
Deep RL Assignment 1: Imitation Learning
Fall 2019

due September 16th, 11:59 pm

The goal of this assignment is to experiment with imitation learning, including direct behavior cloning
and the DAgger algorithm. In lieu of a human demonstrator, demonstrations will be provided via an expert
policy that we have trained for you. Your goals will be to set up behavior cloning and DAgger, and compare
their performance on a few different continuous control tasks from the OpenAI Gym benchmark suite. Turn
in your report and code as described in Section 4.

The starter-code for this assignment can be found at https://github.com/berkeleydeeprlcourse/

homework_fall2019. Follow the instructions in the Readme file to setup the codebase.

Section 1. Behavioral Cloning

1. The starter code provides an expert policy for each of the MuJoCo tasks in OpenAI Gym. Fill in
the blanks in the code marked with Todo to implement behavioral cloning. A command for running
behavioral cloning is given in the Readme file.

The following files have blanks in them and can be read in this order:

• scripts/run hw1 behavior cloning.py

• infrastructure/rl trainer.py

• agents/bc agent.py

• policies/MLP policy.py

• infrastructure/replay buffer.py

• infrastructure/utils.py

• infrastructure/tf utils.py

2. Run behavioral cloning (BC) and report results on two tasks: one task where a behavioral cloning
agent achieves at least 30% of the performance of the expert, and one task where it does not. When
providing results, report the mean and standard deviation of the return over multiple rollouts in a
table, and state which task was used. Be sure to set up a fair comparison, in terms of network size,
amount of data, and number of training iterations, and provide these details (and any others you feel
are appropriate) in the table caption.

Tip: to speed up run times, the video logging can be disabled by setting --video log freq -1

3. Experiment with one set of hyperparameter that affects the performance of the behavioral cloning
agent, such as the number of demonstrations, the number of training epochs, the variance of the
expert policy, or something that you come up with yourself. For one of the tasks used in the previous
question, show a graph of how the BC agent’s performance varies with the value of this hyperparameter,
and state the hyperparameter and a brief rationale for why you chose it in the caption for the graph.

Section 2. DAgger

1. Implement DAgger by filling out all the remaining blanks in the code marked with Todo. A command
for running DAgger is provided in the Readme file.

2. Run DAgger and report results on one task in which DAgger can learn a better policy than behavioral
cloning. Report your results in the form of a learning curve, plotting the number of DAgger iterations
vs. the policy’s mean return, with error bars to show the standard deviation. Include the performance
of the expert policy and the behavioral cloning agent on the same plot. In the caption, state which
task you used, and any details regarding network architecture, amount of data, etc. (as in the previous
section).

1

https://github.com/berkeleydeeprlcourse/homework_fall2019
https://github.com/berkeleydeeprlcourse/homework_fall2019


Section 3. Turning it in.

1. Submitting the PDF Make a PDF report containing: Table 1 for a table of results from Question
1.2, and Figure 1 for Question 1.3. and Figure 2 with results from question 2.2.

You do not need to write anything else in the report, just include the figures with captions as de-
scribed in each question above. See the handout at http://rail.eecs.berkeley.edu/deeprlcourse/
static/misc/viz.pdf for notes on how to generate plots.

2. Submitting the code and experiment runs In order to turn in your code and experiment logs,
create a folder that contains the following:

• A folder named run logs with at most one folder per environment for either the behav-
ioral cloning (part 2, not part 3) or DAgger exercise. These folders can be copied directly from
the cs285/data folder. Important: Disable video logging for the runs that you sub-
mit, otherwise the files ize will be too large! You can do this by setting the flag
--video log freq -1

• The cs285 folder with all the .py files, with the same names and directory structure as the
original homework repository. Also include any special instructions we need to run it to produce
each of your figures or tables (e.g. “run python myassignment.py -sec2q1” to generate the result
for Section 2 Question 1) in the form of a README file.

As an example, the unzipped version of your submission should result in the following file structure.
Make sure that the submit.zip file is below 15MB.

submit.zip

run logs

dagger Ant-v2 03-09-2019 16-50-56

events.out.tfevents.1567529456.e3a096ac8ff4

checkpoint

policy itr 0.data-00000-of-00001

...

bc Ant-v2 03-09-2019 16-50-56

events.out.tfevents.1567529456.e3a096ac8ff4

checkpoint

policy itr 0.data-00000-of-00001

...

cs285

agents

bc agent.py

...

policies

...

...

README.md

...

2

http://rail.eecs.berkeley.edu/deeprlcourse/static/misc/viz.pdf
http://rail.eecs.berkeley.edu/deeprlcourse/static/misc/viz.pdf


3. Turn in your assignment on Gradescope. Upload the zip file with your code and log files to HW1
Code, and upload the PDF of your report to HW1.

3


