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Review of last lecture

How to model uncertainties:

Real parameters uncertainties. e.g., |δi | ≤ 1.

Complex disk uncertainties: e.g. P̃ = (I +W1∆W2)P , with

∥∆∥∞ ≤ 1. E.g., P̃ = (1+w∆)P ,

|w( jω)| ≥
∣∣∣∣ P̃ ( jω)−P ( jω)

P ( jω)

∣∣∣∣ .

Nominal performance specifications:

Achieve high loop and controller gain in the necessary frequency

range.

Weighted H∞-performance, e.g. ∥We S∥∞ ≤ 1, or more generally

∥Fℓ(P,K )∥∞ ≤ 1

Synthesis problem:

min
K

Fℓ(P,K ), or find K s.t. ∥Fℓ(P,K )∥∞ ≤ 1

for a generalized plant P .



This lecture

Stability & performance specifications in the presence of

uncertainties

Structural uncertainties



Robust stability and performance

Definition

Given the description of an uncertainty model Π, and a set of

performance objectives. Suppose P0 ∈Π is the nominal model and K
the resulting controller. Then the closed-loop system is said to have

Nominal stability (NS): if K internally stabilizes P0.

Robust stability (RS): if K internally stabilizes every P ∈Π.

Nominal performance (NP): if the performance objectives are

satisfied for P0.

Robust performance (RP): if the performance objectives are

satisfied for every P ∈Π.



Robust stability

If M and ∆ are stable, then under what condition is the

interconnection internally stable?

Theorem (Nyquist theorem)

Assume that the realization of L is stabilizable+detectable. Let N
denote the number of unstable poles of L. Then the negative

feedback system is internally stable iff the Nyquist plot of

det(I +L(s))

makes N anti-clockwise encirclements of the origin, and

does not pass through the origin.



Robust stability: real & complex uncertainty

Theorem

Assume M and ∆ are stable, and that the uncertainty set ∆ satisfies

∆ ∈∆ =⇒ ϵ∆ ∈∆ for all ϵ ∈ [0,1]

Then the interconnection is internally stable if and only if

the Nyquist plot of det(I −M∆)(s) does not pass nor encircle the origin

for any ∆ ∈∆,

or equivalently

det(I −M∆)( jω) ̸= 0, ∀ω ∈R∪ {∞}, ∀∆ ∈∆.

(⇒) obvious.

(⇐) note that for ∆= 0, det(I −M∆) = 1. If ∃∆′ ∈∆ such that the Nyquist

plot of det(I −M∆′)(s) encircles the origin, then as ϵ→ 0, det(I −ϵM∆′)
must pass through the origin for some ω ∈R∪ {∞}. But ϵ∆′ ∈∆.



Robust stability: complex uncertainty

Theorem

Assume M and ∆ are stable, and that the uncertainty set ∆ satisfies 0 ∈∆,

∆ ∈∆ =⇒ ϵ∆ ∈∆ for any complex |ϵ| ≤ 1.

The interconnection is internally stable if and only if

ρ(M∆( jω)) < 1, ∀ω ∈R∪ {∞}, ∀∆ ∈∆.

(⇐): det(I −M∆)( jω)) =∏
i ( jω−λi (M∆( jω))) ̸= 0.

(⇒): If ∃∆′, s.t. ρ(M∆′( jω)) = 1 at some frequency. Then |λi (M∆′)| = 1
some some i . Now

det(I −Mϵ∆′) =∏
i

(1−λi (ϵM∆′))

thus one can choose ϵ= exp(− j∠λi (M∆′)) to make det(I −Mϵ∆′) = 0.



Disk uncertainty

Lemma

Let D be the set of all transfer matrices satisfying σ̄(∆) ≤ 1. Then

max
∆∈D

ρ(M∆) = max
∆∈D

σ̄(M∆) = max
∆∈D

σ̄(∆)σ̄(M) = σ̄(M).

Proof:

ρ(M∆) ≤ σ̄(M∆) ≤ σ̄(M)σ̄(∆)

Reverse direction: M =UΣV ∗, choose ∆=V U∗. Then

ρ(M∆) = ρ(UΣV ∗V U∗) = ρ(UΣU∗) = ρ(Σ) = σ̄(M).

Theorem

Assume M is stable. Then the interconnection is internally stable for all ∆

satisfying ∥∆∥∞ ≤ 1 if and only if

[σ̄(M( jω)) < 1, ∀ω ∈R∪ {∞}] ⇐⇒∥M∥∞ < 1

The interconnection is internally stable for all ∆ satisfying ∥∆∥∞ < 1 if and

only if

[σ̄(M( jω)) ≤ 1, ∀ω ∈R] ⇐⇒∥M∥∞ ≤ 1.



Corollary: small gain theorem

Corollary

Assume M is stable. Then the interconnection is internally stable for all ∆

satisfying ∥∆∥∞ ≤ 1
γ if and only if

∥M∥∞ < γ

The interconnection is internally stable for all ∆ satisfying ∥∆∥∞ < 1
γ if and

only if

∥M∥∞ ≤ γ.



Robust stability

Corollary

Assume that P11 is stablea. Then the uLFT is internally stable

for all ∥∆∥∞ ≤ 1
γ if and only if ∥P11∥ < γ,

for all ∥∆∥∞ < 1
γ if and only if ∥P11∥ ≤ γ.

aWe always tacitly assume that it has a stabilizable+detectable realization



Example

Consider the multiplicative uncertainty

Π= (I +W1∆W2)P0, ∥∆∥∞ ≤ 1

Suppose that K nominally stabilizes P0.
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Fℓ(P,K ) =

[
0 0

W1 0

]
+

[
W2P0

P0

]
K (I +P0K )−1 [−W1 I

]
The system is internally stable if and only

∥W2ToW1∥∞ < 1.



Class exercise

Find the robust stability criterion for additive uncertainty:

P̃ = P +W1∆W2, ∥∆∥∞ ≤ 1

-
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If K internally stabilizes P22 by positive feedback, then the system is

internally stable for all ∥∆∥∞ ≤ 1 if and only if

∥(Fℓ(P,K ))1,1∥∞ < 1.



Robust performance

Recall the nominal performance condition1

∥Fℓ(M ,K )∥∞ < 1 (1)

or

min
K

∥Fℓ(M ,K )∥∞.

When uncertainty is introduced, robust performance requires

robust stability: Fu(Fℓ(P,K ),∆) is internally stable,

robust performance: ∥Fu(Fℓ(P,K ),∆)∥∞ < 1

for all ∥∆∥∞ ≤ 1. Note that robust stability is guaranteed by

∥Fℓ(P,K )1,1∥ < 1.
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Robust performance
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∥Fu(Fℓ(P,K ),∆)∥∞ < 1

robust stability robust stability



Structured uncertainty

robust stabilityrobust stability

Warning!
The uncertainty is not of a disk type! So it is not equivalent to requiring ∥Fℓ(P,K )∥∞ < 1!

More generally, we may consider the “structured uncertainty”:

∆=



δ1I

. . .

δs I
∆1

. . .

∆r


, ∥δi ∥∞ ≤ 1 or |δi | ≤ 1 (real), ∥∆∥∞ ≤ 1.

New tools are needed!



Robust performance for structured uncertainty

structured
uncertainty

Recall that:

Theorem

Assume M and Π are stable, and that the uncertainty set Π satisfies

∆ ∈Π =⇒ ϵ∆ ∈Π for all ϵ ∈ [0,1]

Then the interconnection is internally stable if and only if

det(I −M∆)( jω) ̸= 0, ∀ω ∈R∪ {∞}, ∀∆ ∈Π.

When M is fixed, we want to find the “smallest” ∆ ∈Π which makes

the matrix I −M∆ singular for some ω.



Structured singular value (SSV)

When M is fixed, we want to find the “smallest” ∆ ∈Π (quantified by

σ̄(∆)) which destabilizes the interconnection, or equivalently, makes

the matrix I −M∆ singular for some ω.

If ∆ ∈Π =⇒ ϵ∆ ∈Π for all complex |ϵ| ≤ 1, then at fixed frequency ω

inf
∆∈Π

{σ̄(∆) : det(I −M∆) = 0}

= inf
∆∈Π, σ̄(∆)≤1

{k : det(I −kM∆) = 0}

= 1

sup∆∈Π, σ̄(∆)≤1ρ(M∆)

Define µΠ(M( jω)) := sup
∆( jω)∈Π( jω), σ̄(∆( jω))≤1

ρ(M( jω)∆( jω))

e.g., if Π represents the disk uncertainty, then µΠ(M( jω)) = σ̄(M( jω)). If

Π= {δI : |δ| ≤ 1|, then µΠ(M( jω)) = ρ(M( jω)).

In general

ρ(M( jω)) ≤µΠ(M( jω)) ≤ σ̄(M( jω)).



Structured singular value (SSV), cont’d

If D is invertible and commutes with all ∆ ∈Π, i.e., D∆=∆D, then

µΠ(M) =µΠ(DMD−1)

since det(I −M∆) = det(I −DM∆D−1) = det(I −DMD−1∆). Thus

µΠ(M) = min
D∈DΠ

µΠ(DMD−1) ≤ min
D∈DΠ

σ̄(DMD−1)

with

DΠ = {D : D∆=∆D, ∀∆ ∈Π }.

In particular, the inequality becomes equality, i.e.,

µΠ(M) = min
D∈DΠ

σ̄(DMD−1)

whenever ∆ has the following structure

∆= diag(δ1Ir1 , · · · ,δS IrS ,∆1, · · · ,∆F ) with δi ∈C, ∆ j ∈Cm j ×m j

with 2S +F ≤ 3.



Structured singular value (SSV), cont’d

If ∆ is a full block complex uncertainty, then ∆D = D∆ iff D is

diagonal. Hence for

∆= diag(δ1Ir1 , · · · ,δS IrS ,∆1, · · · ,∆F ) with δi ∈C, ∆ j ∈Cm j×m j

Take

D = diag(d1, · · · ,dS , d̃1I , · · · , d̃F I ).



SSV example

∆=
[
∆1 0
0 ∆2

]
∈ RH∞, ∥∆∥∞ ≤ 1 =⇒ µ(N ) = min

D∆=∆D, D,D−1∈H∞
σ̄(DN D−1)

Consider

Dω =
[

d1(ω)I 0
0 d2(ω)I

]

=⇒ µ(N ) = min
d1(ω),d2(ω)

σ̄

([
N11

d1(ω)
d2(ω) N12

d2(ω)
d1(ω) N21 N22

])
= min

d(ω)
σ̄

([
N11 d(ω)N12

1
d(ω) N21 N22

])

Special case:

∆=
[
δ1 0
0 δ2

]
, δ1,δ2 ∈C, |δ1|, |δ2| ≤ 1, N =

[
a a
b b

]
∈C2×2

µ(N ) = min
d(ω)

σ̄

([
a d(ω)a

1
d(ω) b b

])
= min

d(ω)

√
|a|2 +|d a|2 +

∣∣∣∣ b

d

∣∣∣∣2
+|b|2 = |a|+ |b|



Robust performance for structured uncertainty

structured
uncertainty

Theorem
Assume M and Π are stable, and that the uncertainty set Π satisfies

∆ ∈Π =⇒ ϵ∆ ∈Π for all ϵ ∈ [0,1]

Then the interconnection is internally stable if and only if

det(I −M∆)( jω) ̸= 0, ∀ω ∈R∪ {∞}, ∀∆ ∈Π.

Theorem
Let M be stable and Π a complex stable structured uncertainty. Then the

interconnection is internally stable for all ∆ ∈Π with σ̄(∆) ≤ 1 if and only if

µΠ(M( jω)) < 1, ∀ω ∈R∪ {∞}



Robust performance for structured uncertainty
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robust stabilityrobust stability

Now the robust performance condition reads

µ∆(Fℓ(P,K )1,1) < 1 (robust stability)

µ∆′′ (Fℓ(P,K )) < 1 (robust performance)

It is easy to verify that the second condition implies the first one!

Theorem

Suppose that K (nominally) stabilizes P33. Let Π be a complex stable
uncertainty. Then the interconnection is internally stable and satisfies the
robust performance condition

∥Fu(Fℓ(P,K ),∆)∥∞ ≤ 1

for all ∆ ∈Π with σ̄(∆) ≤ 1 if and only if

µΠ′ (Fℓ(P,K )) < 1, ∀ω ∈R∪ {∞}.



Example
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Assumption: All signals and transfer functions are scalar-valued. ∆I is complex,

with ∥∆I ∥∞ ≤ 1.

Robust performance:

∥Tzw∥∞ ≤ 1, ∀∆I .

Fℓ

 0 0 WI
WP G WP WP G
−G −1 −G

 ,K

=
[−WI T −WI K S

WP GS WP S

]

µ

([−WI T −WI K S
WP GS WP S

])
=µ

([−WI T −WI KGS
WP S WP S

]) (
µ(D ·D−1), D =

[
G 0
0 1

])
=µ

([−WI T −WI T
WP S WP S

])
= |WI T |+ |WP S|.

=⇒ robust performance condition:|WI T |+ |WP S| < 1.



Robust performance for structured uncertainty

Corollary

Suppose that K (nominally) stabilizes P33. Let Π be a complex stable

uncertainty. Then the interconnection is internally stable and satisfies the

robust performance condition

∥Fu(Fℓ(P,K ),∆)∥∞ ≤β

for all ∆ ∈Π with σ̄(∆) ≤ 1
β if and only if

µΠ′ (Fℓ(P,K )) <β, ∀ω ∈R∪ {∞}.



µ-synthesis and DK -iteration

Goal: given complex uncertainty description ∆ ∈Π, find K such that

µΠ′ (Fℓ(P,K )) < 1.

Recall

µΠ′ (M( jω)) ≤ min
D∈DΠ′

σ̄(DMD−1( jω))

Compute upper bound

min
K

min
D∈DΠ,D,D−1∈H∞

∥DFℓ(P,K )D−1∥∞

K -step: fix D(s), solve (H∞-synthesis)

min
K

∥DFℓ(P,K )D−1∥∞

D-step: fix K (s), solve frequency-wise (convex program)

min
D∈DΠ,D,D−1∈H∞

σ̄(DFℓ(P,K )D−1( jω))



The K -step

min
K

∥DFℓ(P,K )D−1∥∞

DFℓ(P,K )D−1 = Fℓ

([
D

I

]
P

[
D

I

]−1

,K

)

For problem

min
K

∥Fℓ(G ,K )∥∞

Matlab code:

[K, CL, gamma, info] = hinfsyn(G,input_num,output_num);



The D-step

min
D∈DΠ,D,D−1∈H∞

σ̄(DFℓ(P,K )D−1( jω))

Minimize to get Dω across frequency.

Find D(s),D−1(s) ∈ H∞ such that |D( jω)| ≈ Dω across frequency

(interpolation theory Youla & Saito 1967).

Example, consider the two-block uncertainty

∆=
[
∆1 0
0 ∆2

]
∈ RH∞, ∥∆∥∞ ≤ 1

Then

µ(N ) = min
D∆=∆D, D,D−1∈H∞

σ̄(DN D−1)

Matlab code:

N = frd(lft(P,K),omega);
[mu_bnds, mu_info] = mussv(N, blk);
[~, VSigma, ~] = mussvextract(mu_info);
D = VSigma.DLeft;
d1 = fitfrd(genphase(D(1,1)),4) ...



Example on µ-synthesis

G(s) = 1

75s +1

[
87.8 −86.4

108.2 −109.6

]
, WI (s) = s +0.2

0.5s +1
, WP (s) = 0.5s +0.05

s

∆I : two 1×1 blocks, ∆P : one 2×2 block, ∆=
[
∆I

∆P

]
∈C4×4

D = diag{d1,d2, I2} =⇒ blk = [1,1; 1,1; 2,2]
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