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H.,-synthesis problem

Recall the DK-iteration

@ K-step: fix D(s), solve (Hyo-synthesis)

[P el

@ D-step: fix K(s), solve frequency-wise (convex program)

mln

(o]

min G(DF;(RK)D ™ (jw))
DeZq,D,D~1e Hy,



H.,-synthesis problem

z — w
«—— ——
P
Y — u

Optimal Hy, control:
mlgn Il F¢ (P, K) oo
Suboptimal Hy, control: given y > 0, find K such that
1 Fe(PK)lloo <7-

@ Riccati equation approach
@ Optimization approach

@ Model matching approach



The “DGKF” solution
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State-Space Solutions to Standard JC, and J3C.,

Control

JOHN C. DOYLE, KEITH GLOVER, MEMBER, IEEE,
BRUCE A. FRANCIS, FELLOW,

Abstract—Simple state-space formulas are derived for all controllers
solving a standard JC.. problem: for a given number > 0, find all
controllers such that the 3C.. norm of the closed-loop transfer function is
(strictly) less than . A controller exists if and oaly if the unique
stabilizing solutions to two algebraic Riceati equations are positive
definite and the speciral radius of iheir product is less than v Under
these conditions, a parametrization of all controllers solving the prohlem
is given as a linear i ion (LFT) on a Y
stable free The state of the matrix for
the LFT, constructed using these same two Riccati solutions, equals that
of the plant, and has a separation structure reminiscent of classical LQG
(i.e., ;) theory. This paper is also iniended o be of tuiorial value, so0 8
standard JC; solution is developed in parallel.

Problems

PRAMOD P. KHARGONEKAR, MEMBER, IEEE, AND

IEEE

including disturbances, sensor noise, and commands; the output g
is an error signal; y is the measured variables; and w is the control
input. The diagram is also referred to as a linear fractional
transformation (LFT) on K, and G is called the coefficient matrix
for the LFT. The resulting closed-loop transfer function from w to
z is denoted by T,

The main 3C,, output feedback results of this paper as described
in the Abstract are presented in Section IIL. The proofs of these
results in Section V exploit the “‘separation’ structure of the
controller, which is reminiscent of the classical J3C; controller. Of
course, there are significant differences that reflect the fact that
the 3., criterion corresponds to designing for the worst exoge-
nous signal. These are also discussed in Section V. Special
attes n \nll be gwcn lo lhc wnlra] coﬂlru]lcr oblamed by actllng




The “DGKF” solution

B By
0 D12
Dy, 0

X=Ax+Biw+Byu
, z=Ci1x+Di2u
y=Cox+Doyw

Gi)=| C

G

Assumptions:

Al (A, B;) stabilizable, (Cq, A) detectable;
A2 (A, By) stabilizable, (Cy, A) detectable;
A3 DLIC Dil=[0 Iy;

44 |y P81}
Theorem
There exists a controller such that || T,y lleo < iff:
@ X, =0is a solution to the ARE
AT Xoo + Xoo A+ Xoo (Y 2B1B] —B2B; ) Xeo + Cy C1 = 0.
@ Y, =0is a solution to the ARE
AYpo + Yoo AT + Yoo (Y 2C{ C1 = C) Cp) Yoo + B1B] =0.
Q P(XeoYoo) <72




The “DGKF” solution

Theorem (continued)
Moreover, when these conditions hold, all such controllers are given by
K =Fy (K¢, Q) where

Ao | ~Zooloo  ZooB2

Ke=| Foo 0 T
—Cy 1 0

Foo=—B) Xoo

Loo= Yoo CJ

Zoo ==Y 2 Yoo Xoo) "
Aco = A+Y 2B B] Xoo + B2 Foo

and Q(S) is any stable proper transfer matrix s.t. |Qlloo <7y. For Q =0, we get

K(8) = —Foo (5] = Aco) " Zoo Loo-

Algorithm
Given v, test if the conditions of the theorem are satisfied; if yes,
decrease y; otherwise increase. Proceed using bisection.




Differential game and worst case optimal control

X=Ax+Biw+Byu

z=C1x +Diou
Consider the problem
1 (o0}
. 2 2 2
minmax — lzll; =y lwlsde
uel, wel, 2 Jo

R R . o 220002
fo lzllz =y llwll df:j{; ICix+ Drpul” -y llwl“dt

by A3 *° T,~T 2 2 2
= x'Cy Cix+lul® -y lwl*dr
0

. L[
minmax — xTCITC1x+||u||2—y2||w||2dt
uel, wely 2 Jo

subject to
XxX=Ax+Biw+Byu



Worst-case optimal control

. 1 [
min max — xTC1TC1X+||u||2—Y2||w||2df
uel, wels 2 Jo

subject to
X=Ax+Biw+Bou
Define the Hamiltonian

1

Hququ:pTMx+Buu+ByU+zb:CIQx+HmF—y%umﬂ
Let V(x) = %xTXoox (x is the IC), with X5, = 0 be the value function, then by
Bellman's principle of optimality

0 =minmax H(x, Vy, u, w)
u w
= A Xoo+ XooA+C| C1 + Xoo(y 2B1B.] — By B, ) X0 =0

and the optimal control

optimal control: u= —BTXoox = FoX
worst case disturbance: w=y" BirXoox

Pure state-feedback control. However, we need output feedback, i.e.,

u=F(y()).

J




H,-optimal observer

X=Ax+Biw+Byu
z=Cix +Diou

y:C2x+D21w

Luenberger observer:

X =AX+Byu+L({J-y)
7y =Cx (w is not measurable!)
z =QC1x +Diou

Error system, £ = x— X, error output e = z — Z.

f = (A+LC2)§+ (B + LDy)w
e=Ci¢

1 (0]
minmax—f lell> —y*llw)?dt
L w 2Jo



H,-optimal observer

£ =(A+LCy)¢+ (B + LDy w . L[
b D e [T el - lwide

Hyo-opt. obs.:

x =Ax+Biw+Byu . 1 [o©
Hqo-opt. contr.: 1 2 min max > ||z||§ —yzll wll%dt
0

z =Cix +Diou’ uel,wel,

I} (optimal u is shown to be state-feedback)

X =(A+BK)x+Bjw . L[® 5 o5 2
,  min max — z|5 - w|5de
z =(Ci+DpK)x minmax 5 J, 1#l2=r7lwl;
Note
Tzw = (C1+D12K) (s - A- BK) "' By
and

Tew = C1(sI~ A~ LCp) ™" (B1 +LD21)
=T, =B +Dy L) sI-AT-C) L]

Comparing TJW to Tz, we get:



H,-optimal observer

Hoo-optimal observer gain
Loo:=~YooCy
where Yoo =0 solves

AYoo + Yoo AT +B1B] + Yoo (y 2C] C1 — C; C2) Yoo = 0.



H_, observer-based controller

X=Ax+Biw+Byu
z=Cix +Diou

y=Cox+Doyw
H, observer
=A%+ B+ Bau+ ZooLoo(J - ¥)
where

u=Fyok W=Y"2B] XooX Zoo=U~Y *YooXoo) "
—— N ~ _ ~
worst case optimal control  worst cased disturbance coupling compensation




The “DGKF” solution

Theorem (continued)
There exists a controller such that || Tz lleo < iff:
@ X, =0is a solution to the ARE
AT Xoo + Xoo A+ Xoo (Y °B1B] —B2B; )Xo+ C] C1 = 0.
@ Y, =0is a solution to the ARE
AV + Yoo AT + Yoo (Y 2C{ C1 = C) Cp) Yoo + B1 B =0.
Q P(XooYoo) <72

Moreover, when these conditions hold, all such controllers are given by
K =Fy (K¢, Q) where

Ax | ~Zwlow ZxBz
Ke=| Feo 0 I
) 1 0

Foo= =By Xoo, Loo=-YooCq, Zoo=U~Y ?YooXoo) ),
Aco= A+Y72B1B] Xoo+ BaFeo

and Q(s) is any stable proper transfer matrix s.t. [|Qlloo <7y. For Q =0, we get
K(8) = =Foo (ST = Aco) ™} Zoo Leo-




Youla Parametrization

@ M, N € RH, are right coprime (over RHy,) if X, Y, € RHy, s.t.
XM+YN=1
@ M, N € RH,, are left coprime (over RHyo) if 3X;,Y; € RHy, s.t.
MX;+NY, =1.
@ Let P be real rational.
o right coprime factorization of P: P = NM~!, M, N right coprime;
o left coprime factorization of P: P = M~'N. M, N left coprime;
o double coprime factorization of P: if P=NM~! = M~'N, and

X, Y, X, Y st
X -Y;
-N N X

A| B
o = i
Let P [T‘T be proper, rational, then

X v A+LC | -(B+LD) L M -, A+BF B -L
% owlE F T o[ Iy x'l= F 0
C -D I ! C+DF D I

is a double coprime factorization of P, where F,L are s.t. A+ BF and
A+ LC are stable.



Youla Parameterization: all stabilizing controllers

Theorem
Consider Fy (P K). Let

Xr = Yl

N X
be a double coprime factorization of Py>. Then the set of all proper
controllers achieving internal stability is parameterized by

where K=F (K, Q
e A+ ByF+LCy+ LDgpF | -L By + LDy,
K, = Xl_ll IR F 0 i
! L —(C2+ D2 F) I =Dy,

and Qe RHy, is s.t. (I+ VO_INQ) (joo) is invertible (A+ By F and A+ LCy
stable).

Note: closed loop system:

Fe(BFp(Kc, Q) = Fo(P* K, Q).

Redheffer start products: P x K, see [Chapter 9, ZD].



The Kalman-Yakubovich-Popov (KYP) lemma

o= [ 212

The following are equivalent:

Q lGlleo <y and A Hurwitz.
@ There exists X >0 such that

T T
A'X+XA XB] 1[C [c D]<o.

+_
B'X  —yI| y|DT

© There exists X > 0 such that
ATX+XA XB CT
B'X -yI DT
C D —yI

<0.




Recall of state-space LFT

SO [ ST
yr ‘_‘u
K|
K [
X=Ax+Biw+Byu X'[(ZAKJC[(+B[(}/
z=Cix+Dyyw+Dypu u:CKxK+DKy
y=C2x+D21w+D22u
X = AdXa+Baw Yo =
z =Cyxq+Dgw ' XK
Assume Dy» =0, then
Ad By 40 B 0 B Ax Bgl[o0 I 0
ca Dal= |0 0 O Ok plle: o D
cl cl C, 0 Dy 0 Dp» K K 2 21

The closed-loop parameters are affine in controller parameters.




Application of KYP

By KYP lemma
1Fe(PK)lloo <7y, Ac Hurwitz
0
A;rlxcl + XaAd X B Cg—ll'
3Xq > 0 such that Bl Xy ~yI D! |<o.
CC] Dc] _YI

Goal: find Ag, Bk, Ck, Dk such that the above conditions hold.
Note:

@ Ak, Bk, Ck, Dk fixed: SDP

o X fixed: SDP

@ Not jointly convex



A simpler case: state feedback

X=Ax+Biw+Bou
z=Ci1x+D1yw+Dyou

X=(A+ByDg)x+B
state feedback u = Dgx: = 2Di)x+ Byw

AZ} XCIT+ XaAa  XaBa CZ}
By Xa —yI Dy | <0
Ca Dq -yl
0
(A+BoDp) " X+ Xg(A+ByDx)  XgB1 (C1+D1aDy) "
Bl Xq —yI D], <0
C1+D12Dg Dn -yl
i}
Xc_ll (A+B2DK)TXcl+Xcl(A+BZDK) XaB1 (G +D12DK)T Xc_ll
I B] Xq —yI D
I C1+D12Dg Dy -yI
0
X MA+BaDR) T +(A+BoDR)X)  Bi X M(Ci+Di2Dg) "
Bl —yI D], <0

(C1+D12DR)X,} Dn -rI

z=(C1+D12Dg)x+D11yw

l<0
I



A simpler case: state feedback

X MA+BDR)T +(A+BaD)X)  Bi X M(Ci+ DD
T

b
B] —yI D], <0
(C1+D12DRX)} Di -vI
0 (letting Dg=:Dg X_}")
(AX;I1 +BZDK)T+AX;I1 +B,Dx B (CIX;ll +D12Dp) T
B -yI D, <0

1 _
C1X;}' + D12Dg Dy —yI
affine in the variable (Xc’ll,DK), i.e.g, LMI! Once (X;llvDK) has been found,

Dk =DgX,y.



Exercise

i=Ax+Biw+Bu Xk = Axxk +Bgy
z=Cix+Dyyw+Dypu u=Cgxg+Dgy

y= Cox+Doyw+Dou
Derive the LMI formulation of

min 1Tzl 0o-
(Ak,Bk,Ck,Dk)



Model matching approach

Model matching problem: given 11, T», T3 € RH
min ||T7 + TobQT:
omin 1T+ T2QT3ll0o

% w3

be a double coprime factorization of Py).

Let

Fy(PK) = P11+ PiaK(I - Py K) 7' Py
Youla parameterization: K = (MQ - Y))(NQ+ X;)~!

= K(I-PpK) ' =K[I-M'NMQ-Y)(NQ+X) "1}
=(MQ-Y)M

= Fy(BK) = P11 +P12(MQ-Y))MP,,
= (P11 — P12Y;MP51) + Pi,MQMPs; .
—— N—\—

T T, T3
Exercise: write a program to solve the problem.




H,-optimal control

mlgnlle(P,K)llz
H)-norm:
T 1 o . LN
Gl = wEl(z (1] = 5~ f (G G(jw)*1dw

where w is a white noise of unit intensity.

LQR ©
Q muinf lz(t)1?dt = u=—B, Xoox
0

Xoo — A" Xoo+ XooA+C] C1 — XooB2B) Xoo =0

Kalman-Bucy filter:
X= AR+ Bou+L(y—Co%) = L=—YooC,
Yoo — AYoo+YooAl +B1B] — Yoo CJ CoYoo =0

Observer-based controller u = —B;Xoofc.

H> is the limit of Hy, as Y — 0o = no robustness margin.




