
CS285 Deep Reinforcement Learning HW3:

Q-Learning and Actor-Critic

Due: October 21st 2019, 11:59 pm

1 Part 1: Q-Learning

1.1 Introduction

Part 1 of this assignment requires you to implement and evaluate Q-learning
with convolutional neural networks for playing Atari games. The Q-learning
algorithm was covered in lecture, and you will be provided with starter code.
A GPU machine will be faster, but you should be able to get good results with
about 20 hours of compute on a modern CPU.

Please start early! The questions will require you to perform multiple runs of Q-
learning, each of which can take quite a long time. Furthermore, depending on
your implementation, you may find it necessary to tweak some of the parameters,
such as learning rates or exploration schedules, which can also be very time
consuming. The actual coding for this assignment will involve about 50 lines of
code, but the evaluation may take a very long time.

1.2 Installation

Obtain the code from https://github.com/berkeleydeeprlcourse/homework_

fall2019/tree/master/hw3. To run the code, go into the hw3 directory and
simply execute python cs285/scripts/run_hw3_dqn.py. It will not work until
you finish implementing the algorithm in agents/dqn_agent.py,
critics/dqn_critic.py and policies/argmax_policy.py, in addition to copy-
ing the relevant bits that you implemented in HW1 and HW2, as specified in
the README.

To install OpenCV, run pip install opencv-python==3.4.0.12. The only
additional dependency you might have to install is gym[atari]==0.10.11, and
you can skip this step if you installed gym[all] at the start of the class. You

1

https://github.com/berkeleydeeprlcourse/homework_fall2019/tree/master/hw3
https://github.com/berkeleydeeprlcourse/homework_fall2019/tree/master/hw3


also need to replace <pathtogym>/gym/envs/box2d/lunar_lander.py with the
provided lunar_lander.py file. To find the path, run:

locate lunar_lander.py

(or if there are multiple options run):

source activate cs285_env

ipython

import gym

gym.__file__

which will print <pathtogym>/gym/__init__.py.

You may want to look at scripts/run_hw3_dqn.py before starting the imple-
mentation.

1.3 Implementation

The first phase of the assignment is to implement a working version of Q-
learning. The default code will run the Pong game with reasonable hyperparam-
eter settings. The starter code already provides you with a working replay buffer,
and you have to fill in parts of agents/dqn_agent.py, critics/dqn_critic.py
and policies/argmax_policy.py by searching for TODO. You will also need to
reuse your code from homework 1 and homework 2 (e.g., utils.py, tf_utils.py,
rl_trainer.py) The comments in the code describe what should be imple-
mented in each section. You could look inside infrastructure/dqn_utils.py

to understand how the replay buffer works, but you should not need to modify
it. You may also look inside run_hw3_dqn.py to change the hyperparameters or
the particular choice of Atari game. Once you implement Q-learning, answering
some of the questions may require changing hyperparameters, neural network
architectures, and the game, which should be done by changing the command
line arguments passed to run_hw3_dqn.py.

To determine if your implementation of Q-learning is performing well, you
should run it with the default hyperparameters on the Pong game (see the
command below). Our reference solution gets a reward of around -20 to -15 af-
ter 500k steps, -15 to -10 after 1m steps, -10 to -5 after 1.5m steps, and around
+10 after 2m steps on Pong. The maximum score of around +20 is reached
after about 4-5m steps. However, there is considerable variation between runs.
For Q1, you must run the algorithm for at least 3m timesteps (and you are en-
couraged to run for more), and you must achieve a final reward of at least +10
(i.e. your trained agent beats the opponent by an average of 10 points).

To accelerate debugging, you may also try out LunarLander-v2, which trains
your agent to play Lunar Lander, a 1979 arcade game (also made by Atari)
that has been implemented in OpenAI Gym. Note that you cannot run lunar

2



remotely because it opens a window to render images. Our reference solu-
tion with the default hyperparameters achieves around 150 reward after 500k
timesteps, but there is considerable variation between runs, and the method
sometimes experience instabilities (i.e. the reward goes down after achieving
150). We recommend using LunarLander-v2 to check the correctness of your
code before running longer experiments with PongNoFrameSkip-v4.

1.4 Evaluation

Once you have a working implementation of Q-learning, you should prepare a
report. The report should consist of one figure for each question below. You
should turn in the report as one PDF and a zip file with your code. If your
code requires special instructions or dependencies to run, please include these
in a file called README inside the zip file. For all the questions below, it is your
choice how long to run for. Although running for 2-4m steps is ideal for a solid
evaluation, especially when running on CPU, this may be difficult. You need to
include at least one run of 3m steps for Question 1.

Question 1: basic Q-learning performance. (DQN) Include a learning
curve plot showing the performance of your implementation on the game Pong.
The x-axis should correspond to number of time steps (consider using scientific
notation) and the y-axis should show the mean 100-episode reward as well as
the best mean reward. These quantities are already computed and printed in
the starter code. They are also logged to the data folder, and can be visualized
using Tensorboard, similar to previous assignments. Be sure to label the y-axis,
since we need to verify that your implementation achieves similar reward as
ours. You should not need to modify the default hyperparameters in order to
obtain good performance, but if you modify any of the parameters, list them in
the caption of the figure. The final results should use the following experiment
name:

python run_hw3_dqn.py --env_name PongNoFrameskip-v4 --exp_name

q1↪→

Question 2: double Q-learning (DDQN). Use the double estimator to
improve the accuracy of your learned Q values. This amounts to using the
online Q network (instead of the target Q network) to select the best action when
computing target values. Compare the performance of DDQN to vanilla DQN.
Since there is considerable variance between runs, you must run at least three
random seeds for both DQN and DDQN. You must use LunarLander-v2 for this
question. The final results should use the following experiment names:

3



python run_hw3_dqn_atari.py --env_name LunarLander-v2 --exp_name

q2_dqn_1 --seed 1↪→

python run_hw3_dqn_atari.py --env_name LunarLander-v2 --exp_name

q2_dqn_2 --seed 2↪→

python run_hw3_dqn_atari.py --env_name LunarLander-v2 --exp_name

q2_dqn_3 --seed 3↪→

python run_hw3_dqn_atari.py --env_name LunarLander-v2 --exp_name

q2_doubledqn_1 --double_q --seed 1↪→

python run_hw3_dqn_atari.py --env_name LunarLander-v2 --exp_name

q2_doubledqn_2 --double_q --seed 2↪→

python run_hw3_dqn_atari.py --env_name LunarLander-v2 --exp_name

q2_doubledqn_3 --double_q --seed 3↪→

You need to submit the run_logs for each of the runs from above. In your
report, you must make a single graph that averages the performance across
three runs for both DQN and double DQN.

Question 3: experimenting with hyperparameters. Now let’s analyze
the sensitivity of Q-learning to hyperparameters. Choose one hyperparameter
of your choice and run at least three other settings of this hyperparameter, in
addition to the one used in Question 1, and plot all four values on the same
graph. Your choice what you experiment with, but you should explain why you
chose this hyperparameter in the caption. Examples include: learning rates,
neural network architecture, exploration schedule or exploration rule (e.g. you
may implement an alternative to ε-greedy), etc. Discuss the effect of this hyper-
parameter on performance in the caption. You should find a hyperparameter
that makes a nontrivial difference on performance. Note: you might consider
performing a hyperparameter sweep for getting good results in Question 1, in
which case it’s fine to just include the results of this sweep for Question 3 as
well, while plotting only the best hyperparameter setting in Question 1. The
final results should use the following experiment name:

python run_hw3_dqn.py --env_name PongNoFrameskip-v4 --exp_name

q3_hparam1↪→

python run_hw3_dqn.py --env_name PongNoFrameskip-v4 --exp_name

q3_hparam2↪→

python run_hw3_dqn.py --env_name PongNoFrameskip-v4 --exp_name

q3_hparam3↪→

You can replace PongNoFrameskip-v4 with LunarLander-v2 if you choose to
use that environment.

4



Note: for Questions 1, you must submit results on the pong environment (even
if you chose to test it on the lunar lander environment). For Question 2, you
must submit results on the lunar lander environment. For Question 3, you can
submit on either pong or lunar lander.

2 Part 2: Actor-Critic

2.1 Introduction

Part 2 of this assignment requires you to modify policy gradients (from hw2)
to an actor-critic formulation. Part 2 is relatively shorter than part 1. The
actual coding for this assignment will involve less than 20 lines of code. Note
however that evaluation may take longer for actor-critic than policy gradient
(on half-cheetah) due to the significantly larger number of training steps for the
value function.

Recall the policy gradient from hw2:

∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ait|sit)

((
T∑
t′=t

γt
′−tr(sit′ , ait′)

)
− V πφ (sit)

)
.

In this formulation, we estimate the reward to go by taking the sum of rewards
to go over each trajectory to estimate the Q function, and subtracting the value
function baseline to obtain the advantage

Aπ(st, at) ≈

(
T∑
t′=t

γt
′−tr(st′ , at′)

)
− V πφ (st)

In practice, the estimated advantage value suffers from high variance. Actor-
critic addresses this issue by using a critic network to estimate the sum of
rewards to go. The most common type of critic network used is a value function,
in which case our estimated advantage becomes

Aπ(st, at) ≈ r(st, at) + γV πφ (st+1)− V πφ (st)

In this assignment we will use the same value function network from hw2 as
the basis for our critic network. One additional consideration in actor-critic is
updating the critic network itself. While we can use Monte Carlo rollouts to
estimate the sum of rewards to go for updating the value function network, in
practice we fit our value function to the following target values:

yt = r(st, at) + γV π(st+1)

5



we then regress onto these target values via the following regression objective
which we can optimize with gradient descent:

min
φ

∑
i,t

(V πφ (sit)− yit)2

In theory, we need to perform this minimization everytime we update our policy,
so that our value function matches the behavior of the new policy. In practice
however, this operation can be costly, so we may instead just take a few gradient
steps at each iteration. Also note that since our target values are based on the
old value function, we may need to recompute the targets with the updated
value function, in the following fashion:

1. Update targets with current value function

2. Regress onto targets to update value function by taking a few gradient
steps

3. Redo steps 1 and 2 several times

In all, the process of fitting the value function critic is an iterative process in
which we go back and forth between computing target values and updating the
value function to match the target values. Through experimentation, you will
see that this iterative process is crucial for training the critic network.

2.2 Implementation

Your code will build off your solutions from hw2. You will need to fill in the TO-
DOS for the following parts of the code. To run the code, go into the hw3 direc-
tory and simply execute python cs285/scripts/run_hw3_actor_critic.py.

• In policies/MLP_policy.py copy over your policy class for PG, you
should note that the AC policy class is in fact the same as the policy
class you implemented in the policy gradient homework (except we no
longer have a nn baseline).

• In agents/ac_agent.py, finish the train function. This function should
implement the necessary critic updates, estimate the advantage, and then
update the policy. Log the final losses at the end so you can monitor it
during training.

• In agents/ac_agent.py, finish the estimate_advantage function: this
function uses the critic network to estimate the advantage values. The
advantage values are computed according to

Aπ(st, at) ≈ r(st, at) + γV πφ (st+1)− V πφ (st)

Note: for terminal timesteps, you must make sure to cut off the reward to
go (i.e., set it to zero), in which case we have

Aπ(st, at) ≈ r(st, at)− V πφ (st)

6



• critics/bootstrapped_continuous_critic.py complete the TODOS
in build, update and forward. In update, perform the critic update
according to process outlined in the introduction. You must perform

self.num_grad_steps_per_target_update * self.num_target_updates

number of updates, and recompute the target values every
self.num_grad_steps_per_target_update number of steps.

2.3 Evaluation

Once you have a working implementation of actor-critic, you should prepare a
report. The report should consist of figures for the question below. You should
turn in the report as one PDF (same PDF as part 1) and a zip file with your
code (same zip file as part 1). If your code requires special instructions or
dependencies to run, please include these in a file called README inside the zip
file.

Question 4: Sanity check with Cartpole Now that you have implemented
actor-critic, check that your solution works by running Cartpole-v0.

python run_hw3_actor_critic.py --env_name CartPole-v0 -n 100 -b

1000 --exp_name 1_1 -ntu 1 -ngsptu 1↪→

In the example above, we alternate between performing one target update and
one gradient update step for the critic. As you will see, this probably doesn’t
work, and you need to increase both the number of target updates and number
of gradient updates. Compare the results for the following settings and report
which worked best. Do this by plotting all the runs on a single plot and writing
your takeaway in the caption.

python run_hw3_actor_critic.py --env_name CartPole-v0 -n 100 -b

1000 --exp_name 100_1 -ntu 100 -ngsptu 1↪→

python run_hw3_actor_critic.py --env_name CartPole-v0 -n 100 -b

1000 --exp_name 1_100 -ntu 1 -ngsptu 100↪→

python run_hw3_actor_critic.py --env_name CartPole-v0 -n 100 -b

1000 --exp_name 10_10 -ntu 10 -ngsptu 10↪→

At the end, the best setting from above should match the policy gradient results
from Cartpole in hw2 (200).

7



Question 5: Run actor-critic with more difficult tasks Use the best
setting from the previous question to run InvertedPendulum and HalfChee-
tah:

python run_hw3_actor_critic.py --env_name InvertedPendulum-v2

--ep_len 1000 --discount 0.95 -n 100 -l 2 -s 64 -b 5000 -lr

0.01 --exp_name <>_<> -ntu <> -ngsptu <>

↪→

↪→

python run_hw3_actor_critic.py --env_name HalfCheetah-v2

--ep_len 150 --discount 0.90 --scalar_log_freq 1 -n 150 -l 2

-s 32 -b 30000 -eb 1500 -lr 0.02 --exp_name <>_<> -ntu <>

-ngsptu <>

↪→

↪→

↪→

Your results should roughly match those of policy gradient. After 150 iterations,
your HalfCheetah return should be around 150 and your InveredPendulum re-
turn should be around 1000. Your deliverables for this section are plots with
the eval returns for both enviornments.

3 Submitting the code and experiment runs

In order to turn in your code and experiment logs, create a folder that contains
the following:

• A folder named run logs with all the experiment runs from this assign-
ment. For Q-learning, you need to submit one run for Q1, two runs for
Q2, and three runs for Q3. These folders can be copied directly from the
cs285/data folder. For the actor critic section, likewise submit one folder
for each run. Do not change the names originally assigned to the
folders, as specified by exp name in the instructions. Also, video
logging is disabled by default in the code, but if you turned it on
for debugging, you need to run those again with --video log freq

-1, or else the file size will be too large for submission.

• The cs285 folder with all the .py files, with the same names and directory
structure as the original homework repository (excluding the cs285/data

folder). Also include any special instructions we need to run in order to
produce each of your figures or tables (e.g. “run python myassignment.py
-sec2q1” to generate the result for Section 2 Question 1) in the form of
a README file. Note that this assignments plotting must be done in a
python script, such that running a single script like this can generate the
plot.

8



3.1 Turning it in

Turn in your assignment by the deadline on Gradescope. Upload the zip file with
your code to HW3 Code, and upload the PDF of your report to HW3.

9


	Part 1: Q-Learning
	Introduction
	Installation
	Implementation
	Evaluation

	Part 2: Actor-Critic
	Introduction
	Implementation
	Evaluation

	Submitting the code and experiment runs
	Turning it in


