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Review of last lecture

@ How to model uncertainties:
o Real parameters uncertainties. e.g., [0;| < 1.
e Complex disk uncertainties: e.g. P =(I+W;AW,)P, with
Ao < 1. E.g., P= (1 + wA)P,
P(jw) - P(jw)

lw(jw)| = ' Plw)

@ Nominal performance specifications:

@ Achieve high loop and controller gain in the necessary frequency
range.
o Weighted Hy,-performance, e.g. ||W,S|loc <1, or more generally

1 Fe(PK)lloo <1

@ Synthesis problem:

mI}an(RK), orfind K s.t. [Fp(PK)|leo <1

for a generalized plant P.



This lecture

@ Stability & performance specifications in the presence of
uncertainties

@ Structural uncertainties



Robust stability and performance

Definition

Given the description of an uncertainty model II, and a set of
performance objectives. Suppose Py € Il is the nominal model and K
the resulting controller. Then the closed-loop system is said to have

*]

(*]

(*]

Nominal stability (NS): if K internally stabilizes Py.

Robust stability (RS): if K internally stabilizes every P € II.
Nominal performance (NP): if the performance objectives are
satisfied for Py.

Robust performance (RP): if the performance objectives are
satisfied for every P € I1.




Robust stability

——{a] B

If M and A are stable, then under what condition is the
interconnection internally stable?

Theorem (Nyquist theorem)

Assume that the realization of L is stabilizable+detectable. Let N
denote the number of unstable poles of L. Then the negative
feedback system is internally stable iff the Nyquist plot of

det(I + L(s))

@ makes N anti-clockwise encirclements of the origin, and

@ does not pass through the origin.




Robust stability: real & complex uncertainty

Theorem
Assume M and A are stable, and that the uncertainty set A satisfies

ANeAN = eAeAforallee|0,1]

Then the interconnection is internally stable if and only if

@ the Nyquist plot of det(I — MA)(s) does not pass nor encircle the origin
for any A € A,

@ or equivalently
det(/ - MA)(jw) #0, Yo e RU {oo}, VA € A.

(=) obvious.

(<) note that for A =0, det(I — MA) = 1. If 3A’ € A such that the Nyquist
plot of det(I — MA’)(s) encircles the origin, then as € — 0, det(] —e MA’)
must pass through the origin for some w € RU {oo}. But €A’ € A.



Robust stability: complex uncertainty

Theorem

Assume M and A are stable, and that the uncertainty set A satisfies 0 € A,
Ae AN = eA €A forany complex |e|] < 1.
The interconnection is internally stable if and only if

p(MA(jw)) <1, VweRU{oo}, VA€A.

(<): detI - MA)(jw) =I1;jo—1; (MA(jw))) #0.

(=): IF3A, s.t. p(MA'(jw)) =1 at some frequency. Then |1;(MA')| =1
some some i. Now

det(I - MeA) =[[(1 - A;(eMA"))
i

thus one can choose € = exp(—jZA;(MA’)) to make det(I — MeA') =0.




Disk uncertainty

Lemma
Let D be the set of all transfer matrices satisfying (A) < 1. Then
maxp(MA) maxa(MA) maxa(A)a(M) a(M).

Proof:
p(MA) =6 (MA) =c(M)a(A)

Reverse direction: M = UXV™, choose A= VU™*. Then
p(MA) = p(USV*VU*) = p(UZU*) = p(Z) = 5(M).
Theorem

Assume M is stable. Then the interconnection is internally stable for all A
satisfying ||Alleo < 1 if and only if

[6M(jw)) <1, VweRU{co}] <= Mo <1

The interconnection is internally stable for all A satisfying ||Alloo < 1 if and

only if
[6M(jw)) <1, VweR] < |Ml=1.




Corollary: small gain theorem

SNy -

Corollary
Assume M is stable. Then the interconnection is internally stable for all A
satisfying || Al oo < 7—1, if and only if

[Mlloo <7y

The interconnection is internally stable for all A satisfying ||Allco < % if and

only if
IMlleo <7.




Robust stability

Corollary
Assume that Py is stable?. Then the uLFT is internally stable

o forall | Alleo < 3 if and only if | P11 ]| <7,
o forall ||Alle < % if and only if | P11l < y.

4We always tacitly assume that it has a stabilizable+detectable realization




Example

Consider the multiplicative uncertainty
[I=({+WAW2) Py, [Allc =1

Suppose that K nominally stabilizes Py.

n
v n
w o Y S N c, z P w
Y . U

v 0 0 WZPO n
zZ| = W1 0 P() w
y -W I —-Py u
0 0 W) P
Fz(P,K):[Wl 0 +[ }Z)OO]K(I+P0K)_1[—W1 1]

The system is internally stable if and only

[W2ToWilloo < 1.



Class exercise

Find the robust stability criterion for additive uncertainty:

P=P+ W AW,, |Alleo=<1




Summary

A

L=
p n
z P M w
y X u

[

If K internally stabilizes Py, by positive feedback, then the system is
internally stable for all ||Alloo <1 if and only if

I(Fe(PK))11lloo < 1.




Robust performance

Recall the nominal performance condition?
I Fe(M,K)lloo <1
or
mlgn 1 E¢ (M, K) | oo-
When uncertainty is introduced, robust performance requires

@ robust stability: F,(Fy(P,K),A) is internally stable,
@ robust performance: || Fy(Fp(P,K),A)|loo <1

for all |Alloo < 1. Note that robust stability is guaranteed by
|Fp(PRK)11ll <1.

]

1 P

x|

(1)



Robust performance

I Fu(Fe(BK),Alloo <1

29
—a f—

Fi(P.K)
F(PK), F/(P.K)
[[Fu(Fe(P, K), A)lloc <1 robust stability robust stability
A0
WAl <1 VN <1, AL <1 war= 3 4]



Structured uncertainty

A0 i
[0 A] robust stability
n_ A0

=[5 4]

Ao <1, Al <1
Fy(P,K)

Warning!

The uncertainty is not of a disk type! So it is not equivalent to requiring [|Fy (P, K)[lco < 1!

More generally, we may consider the “structured uncertainty”:
611

551
§ A , 18;llco<1or|8;|<1 (real), |Alloo < 1.

Ar

New tools are needed!



Robust performance for structured uncertainty

structured
uncertainty A

M M

Recall that:

Theorem
Assume M and I1 are stable, and that the uncertainty set Il satisfies

AelIl = eA€llforalle€[0,1]
Then the interconnection is internally stable if and only if

det(I - MA)(jw) #0, Yw € RU {oo}, VA € II.

When M is fixed, we want to find the “smallest” A € I1 which makes
the matrix I — MA singular for some w.




Structured singular value (SSV)

When M is fixed, we want to find the “smallest” A € Il (quantified by
0 (A)) which destabilizes the interconnection, or equivalently, makes
the matrix I — MA singular for some w.

If Ae I = €A €Il for all complex |e| <1, then at fixed frequency w
inf{G(A) : det(I — MA) = 0}
A€ll
= inf  {k:det(I—-kMA) =0}

T Aell, 5(A)<1
1

- SUPAer, 5(a)<1 P(MA)

Define pn(M(jw)) := sup p(M(jw)A(jw))
A(jwell(jw), 6(A(w)<1

e.g., if I represents the disk uncertainty, then up(M(jw)) = 6(M(jw)). If
= {61:16] <1, then un(M(jw)) = p(M(jw)).

In general
pM(jw)) < un(M(jw)) <o (M(jw)).



Structured singular value (SSV), cont’d

If D is invertible and commutes with all A €11, i.e., DA = AD, then
pn(M) = pn(DMD™)
since det(I — MA) = det(I - DMAD™!) =det(I- DMD™!A). Thus
M) = mi DMD™Y) < min 6(DMD™*
pn (M) gg}@%un( ) gg}@rll]a( )

with
9n=4{D:DA=AD,VA€Il}.

In particular, the inequality becomes equality, i.e.,
pr(M) = min 6(DMD™1)
De9y
whenever A has the following structure

AZdiag(51L«1,'” ,651,S,A1,”' ,Ap) with §; € C, Aj e C™Mixmj

with 2S5+ F < 3.



Structured singular value (SSV), cont’d

If A'is a full block complex uncertainty, then AD = DA iff D is
diagonal. Hence for

A =diag(611y,, -+ ,0s1r5,A1,-+,Ap) with 6; €C, Aj € cmixm

Take
D =diag(dy,---,ds,dy1,---,dp]I).



SSV example

A= [AI 0 € RHwo, IAlloo =1 = p(N) = min G(DND™)
0 A DA=AD, D,D-leHy,
Consider
A 0
Do=1" dr (@)1
[l M Zlgg 12 no || M1 d(w)Ni2
= p(N)= min 47|y, ) =mindg
d (@) d )\ | 5 Na1 Nop dw) d(w) Na1 Na2

Special case:

5 0 a a X
Az[ol 52],51,6260 101116211, N=1|," ec
d bJ?
i mina[| @ dwa :min\/la|2+|d“|2+ b1 b2 = al+ bl
T mb b d(w) d




Robust performance for structured uncertainty

structured
uncertainty

M

Theorem

Assume M and I1 are stable, and that the uncertainty set Il satisfies
Aell = eAellforalleel0,1]
Then the interconnection is internally stable if and only if

det(I - MA)(jw) #0, Yo e RU {oo}, YA € II.

Theorem

Let M be stable and I1 a complex stable structured uncertainty. Then the
interconnection is internally stable for all A € IT1 with 6 (A) <1 if and only if

pun(M(jw) <1, VYo €RU foo}




Robust performance for structured uncertainty

robust stability

n_ [A0 ! xs
VA:[II A] H’:{[AO g}:AeH,A’eC’“}

Ao <1

Now the robust performance condition reads
pa(Fe(P K)1,1) <1 (robust stability)
par (Fp(P,K)) <1 (robust performance)

It is easy to verify that the second condition implies the first one!

Theorem

Suppose that K (nominally) stabilizes P33. Let Il be a complex stable
uncertainty. Then the interconnection is internally stable and satisfies the
robust performance condition

| Fu(Fp (P K),A)lloo =1
for all A € 1 with 6(A) <1 if and only if
U (Fp(PK)) <1, VYweRU{oo}.




Example

Assumption: All signals and transfer functions are scalar-valued. Ay is complex,
with [[Aflleo = 1.

Robust performance:

|

([wocs “was |)={ls "™

ITzwlleo =1, VAJ

0 0w
_[-W;T -WKS
VKPGG e VYPGG ’K)‘[WPGS WpS

WpGS  WpS WpS WpS
{[-w; T -w;T
- WpS WpS
=|WiT|+|WpSl.

—> robust performance condition:|W;T|+ |[WpS| < 1.



Robust performance for structured uncertainty

Corollary

Suppose that K (nominally) stabilizes P33. Let Il be a complex stable
uncertainty. Then the interconnection is internally stable and satisfies the
robust performance condition

| Fyu(Fe(BK),A)lloo <
for all A € T with & (A) < % if and only if

pr (Fo(PK)) < B, VYoweRU{ooh




u-synthesis and DK-iteration

Goal: given complex uncertainty description A € I, find K such that

p (Fe(BK)) < 1.

Recall
pr (M (jw)) < min (T(DMD_I(jw))
DE@Hr

Compute upper bound

min  min IDF;(P.K)D™ oo
K De%p,D,D1eHy

@ K-step: fix D(s), solve (Hyo-synthesis)
min | DF;(P.K)D ™" llo
@ D-step: fix K(s), solve frequency-wise (convex program)

min  d(DF;(RK)D™"(jw))
DeZq,D,D~1e Hy,



The K-step

mKinIIDF/(P,K)D_IHoo
D p 1!
2 e ) ]

min || (G, K}l

DF,(PK)D™' =F,

For problem

Matlab code:

[K, CL, gamma, info] = hinfsyn(G, input_num,output_num);



The D-step

min G(DFp(RK)D™ (jw)
De@n,D,D’IGHOQ

@ Minimize to get D, across frequency.
@ Find D(s),D’l(s) € Hyo such that [D(jw)| = Dy, across frequency
(interpolation theory Youla & Saito 1967).

Example, consider the two-block uncertainty

A 0
A=y Ay | € RHoor 1Aloo <1
Then
W(N) = min G(DND™1)
DA=AD, D,D"leH,,
Matlab code:

N = frd(lft(P,K),omega);

[mu_bnds, mu_info] = mussv(N, blk);

[~, VSigma, ~] = mussvextract(mu_info);
D = VSigma.DLeft;

dl = fitfrd(genphase(D(1,1)),4) ...



G(s) =

Magnitude (dB)

A
Ar:two 1 x1 blocks, Ap: one2><2b|ock,A=[ I

Example on p-synthesis
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