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Course Information

~ 7 Lectures (Dongjun and Richard), ~ 7 exercises (Dongjun)
Textbooks: Essentials of Robust Control etc.

Schedule and material: see course page

Examination: Exercises + Handins + Exam

Collaboration encouraged on exercises and handins!

Handins are due before the exercise session, email to:
dongjun.wu@control.lth.se with subject Robust control handin X

Prepare so that you are able to share your solutions to the exercises at
the session. (Take a photo of handwritten notes or typeset)



Syllabus

Lecture 1, [Zhou 9,3,4,5]

Abstract uncertainty, LFTs, well-posedness, internal stability, review of LTI.

Lecture 2, [Zhou 11,6, 8]

Uncertainty representation and performance specifications
Lecture 3, [Zhou 10]

H-synthesis

Lecture 4, [Zhou 14, 12, ...]

Hy, synthesis, AREs
Lecture 5, [...]
H,-loop shaping
Lecture 6

v-gap, IQC.



Why robust control?

Uncertainty is the natural habitat of human life — though the hope of
escaping uncertainty is the engine of human life pursuits.

— Bauman, Zygmunt. The art of life. John Wiley & Sons, 2013.

@ disturbance
other controlled signals /

System Interconnection

tracking errors

reference signals



Uncertainties

o Dynamic (frequency-dependent) uncertainties.
e Unmodeled dynamics at high frequency (phase completely
unknown at high frequencies!)
o Imperfect measurements = uncertain inputs.
o Nonlinearities.

@ Parametric uncertainties.

@ Inaccurate description of components.
o Variations of system parameters.

nominal model

—

v

actual model




Example (Doyle, 1986): spinning satelite

s—a®  a(s+1)

P(s)= —a(s+1) s—a?

_— , a=10.
2+ a?

Controller: K = I. Closed-loop poles: {—1,—1} = stable.

Take €1 = —€2 = 0.11. Closed-loop poles: {—2.1, 0.1} = unstable.



Essentials of classic control

@ Stability: Cope with unknown initial conditions & perturbations

@ High-gain at /low frequencies: Achieve tracking & reject
disturbances

@ Low-gain at high frequency: Reduce effect of sensor noise and
large plant-model mismatch

@ Gain- and phase-margins: Render stability and performance
robust against (possibly large) plant-model mismatch

@ Tool: Manual shaping of loop transfer function

Modern Robust Control: Set of tools for systematically coping with
all these issues for complex interconnections and by directly imposing
desired properties on the controlled system.



Workflow

Choose a nominal model (how?)

J

Quantify uncertainties w.r.t. the nominal model (how?)

J

Specify desired robust performance

J

Solve the robust control problem

J

Validation




General framework

N
L= v P11(s)  Pp2(s) P13(9)] [n
v T {Z = |P21(s) Poa(s) Po3(s) ,
P v y P31(s) P3a(s) Ps3(s)] lu
] n=Av
Y E ¢ u=Ky
P | nominal (generalized) plant
A | all uncertainties
K | controller
w | exogenous inputs (reference, disturbance, etc.)
Z | exogenous output (controlled variable)
Yy | controller input
u | controller output




Example: 1DOF system

Write the following system in standard form. The plant is subject to
additive uncertainty: P+ A.

d v =u+d
w=|r|, z =Pu+d+n

n y =r-n-Pu+d)-n
v 0 1 0 0 1 n
z| = I p -1 0 p w
¥y -I1\-P I -I|-P u

generalized plant

u=Ky

n=Av



Other types of uncertainties

P+ W AW, additive uncertainty
P(I+ W1 AW,) input uncertainty
I+ W AW,) P output uncertainty

P(I+ W AW,) ™!

(I+ W AW,)~1p

P(I+ W, AW,P)~!

(R+AR) NS +Ay)

coprime factorization:

P=R71lS

coprime factor uncertainty




Pulling out uncertainties




Example: 1DOF system




The MA-structure (rob. perf. analysis)

When K is fixed:

]
U n
V4 P ‘7 w 3 E
1 ) z M w
v Pn P2 P3| [n Py P P3| [ 7
z|=|P21 Py P3| |w Py1 Py P3| | w
y P31 P3» Ps3] u P31 P3»  Ps3]| | Ky
_ n 7 -1 n
¥ =[P31 P33] w +P33Ky = y=(I-P33K)  [P31 P3;] w
v P Plzl [P13] ) [77]
= K(I - P: P3; P:
2 ([P21 Py Py ( 33K) " [P3 P3y] w

~

M:=F,(PK)



Linear fractional transformation (LFT)

Compute the transfer functions from w; to z;:

21

w1

Y1

21

M

M

uy

w1

Y2

22

M

U2

22

M o

21 =M1+ MipAe(I - MzzA[)_lel wy

Fy(M,Ay): lower LFT (£LFT) of M w.r.t Ay.

2y = [Mpp + M1 Ay (I - MllAu)_lMlzl wo

F,(M,A,): upper LFT (uLFT) of M w.r.t Ayp.



Revisit of the general framework

M =F,(PK)
G:Fu(RA)

z=F,(F¢(BK),A)w
= Fy(Fu(PA), K)w



Caveat

OLFT: Fo(M,Ap) = My + MiaAp(I — Mo Ap) "1 Moy

defined only when I — My Ay is invertible!

ULFT: Fyy (M, Ap) = Moy + Mo1 Ay (I — Mi1A) ™ My,
defined only when I — M 1Ay, is invertible!

(Come back at well-posedness)



Example

d
Compute the transfer matrix from | r | to yp using LFT.
n




Short summary

What we have learned:

@ The origins of uncertainties (dynamical + parametric)
@ How to represent (abstract) uncertainties in a unified framework

@ Linear fractional transformations

Questions remain:

@ How to choose A (dynamical + parametric)?

@ Which classes of transfer matrices are we interested in? (crucial
to the solvability of the robust control problem)
o What structures of A do we allow?

@ How to formulate the robust control problem?



State-space & I/O

System in state-space form:

X=Ax+Bu
y=Cx+Du

Input-output representation (transfer matrix): y(s) = G(s)u(s)
G(s)=C(sI-A)'B+D

A| B A B
Z.G(S) = [T‘T] (not C D]')

We call the state space model (A, B,C, D) a realization of G.
A | B Ay | B
1| B ], Gy = [ 2| By

Some algebra: G; = [

C1 Dz C2 D2
Ap 0 B A O B
GGy = B,C, A; | BiDy ,G1+Gy = 0 Ar B,
DG, C ‘ DDy C G ‘ Dy + Do

Exercise: write the state space realization of G'(s).




State space realization of LFT

State space realization of:
X=Ax+Biw+Bu Xk = Axxk + Bgy
z2=Cix+Dpjyw+Dpu u:CKxK+DKy

y:C2x+D12w+D22u

Xx = Ag X+ B (Cox+ Dipw + Doout)
u=Cxxg+DgCox+ DgDiow+ DgDoyou
(I-DgDy)u=Cgxg+DgCox+ DgDiow
Definition
The ZLFT is well-posed if I — DgDos, (or equivalently I — Dy, Dy,
I —Pyy(joo)K(joo)) is invertible.




State space realization of LFT

— P f— —

State space realization of:
X=Ax+Biw+Byu Xx = Axxx + Bgy
z=Cix+Djyw+Disu u=Cgxx+Dgy
y=Cox+Doyw+ Doou

B]_[A 0][x], [B: O][u],[Br
i) 710 Ax||xx]Tlo Billy|Tlo]|Y
1 -D
[ K| |U _ [ 0 CK X +[ 0 ]w
—Dzz 1 y Cz 0 XK D21

D3, I =Py (joo) I

I -D I —K(j
The /LFT is well-posed if and only if [_ KJ = [ K(JOO)] &
invertible.




Example

v 0 I 0 O I n _
zl=| 1| P -1 o| P ||w], Z :IA(”
y 1|-p I -1|-P||u Ry
Set A=0, thenn =0, and
z| | P -1 0| P w K
y|Tl -p 1 -1|-P ||ul u=nry

Thus according to Definition, the system is well-posed if and only if

I—(=P(joo))K(joo) =1+ P(joo)K(joo) is invertible.



Class exercise

Show that the connection is well-posed if and only if I — P(joo) K(joo)
is invertible:




Controllability and Observability

@ (A, B) is controllable (stabilizable) if
rank[A\]— A Bl=n

forall A € C (A € closed RHP);
@ (C, A) is observable (detectable) if

Al-A

rank c

has full column rank for all A € C (A € closed RHP).

We say that a state space realization (A, B, C, D) for G(S) is minimum if
(A, B) is controllable and (C, A) observable.



Poles and zeros

Definition
Let G(s) be a transfer matrix.
o peCisapoleifitis a pole of an entry of G(s).

@ ze€Cis a (transmission) zero if G(z) loses rank.

@ G is stable if every entry of G is stable.
o G is proper if G(joo) is finite; strictly proper if G(joo) = 0.
@ G is minimum phase if it does not have RHP zeros or time delays;
otherwise it is non-minimum phase.
Convention

All P (plant) and K (controller) in this course are assumed to be
proper.




H,-norm

G proper and stable. Hy,-norm of G:

IGlloo = sup {largest signular value of G(jw)}
weR

=:0(G(jw))
Scalar case: ||gllco =sup,, |1g(jw)l.

Equivalently (when defined):

IGull2 pow(Gu)
|Glloo = sup = sup —
uely luell2 pow(u)<1 pow(u)

172
where pow(u) := (limTaoo %I_TT ||u(t)||2dt) .

|Glloo is the La-gain of the system, and the largest possible
amplification of asymptotic signal power/energy.




H_-space

Definition
The Hy, space of transfer matrices consists of all matrix-valued
functions that are

@ Stable, i.e., analytic in the open RHP;

@ Bounded (in H,,-norm) in the open RHP.

The subspace of real rational Hy, functions is denoted by RH,

Implication: for G real rational

Ge H, < G stable and proper

Note that (by the maximum modulus theorem)

Gllo =supa(G(jw)) = sup o(G(s)) = sup o(G(S)
weR Re(s)=0 Re(s)>0



Internal stability of LFT

Definition
Let P, K be transfer matrices. The LFT

z w

~— P fe————
y’/ “‘u
K

is well-posed. Let (xp, xg) be its internal state. Then it is stable if
w =0 implies

(xp(8), xx (1)) = 0as t — oo

for any initial condition (xp(0), xg (0)).




Internal stability of LFT, cont’d

o | p )
Y U
K
K

1 (A o0]1[x] [B o0]1[u]l [B

= + w

XK 0 Ag||lxx 0 Bg|ly 0
[ 1 —Dk| [u :[0 CK X +[ 0 ]w
—Da» I ||y C 0 |[xx]| [D2a1

The /LFT is internally stable if and only if

I K| . . .
[—Dzz I ] is invertible
and

-1
A 0 B, 0 I -Dg 0 Cg|. .
Aq = [O AK] + [ 0 BK] [—Dzz I ] [Cz 0| Hurwitz.



Internal stability of LFT, cont’d

A [ B F

Aa = [0 Ax 0 Bg||—D22 1
Verify (exercise):

-1
I K| " _ | Aa | * 1| Ad | *
[p 7] =[P naa-raon <[]

Theorem

0 c,(}

Assume that the state-space realization for P,» and K are
stabilizable+detectable. The ¢LFT is internally stable if and only if

1 —-K(j
[ . (joo) is invertible, and
—P22 (]OO) 1
-1
I -K .
Py, I ] is stable

The second item is equivalent to:

I- Png)_1 stable & no unstable pole/zero cancellation in forming J
PyK.




Special case

@ the realizations of Py» and K are stabilizable+detectable, and
@ Py and K are stable,

then the /LFT is internally stable if and only if
det(I — Py, (joo)K(joo)) # 0 and det(I — Py (s)K(s)) has no closed
RHP zeros.




Example

z
y

w
u

[P -1 o] P
“|-P 1 -I|-P

Thus the system is internally stable if and only if:
@ [+ P(joo)K(joo) is invertible;
@ (I+PK)7!is stable;

@ there are no hidden unstable modes in P and K, and no unstable
pole-zero cancellation when forming PK.



