

## **Robust Control**

### **Lecture 3**

Dongjun Wu



### **Review of last lecture**

- How to model uncertainties:
  - Real parameters uncertainties. e.g.,  $|\delta_i| \le 1$ .
  - Complex disk uncertainties: e.g.  $\tilde{P}=(I+W_1\Delta W_2)P$ , with  $\|\Delta\|_{\infty}\leq 1$ . E.g.,  $\tilde{P}=(1+w\Delta)P$ ,

$$|w(j\omega)| \ge \left| \frac{\tilde{P}(j\omega) - P(j\omega)}{P(j\omega)} \right|.$$

- Nominal performance specifications:
  - Achieve high loop and controller gain in the necessary frequency range.
  - Weighted  $H_{\infty}$ -performance, e.g.  $\|W_e S\|_{\infty} \le 1$ , or more generally

$$||F_{\ell}(P,K)||_{\infty} \le 1$$

Synthesis problem:

$$\min_{\mathcal{V}} F_{\ell}(\textit{P},\textit{K}) \text{, or find } \textit{K} \text{ s.t. } \|F_{\ell}(\textit{P},\textit{K})\|_{\infty} \leq 1$$

for a generalized plant P.

### This lecture

- Stability & performance specifications in the presence of uncertainties
- Structural uncertainties

# **Robust stability and performance**

### **Definition**

Given the description of an uncertainty model  $\Pi$ , and a set of performance objectives. Suppose  $P_0 \in \Pi$  is the nominal model and K the resulting controller. Then the closed-loop system is said to have

- Nominal stability (NS): if K internally stabilizes  $P_0$ .
- Robust stability (RS): if K internally stabilizes every  $P \in \Pi$ .
- Nominal performance (NP): if the performance objectives are satisfied for  $P_0$ .
- Robust performance (RP): if the performance objectives are satisfied for every  $P \in \Pi$ .

# **Robust stability**



If M and  $\Delta$  are stable, then under what condition is the interconnection internally stable?

### Theorem (Nyquist theorem)

Assume that the realization of L is <u>stabilizable+detectable</u>. Let N denote the number of unstable poles of L. Then the negative feedback system is internally stable iff the Nyquist plot of  $\det(I+L(s))$ 

- makes N anti-clockwise encirclements of the origin, and
- does not pass through the origin.

# Robust stability: real & complex uncertainty



### **Theorem**

Assume M and  $\Delta$  are stable, and that the uncertainty set  $\Delta$  satisfies

$$\Delta \in \Delta \implies \epsilon \Delta \in \Delta$$
 for all  $\epsilon \in [0,1]$ 

Then the interconnection is internally stable if and only if

- the Nyquist plot of  $\det(I-M\Delta)(s)$  does not pass nor encircle the origin for any  $\Delta \in \Delta$ ,
- or equivalently

$$\det(I-M\Delta)(j\omega)\neq 0,\ \forall\omega\in\mathbb{R}\cup\{\infty\},\ \forall\Delta\in\Delta.$$

(⇒) obvious.

( $\Leftarrow$ ) note that for  $\Delta=0$ ,  $\det(I-M\Delta)=1$ . If  $\exists \Delta' \in \Delta$  such that the Nyquist plot of  $\det(I-M\Delta')(s)$  encircles the origin, then as  $\epsilon \to 0$ ,  $\det(I-\epsilon M\Delta')$  must pass through the origin for some  $\omega \in \mathbb{R} \cup \{\infty\}$ . But  $\epsilon \Delta' \in \Delta$ .

# Robust stability: complex uncertainty

### **Theorem**

Assume M and  $\Delta$  are stable, and that the uncertainty set  $\Delta$  satisfies  $0 \in \Delta$ ,

$$\Delta \in \Delta \implies \epsilon \Delta \in \Delta$$
 for any complex  $|\epsilon| \le 1$ .

The interconnection is internally stable if and only if

$$\rho(M\Delta(j\omega)) < 1, \quad \forall \omega \in \mathbb{R} \cup \{\infty\}, \ \forall \Delta \in \Delta.$$

$$(\Leftarrow)$$
:  $\det(I - M\Delta)(j\omega) = \prod_i (j\omega - \lambda_i(M\Delta(j\omega))) \neq 0$ .

 $(\Rightarrow)$ : If  $\exists \Delta'$ , s.t.  $\rho(M\Delta'(j\omega))=1$  at some frequency. Then  $|\lambda_i(M\Delta')|=1$  some some i. Now

$$\det(I - M\epsilon\Delta') = \prod_i (1 - \lambda_i(\epsilon M\Delta'))$$

thus one can choose  $\epsilon = \exp(-j \angle \lambda_i(M\Delta'))$  to make  $\det(I - M\epsilon \Delta') = 0$ .

# **Disk uncertainty**

### Lemma

Let D be the set of all transfer matrices satisfying  $\bar{\sigma}(\Delta) \leq 1$ . Then

$$\max_{\Delta \in D} \rho(M\Delta) = \max_{\Delta \in D} \bar{\sigma}(M\Delta) = \max_{\Delta \in D} \bar{\sigma}(\Delta) \bar{\sigma}(M) = \bar{\sigma}(M).$$

Proof:

$$\rho(M\Delta) \le \bar{\sigma}(M\Delta) \le \bar{\sigma}(M)\bar{\sigma}(\Delta)$$

Reverse direction:  $M = U\Sigma V^*$ , choose  $\Delta = VU^*$ . Then

$$\rho(M\Delta) = \rho(U\Sigma V^*VU^*) = \rho(U\Sigma U^*) = \rho(\Sigma) = \bar{\sigma}(M).$$

### **Theorem**

Assume M is stable. Then the interconnection is internally stable for all  $\Delta$  satisfying  $\|\Delta\|_{\infty} \leq 1$  if and only if

$$[\bar{\sigma}(M(j\omega)) < 1, \quad \forall \omega \in \mathbb{R} \cup \{\infty\}] \iff ||M||_{\infty} < 1$$

The interconnection is internally stable for all  $\Delta$  satisfying  $\|\Delta\|_{\infty} < 1$  if and only if

$$[\bar{\sigma}(M(j\omega)) \le 1, \quad \forall \omega \in \mathbb{R}] \iff ||M||_{\infty} \le 1.$$

### Corollary: small gain theorem



### Corollary

Assume M is stable. Then the interconnection is internally stable for all  $\Delta$  satisfying  $\|\Delta\|_{\infty} \leq \frac{1}{r}$  if and only if

$$||M||_{\infty} < \gamma$$

The interconnection is internally stable for all  $\Delta$  satisfying  $\|\Delta\|_{\infty} < \frac{1}{\gamma}$  if and only if

$$||M||_{\infty} \leq \gamma$$
.

## **Robust stability**



### **Corollary**

Assume that  $P_{11}$  is stable<sup>a</sup>. Then the *uLFT* is internally stable

- for all  $\|\Delta\|_{\infty} \leq \frac{1}{\gamma}$  if and only if  $\|P_{11}\| < \gamma$ ,
- for all  $\|\Delta\|_{\infty} < \frac{1}{\gamma}$  if and only if  $\|P_{11}\| \le \gamma$ .

<sup>&</sup>lt;sup>a</sup>We always tacitly assume that it has a stabilizable+detectable realization

### **Example**

Consider the multiplicative uncertainty

$$\Pi = (I + W_1 \Delta W_2) P_0, \|\Delta\|_{\infty} \le 1$$

Suppose that K nominally stabilizes  $P_0$ .

$$\begin{bmatrix} v \\ z \\ y \end{bmatrix} = \begin{bmatrix} 0 & 0 & W_2 P_0 \\ W_1 & 0 & P_0 \\ -W_1 & I & -P_0 \end{bmatrix} \begin{bmatrix} \eta \\ w \\ u \end{bmatrix}$$

$$F_{\ell}(P,K) = \begin{bmatrix} 0 & 0 \\ W_1 & 0 \end{bmatrix} + \begin{bmatrix} W_2 P_0 \\ P_0 \end{bmatrix} K(I + P_0 K)^{-1} [-W_1 \quad I]$$

The system is internally stable if and only

$$||W_2 T_0 W_1||_{\infty} < 1.$$

### Class exercise

Find the robust stability criterion for additive uncertainty:

$$\tilde{P} = P + W_1 \Delta W_2, \quad \|\Delta\|_{\infty} \le 1$$



### **Summary**



If K internally stabilizes  $P_{22}$  by positive feedback, then the system is internally stable for all  $\|\Delta\|_{\infty} \leq 1$  if and only if

$$||(F_{\ell}(P,K))_{1,1}||_{\infty} < 1.$$

### **Robust performance**

Recall the nominal performance condition<sup>1</sup>

$$||F_{\ell}(M,K)||_{\infty} < 1 \tag{1}$$

or

$$\min_{K} \|F_{\ell}(M,K)\|_{\infty}.$$

When uncertainty is introduced, robust performance requires

- robust stability:  $F_{\mu}(F_{\ell}(P,K),\Delta)$  is internally stable,
- robust performance:  $||F_u(F_\ell(P,K),\Delta)||_{\infty} < 1$

for all  $\|\Delta\|_{\infty} \le 1$ . Note that robust stability is guaranteed by  $\|F_{\ell}(P,K)_{1,1}\| < 1$ .



# **Robust performance**



 $||F_u(F_\ell(P,K),\Delta)||_{\infty} < 1$ 





## **Structured uncertainty**



### robust stability

$$\forall \Delta'' = \begin{bmatrix} \Delta' & 0 \\ 0 & \Delta \end{bmatrix}$$
$$\Delta' \parallel_{\infty} \le 1, \ \parallel \Delta \parallel_{\infty} \le 1$$

### Warning!

The uncertainty is not of a disk type! So it is **not** equivalent to requiring  $||F_{\ell}(P,K)||_{\infty} < 1!$ 

More generally, we may consider the "structured uncertainty":

New tools are needed!

# **Robust performance for structured uncertainty**



Recall that:

### **Theorem**

Assume M and  $\Pi$  are stable, and that the uncertainty set  $\Pi$  satisfies

$$\Delta \in \Pi \implies \epsilon \Delta \in \Pi$$
 for all  $\epsilon \in [0,1]$ 

Then the interconnection is internally stable if and only if

$$\det(I - M\Delta)(j\omega) \neq 0, \ \forall \omega \in \mathbb{R} \cup \{\infty\}, \ \forall \Delta \in \Pi.$$

When M is fixed, we want to find the "**smallest"**  $\Delta \in \Pi$  which makes the matrix  $I - M\Delta$  singular for some  $\omega$ .

### Structured singular value (SSV)

When M is fixed, we want to find the "smallest"  $\Delta \in \Pi$  (quantified by  $\bar{\sigma}(\Delta)$ ) which destabilizes the interconnection, or equivalently, makes the matrix  $I - M\Delta$  singular for some  $\omega$ .

If  $\Delta \in \Pi \implies \varepsilon \Delta \in \Pi$  for all complex  $|\varepsilon| \le 1$ , then at fixed frequency  $\omega$ 

$$\inf_{\Delta \in \Pi} \{ \bar{\sigma}(\Delta) : \det(I - M\Delta) = 0 \}$$

$$= \inf_{\Delta \in \Pi, \, \bar{\sigma}(\Delta) \le 1} \{ k : \det(I - kM\Delta) = 0 \}$$

$$= \frac{1}{\sup_{\Delta \in \Pi, \, \bar{\sigma}(\Delta) \le 1} \rho(M\Delta)}$$

Define

$$\mu_{\Pi}(M(j\omega)) := \sup_{\Delta(j\omega) \in \Pi(j\omega), \, \bar{\sigma}(\Delta(j\omega)) \le 1} \rho(M(j\omega)\Delta(j\omega))$$

e.g., if  $\Pi$  represents the disk uncertainty, then  $\mu_{\Pi}(M(j\omega)) = \bar{\sigma}(M(j\omega))$ . If  $\Pi = \{\delta I : |\delta| \leq 1|$ , then  $\mu_{\Pi}(M(j\omega)) = \rho(M(j\omega))$ .

In general

$$\rho(M(j\omega)) \leq \mu_\Pi(M(j\omega)) \leq \bar{\sigma}(M(j\omega)).$$

# Structured singular value (SSV), cont'd

If D is invertible and commutes with all  $\Delta \in \Pi$ , i.e.,  $D\Delta = \Delta D$ , then

$$\mu_{\Pi}(M) = \mu_{\Pi}(DMD^{-1})$$

since  $\det(I - M\Delta) = \det(I - DM\Delta D^{-1}) = \det(I - DMD^{-1}\Delta)$ . Thus

$$\mu_\Pi(M) = \min_{D \in \mathcal{D}_\Pi} \mu_\Pi(DMD^{-1}) \leq \min_{D \in \mathcal{D}_\Pi} \bar{\sigma}(DMD^{-1})$$

with

$$\mathcal{D}_{\Pi} = \{D : D\Delta = \Delta D, \forall \Delta \in \Pi\}.$$

In particular, the inequality becomes equality, i.e.,

$$\mu_{\Pi}(M) = \min_{D \in \mathscr{D}_{\Pi}} \bar{\sigma}(DMD^{-1})$$

whenever  $\Delta$  has the following structure

$$\Delta = \operatorname{diag}(\delta_1 I_{r_1}, \dots, \delta_S I_{r_S}, \Delta_1, \dots, \Delta_F) \text{ with } \delta_i \in \mathbb{C}, \Delta_j \in \mathbb{C}^{m_j \times m_j}$$

with  $2S + F \le 3$ .

### Structured singular value (SSV), cont'd

If  $\Delta$  is a full block complex uncertainty, then  $\Delta D = D\Delta$  iff D is diagonal. Hence for

$$\Delta = \operatorname{diag}(\delta_1 I_{r_1}, \dots, \delta_S I_{r_S}, \Delta_1, \dots, \Delta_F)$$
 with  $\delta_i \in \mathbb{C}$ ,  $\Delta_j \in \mathbb{C}^{m_j \times m_j}$ 

Take

$$D = \operatorname{diag}(d_1, \dots, d_S, \tilde{d}_1 I, \dots, \tilde{d}_F I).$$

# **SSV** example

$$\Delta = \begin{bmatrix} \Delta_1 & 0 \\ 0 & \Delta_2 \end{bmatrix} \in RH_{\infty}, \ \|\Delta\|_{\infty} \leq 1 \Longrightarrow \mu(N) = \min_{D\Delta = \Delta D, \ D, D^{-1} \in H_{\infty}} \bar{\sigma}(DND^{-1})$$

Consider

$$D_{\omega} = \begin{bmatrix} d_1(\omega)I & 0\\ 0 & d_2(\omega)I \end{bmatrix}$$

$$\Longrightarrow \mu(N) = \min_{d_1(\omega), d_2(\omega)} \bar{\sigma}\left( \begin{bmatrix} N_{11} & \frac{d_1(\omega)}{d_2(\omega)} N_{12} \\ \frac{d_2(\omega)}{d_1(\omega)} N_{21} & N_{22} \end{bmatrix} \right) = \min_{d(\omega)} \bar{\sigma}\left( \begin{bmatrix} N_{11} & d(\omega) N_{12} \\ \frac{1}{d(\omega)} N_{21} & N_{22} \end{bmatrix} \right)$$

Special case:

$$\Delta = \begin{bmatrix} \delta_1 & 0 \\ 0 & \delta_2 \end{bmatrix}, \, \delta_1, \delta_2 \in \mathbb{C}, \, |\delta_1|, |\delta_2| \leq 1, \quad N = \begin{bmatrix} a & a \\ b & b \end{bmatrix} \in \mathbb{C}^{2 \times 2}$$

$$\mu(N) = \min_{d(\omega)} \bar{\sigma} \left( \begin{bmatrix} a & d(\omega) a \\ \frac{1}{d(\omega)} b & b \end{bmatrix} \right) = \min_{d(\omega)} \sqrt{|a|^2 + |da|^2 + \left|\frac{b}{d}\right|^2 + |b|^2} = |a| + |b|$$

# **Robust performance for structured uncertainty**



### **Theorem**

Assume M and  $\Pi$  are stable, and that the uncertainty set  $\Pi$  satisfies

$$\Delta \in \Pi \implies \epsilon \Delta \in \Pi$$
 for all  $\epsilon \in [0,1]$ 

Then the interconnection is internally stable if and only if

$$\det(I - M\Delta)(j\omega) \neq 0, \forall \omega \in \mathbb{R} \cup \{\infty\}, \forall \Delta \in \Pi.$$

### **Theorem**

Let M be stable and  $\Pi$  a complex stable structured uncertainty. Then the interconnection is internally stable for all  $\Delta \in \Pi$  with  $\bar{\sigma}(\Delta) \leq 1$  if and only if

$$\mu_{\Pi}(M(j\omega)) < 1, \forall \omega \in \mathbb{R} \cup \{\infty\}$$

# Robust performance for structured uncertainty



Now the robust performance condition reads

$$\mu_{\Delta}(F_{\ell}(P,K)_{1,1}) < 1$$
 (robust stability)

$$\mu_{\Delta''}(F_{\ell}(P,K)) < 1$$
 (robust performance)

It is easy to verify that the second condition implies the first one!

### **Theorem**

Suppose that K (nominally) stabilizes  $P_{33}$ . Let  $\Pi$  be a complex stable uncertainty. Then the interconnection is internally stable and satisfies the robust performance condition

$$||F_u(F_\ell(P,K),\Delta)||_{\infty} \le 1$$

for all  $\Delta \in \Pi$  with  $\bar{\sigma}(\Delta) \leq 1$  if and only if

$$\mu_{\Pi'}(F_{\ell}(P,K)) < 1, \quad \forall \omega \in \mathbb{R} \cup \{\infty\}.$$

### **Example**



**Assumption**: All signals and transfer functions are scalar-valued.  $\Delta_I$  is complex, with  $\|\Delta_I\|_\infty \leq 1$ .

Robust performance:

$$\begin{split} \|T_{ZW}\|_{\infty} &\leq 1, \quad \forall \Delta_I. \\ F_{\ell}\left(\begin{bmatrix} 0 & 0 & W_I \\ W_PG & W_P & W_PG \\ -G & -1 & -G \end{bmatrix}, K\right) = \begin{bmatrix} -W_IT & -W_IKS \\ W_PGS & W_PS \end{bmatrix} \\ \mu\left(\begin{bmatrix} -W_IT & -W_IKS \\ W_PGS & W_PS \end{bmatrix}\right) = \mu\left(\begin{bmatrix} -W_IT & -W_IKGS \\ W_PS & W_PS \end{bmatrix}\right) \quad \left(\mu(D \cdot D^{-1}), D = \begin{bmatrix} G & 0 \\ 0 & 1 \end{bmatrix}\right) \\ &= \mu\left(\begin{bmatrix} -W_IT & -W_IT \\ W_PS & W_PS \end{bmatrix}\right) \\ &= |W_IT| + |W_PS|. \end{split}$$

 $\implies$  robust performance condition: $|W_I T| + |W_P S| < 1$ .

# Robust performance for structured uncertainty

### **Corollary**

Suppose that K (nominally) stabilizes  $P_{33}$ . Let  $\Pi$  be a complex stable uncertainty. Then the interconnection is internally stable and satisfies the robust performance condition

$$\|F_u(F_\ell(P,K),\Delta)\|_\infty \leq \beta$$

for all  $\Delta \in \Pi$  with  $\bar{\sigma}(\Delta) \leq \frac{1}{\beta}$  if and only if

$$\mu_{\Pi'}(F_{\ell}(P,K)) < \beta, \quad \forall \omega \in \mathbb{R} \cup \{\infty\}.$$

# $\mu$ -synthesis and DK-iteration

Goal: given complex uncertainty description  $\Delta \in \Pi$ , find K such that

$$\mu_{\Pi'}(F_{\ell}(P,K)) < 1.$$

Recall

$$\mu_{\Pi'}(M(j\omega)) \leq \min_{D \in \mathcal{D}_{\Pi'}} \bar{\sigma}(DMD^{-1}(j\omega))$$

Compute upper bound

$$\min_K \min_{D \in \mathcal{D}_\Pi, D, D^{-1} \in H_\infty} \|DF_\ell(P,K)D^{-1}\|_\infty$$

• *K*-step: fix D(s), solve ( $H_{\infty}$ -synthesis)

$$\min_K \|DF_\ell(P,K)D^{-1}\|_{\infty}$$

• *D*-step: fix *K*(*s*), solve frequency-wise (convex program)

$$\min_{D\in\mathcal{D}_\Pi,D,D^{-1}\in H_\infty}\bar{\sigma}(DF_\ell(P,K)D^{-1}(j\omega))$$

### The K-step

$$\min_{K} \|DF_{\ell}(P, K)D^{-1}\|_{\infty}$$

$$DF_{\ell}(P, K)D^{-1} = F_{\ell}\left(\begin{bmatrix} D & \\ & I \end{bmatrix}P\begin{bmatrix} D & \\ & I \end{bmatrix}^{-1}, K\right)$$

For problem

$$\min_K \|F_\ell(G,K)\|_\infty$$

Matlab code:

[K, CL, gamma, info] = hinfsyn(G,input\_num,output\_num);

### The D-step

$$\min_{D \in \mathcal{D}_\Pi, D, D^{-1} \in H_\infty} \bar{\sigma}(DF_\ell(P,K)D^{-1}(j\omega))$$

- Minimize to get  $D_{\omega}$  across frequency.
- Find D(s),  $D^{-1}(s) \in H_{\infty}$  such that  $|D(j\omega)| \approx D_{\omega}$  across frequency (interpolation theory Youla & Saito 1967).

Example, consider the two-block uncertainty

$$\Delta = \begin{bmatrix} \Delta_1 & 0 \\ 0 & \Delta_2 \end{bmatrix} \in RH_{\infty}, \ \|\Delta\|_{\infty} \le 1$$

Then

$$\mu(N) = \min_{D\Delta = \Delta D, \, D, D^{-1} \in H_{\infty}} \bar{\sigma}(DND^{-1})$$

#### Matlab code:

## **Example on** $\mu$ **-synthesis**

$$G(s) = \frac{1}{75s+1} \begin{bmatrix} 87.8 & -86.4 \\ 108.2 & -109.6 \end{bmatrix}, \quad W_I(s) = \frac{s+0.2}{0.5s+1}, \quad W_P(s) = \frac{0.5s+0.05}{s}$$

$$\Delta_I: \mathsf{two}\ 1 \times 1\ \mathsf{blocks}, \quad \Delta_P: \ \mathsf{one}\ 2 \times 2\ \mathsf{block}, \ \Delta = \begin{bmatrix} \Delta_I & \\ & \Delta_P \end{bmatrix} \in \mathbb{C}^{4 \times 4}$$
 
$$D = \mathsf{diag}\{d_1, d_2, I_2\} \implies \mathsf{blk} = [1, 1; 1, 1; 2, 2]$$

