI −A) = (s+ 1)(s+ 3),

gives the two poles s = −1 and s = −3.

b. The fastest pole is the one situated furthest from the origin, i.e., s = −3. We
thus need to find L such that the two poles are placed at the distance 6 from
the origin, given e.g., by double poles in s = −6. The characteristic polynomial
for the closed-loop system will then be

(s+ 6)2 = s2 + 12s+ 36.

We have that

det(sI −A+BL) = s2 + (4 + 4l2)s+ 8l1 + 4l2 + 3,

and thus

L =
[
l1

l2

]T

=
[

25/8
2

]T

.

c. The observability matrix is given by

W0 =
[

C

CA

]
=
[

c1 c2

−c1 2c1 − 3c2

]
.

The system is observable if W0 has full rank, i.e.,

0 6= det
[

c1 c2

−c1 2c1 − 3c2

]
= c1(2c1 − 3c2) + c1c2 = 2c1(c1 − c2).

Thus, we must have that {
c1 6= 0
c1 6= c2

.
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