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Review of last lecture

Dynamic (frequency-dependent) uncertainties.

@ Unmodeled dynamics at high frequency (phase completely
unknown at high frequencies!)

@ Imperfect measurements = uncertain inputs.

@ Nonlinearities.

Parametric uncertainties.

@ Inaccurate description of components.

@ Variations of system parameters.



Review of last lecture
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Review of last lecture

G proper and stable. Hy,-norm of G:

IGlloo =sup {largest signular value of G(jw)}
weR

=:0(G(jw))

Definition
The Hy, space of transfer matrices consists of all matrix-valued
functions that are:

@ Stable, i.e., analytic in the open RHP;

@ Bounded (in H,,-norm) in the open RHP.

The subspace of real rational H, functions is denoted by R H,




Review of last lecture
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The /LFT is well-posed iff
I —-K(joo)| . . .
. is invertible
—Py3(joo) I

The /LFT is internally stable iff it is well-posed, and

I -K B is stable
— Py I i .




This lecture

@ Modeling of uncertainties

@ Nominal and robust performance specifications



Multiplicative uncertainties: SISO

radius:
[w(jw)P(jw)|

P(jw
\

nominal plant

|P(jw) - P(jw)| < |lw(jo)P(jw)l, YweR
p-p
wP

(o<1, VoeR o ” ”

Let A = =, then

=(1+wA)P [Ale=1



Example
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Nw=2

P =kl 2<k6,7<3 pECcs .

w=10.01
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How to choose a nominal model (SISO):

@ Simple, e.qg., low-order, delay free.
@ A model of mean parameter values.

@ The central plant obtained from the Nyquist plot.



Example, cont’d

Choose w(s) so that |¥‘ (jo)slw(jw)l, Yo.

Nyquist Plot of Uncertain System P(s) Nyquist Plot of Uncertain System P(s)

Magnitude (dB)
Magnitude (dB)

Vn;n“ 1072 10 10° 10t 102 10 102 10 10° 10t 102
Frequency (rad/s) Frequency (rad/s)
@ Candidate
75+ low freqg. gain
- . . »
(r/high freq. gain) x s+ 1

w(s) 1/7 :freq. with 100% uncertainty

@ Gains at low and high frequency: 0.2, 2.33, and 1/7 = 0.25, or 7 = 4.

45+0.2

W)= 423351



Multiplicative uncertainties: MIMO

P=({I+WiAW,)P, ||Alleo <1
P=PI+WiAW,), IAle=1



Parametric uncertainties

Gain uncertainty:
pP= kPy(s);  kmin <k < kmnax

P=kPy(s)(A+ w A), |Al<1, (not He-norm!)

P(s) constant
where w, k are constants.

Pole uncertainty:
_ 1
P=——Py(s), Pmin <P =< Pmax
S=p

- P(s)
P=—— |AI=1
1+ w(s)A(s)

where w(s) = 242,




Example
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nominal value error actual mass normalized error
m m +10% m(1+0.16,) [0ml<1
c c +20% c(1+0.26¢) [6cl=1
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Choose v = [vy, Vg, vk]T, n=[Mm Ne, nk]T-



Example, cont’d

S S i L _

F
— >

r’@ Uk @m ({
12

sl

Find P, s.t.

v
z

o



Example, co

nt’'d

Exogenous input w = F, exogenous output: z = x.
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Nominal Performance specification

input, output L; =KP,
loop transfer matrix L,=PK
input, output S; = (I+Ll~)’1,
sensitivity matrix So=(I+L,)™?
input, output T; =1-5;,
complementary sensitivity matrix To=1-S,




Disturbance rejection

y=To(r—n)+SyPd; + S,d (plant output)
up = KSo(r—n)—KSod + S;d; (plant input)
u=KS,(r—n)—KS,d— T;d; (controller output)

r—y=So(r—d)+ Ton—S,Pd; (reference error)

signal make small design
disturbance ¥ 0(Sp), 6(SpP) | a(Ly) > 1 (for d), o(K) > 1 (for d;)
rejection Up 0(KS,), 6(S;) | a(L;)>1 (ford;), o(P)>1 (for d)

range.

5(So) =1/a(I+PK), 6(SoP)=0d((I+PK)~'P)
G(PK)>1&6(SoP)=a(K ) =1/0(K) < 1

0(S;)=1/g(I+KP), G(KSp) = G(I+KP)~K)

G(KP)>1&0(KSp) = P hH= l/o(P)x1

Achieve high loop and controller gain in the necessary frequency J




Conflicting objectives

@ For
y=To(r—n)+S,Pd; + S,d (plant output)

when S, is small (or L, big), then
y=r—n — measurement noise passes through

@ When L, or L; large, then outside the bandwidth of P (i.e., P

small)
K >1 — controller saturation

At low frequency (disturbance rejection, reference tracking etc.)
o(PK)>1,0(KP)>1,0(K)>1
At high frequency (sensor noise rejection, etc.)

06(PK)x1,0(KP)x1,0(K) <M




Conflicting objectives

Y,




Weighted H_, performance

ISGjw)| <€ VYo<wg

track., disturb. attenu.: 1SGo) <M, Yo>aop

Let
. l/e, VYw<=wg
[We(jw)l =
1/M, Yw>wy

Equivalently
We(jw)SGw)l <1, Yo < [WeSloo=<1.

A finer weighting function:
A
1/|We(jw)

M,
‘ X

) 1 _  Ts+e
[S(jw)| Wo(s) = (t/M;)s+1

v




Bode’s sensitivity integral

1SG w)

o0
f In|S(jw)ldw =0
0

when L has no open RHP zeros and its relative degree = 2.



Selection of weighting functions

@ Non-trivial, no general formulas exist

@ Requires ad hoc fixing and fine tuning



Weighted H_, performance

W W; Wa
{d,- d
o u y e
— W, K P We
5w,

Wy, W;, W, reflect the frequency contents of the disturbances /
noise d, d;, n.

W,: reflect the shape of certain closed-loop transfer matrices.
W, restrictions on the control or actuator signals.

W,: shape of the command/reference.



Example

Wy Wi Wa
ldi d
—iw, = K 4 P —J Yl w, |-<

‘ Q.n_Wn.i

Assume d; =0, n =0, try to analyze the “worst case” impact of d on
(e, i) (equiv. Lp-gain):

2

WeSoWd

sup {lle()lI + a3} = cW,KS, Wy
u o

Idll,<1

(by def.)

o0



Analytic constraints

Let p and z be the open RHP poles and zeros of L. Suppose that the
closed-loop system is stable, then

S(p=0,T(p)=1
S(2)=1,T(z)=0

Hence

[[WeSlloo = | We(2)| if 3 open RHP zero z



Synthesis problem: design K

Assume d; =0, n =0, design K that minimizes the “worst case” impact of d on (e, i1)

equiv. Lp-gain):
(eq 2-gain) - WeSo W, 2
K || |cWuKSoWy oo’
or find K such that )
WeSoW, -
cWuKSoWy ||, ="
for some given level p. Choose w = d, z = col(e, ii),
WeSoWy
=Fp(M,
cWyuKSoW, (M, K)

for a generalized plant M. Thus the synthesis problem can be written compactly as

mlgan(M, K), orfind K s.t. [|[Fp(M,K)lloo = 1.




Class exercise

Write [|WoSoWylloo <1 in the form of

1 Fe (M, K)lloo <1



