

### **Robust Control**

#### Lecture 1

Dongjun Wu



#### Course Information

- ~ 7 Lectures (Dongjun and Richard), ~ 7 exercises (Dongjun)
- Textbooks: Essentials of Robust Control etc.
- Schedule and material: see course page
- Examination: Exercises + Handins + Exam
- Collaboration encouraged on exercises and handins!
- Handins are due before the exercise session, email to: dongjun.wu@control.lth.se with subject Robust control handin X
- Prepare so that you are able to share your solutions to the exercises at the session. (Take a photo of handwritten notes or typeset)

# **Syllabus**

#### Lecture 1, [Zhou 9,3,4,5]

Abstract uncertainty, LFTs, well-posedness, internal stability, review of LTI.

Lecture 2, [Zhou 11,6, 8]

Uncertainty representation and performance specifications

Lecture 3, [Zhou 10]

 $\mu$ -synthesis

Lecture 4, [Zhou 14, 12, ...]

 $H_{\infty}$  synthesis, AREs

Lecture 5, [...]

 $H_{\infty}$ -loop shaping

Lecture 6

 $\nu$ -gap, IQC.

### Why robust control?

Uncertainty is the natural habitat of human life — though the hope of escaping uncertainty is the engine of human life pursuits.

— Bauman, Zygmunt. The art of life. John Wiley & Sons, 2013.



#### **Uncertainties**

#### Dynamic (frequency-dependent) uncertainties.

- Unmodeled dynamics at high frequency (phase completely unknown at high frequencies!)
- Imperfect measurements ⇒ uncertain inputs.
- Nonlinearities.

#### Parametric uncertainties.

- Inaccurate description of components.
- Variations of system parameters.



# Example (Doyle, 1986): spinning satelite

$$P(s) = \frac{1}{s^2 + a^2} \begin{bmatrix} s - a^2 & a(s+1) \\ -a(s+1) & s - a^2 \end{bmatrix}, \quad a = 10.$$



Controller: K = I. Closed-loop poles:  $\{-1, -1\} \Rightarrow$  stable.



Take  $\epsilon_1 = -\epsilon_2 = 0.11$ . Closed-loop poles:  $\{-2.1, 0.1\} \Rightarrow \text{unstable}$ .

#### **Essentials of classic control**

- Stability: Cope with unknown initial conditions & perturbations
- High-gain at low frequencies: Achieve tracking & reject disturbances
- **Low-gain** at *high frequency*: Reduce effect of sensor noise and large plant-model mismatch
- Gain- and phase-margins: Render stability and performance robust against (possibly large) plant-model mismatch
- **Tool**: Manual shaping of loop transfer function

**Modern Robust Control**: Set of tools for systematically coping with all these issues for complex interconnections and by directly imposing desired properties on the controlled system.

### **Workflow**

| Choose a nominal model (how?)                          |
|--------------------------------------------------------|
| ₩                                                      |
| Quantify uncertainties w.r.t. the nominal model (how?) |
| ₩                                                      |
| Specify desired robust performance                     |
| ₩                                                      |
| Solve the robust control problem                       |
| ₩                                                      |
| Validation                                             |
|                                                        |

#### **General framework**



$$\begin{bmatrix} v \\ z \\ y \end{bmatrix} = \begin{bmatrix} P_{11}(s) & P_{12}(s) & P_{13}(s) \\ P_{21}(s) & P_{22}(s) & P_{23}(s) \\ P_{31}(s) & P_{32}(s) & P_{33}(s) \end{bmatrix} \begin{bmatrix} \eta \\ w \\ u \end{bmatrix},$$
 
$$\eta = \Delta v$$
 
$$u = Ky$$

| $\overline{P}$ | nominal (generalized) plant                     |
|----------------|-------------------------------------------------|
| Δ              | all uncertainties                               |
| K              | controller                                      |
| w              | exogenous inputs (reference, disturbance, etc.) |
| z              | exogenous output (controlled variable)          |
| y              | controller input                                |
| и              | controller output                               |

## **Example: 1DOF system**

Write the following system in standard form. The plant is subject to additive uncertainty:  $P + \Delta$ .



$$u = Ky$$
$$\eta = \Delta v$$

# Other types of uncertainties

| $P + W_1 \Delta W_2$                | additive uncertainty       |
|-------------------------------------|----------------------------|
| $P(I + W_1 \Delta W_2)$             | input uncertainty          |
| $(I + W_1 \Delta W_2)P$             | output uncertainty         |
| $P(I+W_1\Delta W_2)^{-1}$           |                            |
| $(I+W_1\Delta W_2)^{-1}P$           |                            |
| $P(I+W_1\Delta W_2P)^{-1}$          |                            |
| $(R + \Delta_R)^{-1}(S + \Delta_S)$ |                            |
| coprime factorization:              | coprime factor uncertainty |
| $P = R^{-1}S$                       |                            |

# **Pulling out uncertainties**



# **Example: 1DOF system**



# The $M\Delta$ -structure (rob. perf. analysis)

When K is fixed:

$$\begin{bmatrix} v \\ z \\ y \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{bmatrix} \begin{bmatrix} \eta \\ w \\ u \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{bmatrix} \begin{bmatrix} \eta \\ w \\ Ky \end{bmatrix}$$

$$y = [P_{31} P_{32}] \begin{bmatrix} \eta \\ w \end{bmatrix} + P_{33}Ky \quad \Rightarrow \quad y = (I - P_{33}K)^{-1}[P_{31} P_{32}] \begin{bmatrix} \eta \\ w \end{bmatrix}$$

$$\begin{bmatrix} v \\ z \end{bmatrix} = \underbrace{\begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}}_{M:=F_{\ell}(P,K)} + \underbrace{\begin{bmatrix} P_{13} \\ P_{23} \end{bmatrix}}_{M:=F_{\ell}(P,K)} K(I - P_{33}K)^{-1}[P_{31} P_{32}] \underbrace{\begin{bmatrix} \eta \\ w \end{bmatrix}}_{W}$$

### Linear fractional transformation (LFT)

Compute the transfer functions from  $w_i$  to  $z_i$ :



# **Revisit of the general framework**



$$M = F_{\ell}(P, K)$$
$$G = F_{\iota\iota}(P, \Delta)$$

$$z = F_u(F_{\ell}(P, K), \Delta) w$$
$$= F_{\ell}(F_u(P, \Delta), K) w$$

#### Caveat

$$\ell \text{LFT: } F_\ell(M,\Delta_\ell) = M_{11} + M_{12} \Delta_\ell (I - M_{22} \Delta_\ell)^{-1} M_{21}$$
 defined only when  $I - M_{22} \Delta_\ell$  is invertible!

$$u$$
LFT:  $F_u(M,\Delta_\ell)=M_{22}+M_{21}\Delta_u(I-M_{11}\Delta_u)^{-1}M_{12}$  defined only when  $I-M_{11}\Delta_u$  is invertible!

(Come back at well-posedness)

#### **Example**

Compute the transfer matrix from  $\begin{bmatrix} d \\ r \\ n \end{bmatrix}$  to  $y_P$  using LFT.



## Short summary

#### What we have learned:

- The origins of uncertainties (dynamical + parametric)
- How to represent (abstract) uncertainties in a unified framework
- Linear fractional transformations

#### **Questions remain:**

- How to choose  $\Delta$  (dynamical + parametric)?
  - Which classes of transfer matrices are we interested in? (crucial to the solvability of the robust control problem)
  - What structures of  $\Delta$  do we allow?
- How to formulate the robust control problem?

### State-space & I/O

System in state-space form:

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

*Input-output* representation (transfer matrix): y(s) = G(s)u(s)

$$G(s) = C(sI - A)^{-1}B + D$$

$$=: G(s) = \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} \quad (\text{not } \begin{bmatrix} A & B \\ C & D \end{bmatrix}!)$$

We call the state space model (A, B, C, D) a realization of G.

Some algebra: 
$$G_1 = \begin{bmatrix} A_1 & B_1 \\ \hline C_1 & D_2 \end{bmatrix}$$
 ,  $G_2 = \begin{bmatrix} A_2 & B_2 \\ \hline C_2 & D_2 \end{bmatrix}$ 

$$G_1G_2 = \begin{bmatrix} A_2 & 0 & B_2 \\ B_1C_2 & A_1 & B_1D_2 \\ \hline D_1C_2 & C_1 & D_1D_2 \end{bmatrix}, G_1 + G_2 = \begin{bmatrix} A_1 & 0 & B_1 \\ 0 & A_2 & B_2 \\ \hline C_1 & C_2 & D_1 + D_2 \end{bmatrix}$$

**Exercise**: write the state space realization of  $G^{\top}(s)$ .

## State space realization of LFT



State space realization of:

$$\dot{x} = Ax + B_1 w + B_2 u \qquad \dot{x}_K = A_K x_K + B_K y$$

$$z = C_1 x + D_{11} w + D_{12} u \qquad u = C_K x_K + D_K y$$

$$y = C_2 x + D_{12} w + D_{22} u$$

$$\dot{x}_K = A_K x_k + B_K (C_2 x + D_{12} w + D_{22} u)$$

$$u = C_K x_K + D_K C_2 x + D_K D_{12} w + D_K D_{22} u$$

$$(I - D_K D_{22}) u = C_K x_K + D_K C_2 x + D_K D_{12} w$$

#### **Definition**

The  $\ell$ LFT is well-posed if  $I - D_K D_{22}$ , (or equivalently  $I - D_{22} D_K$ ,  $I - P_{22}(j\infty)K(j\infty)$ ) is invertible.

# State space realization of LFT



State space realization of:

$$\dot{x} = Ax + B_1 w + B_2 u$$
  $\dot{x}_K = A_K x_K + B_K y$   
 $z = C_1 x + D_{11} w + D_{12} u$   $u = C_K x_K + D_K y$   
 $y = C_2 x + D_{21} w + D_{22} u$ 

$$\begin{bmatrix} \dot{x} \\ \dot{x}_K \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & A_K \end{bmatrix} \begin{bmatrix} x \\ x_K \end{bmatrix} + \begin{bmatrix} B_2 & 0 \\ 0 & B_K \end{bmatrix} \begin{bmatrix} u \\ y \end{bmatrix} + \begin{bmatrix} B_1 \\ 0 \end{bmatrix} w$$

$$\begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix} \begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} 0 & C_K \\ C_2 & 0 \end{bmatrix} \begin{bmatrix} x \\ x_K \end{bmatrix} + \begin{bmatrix} 0 \\ D_{21} \end{bmatrix} w$$

The  $\ell$ LFT is well-posed if and only if  $\begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix} = \begin{bmatrix} I & -K(j\infty) \\ -P_{22}(j\infty) & I \end{bmatrix}$  is invertible.

## **Example**



$$\begin{bmatrix} v \\ z \\ y \end{bmatrix} = \begin{bmatrix} 0 & I & 0 & 0 & I \\ I & P & -I & 0 & P \\ -I & -P & I & -I & -P \end{bmatrix} \begin{bmatrix} \eta \\ w \\ u \end{bmatrix}, \qquad \begin{array}{c} \eta & = \Delta v \\ u & = Ky \end{array}$$

Set  $\Delta = 0$ , then  $\eta = 0$ , and

$$\begin{bmatrix} z \\ y \end{bmatrix} = \begin{bmatrix} P & -I & 0 & P \\ -P & I & -I & -P \end{bmatrix} \begin{bmatrix} w \\ u \end{bmatrix}, \qquad u = Ky$$

Thus according to Definition, the system is well-posed if and only if

$$I - (-P(j\infty))K(j\infty) = I + P(j\infty)K(j\infty)$$
 is invertible.

#### **Class exercise**

Show that the connection is well-posed if and only if  $I-P(j\infty)K(j\infty)$  is invertible:



# **Controllability and Observability**

(A, B) is controllable (stabilizable) if

$$rank[\lambda I - A B] = n$$

for all  $\lambda \in \mathbb{C}$  ( $\lambda \in \text{closed RHP}$ );

• (C, A) is observable (detectable) if

$$\operatorname{rank} \begin{bmatrix} \lambda I - A \\ C \end{bmatrix} = n$$

has full column rank for all  $\lambda \in \mathbb{C}$  ( $\lambda \in \text{closed RHP}$ ).

We say that a state space realization (A, B, C, D) for G(s) is minimum if (A, B) is controllable and (C, A) observable.

#### **Poles and zeros**

#### **Definition**

Let G(s) be a transfer matrix.

- $p \in \mathbb{C}$  is a *pole* if it is a pole of an entry of G(s).
- $z \in \mathbb{C}$  is a *(transmission) zero* if G(z) loses rank.
- *G* is *stable* if every entry of *G* is stable.
- *G* is proper if  $G(j\infty)$  is finite; strictly proper if  $G(j\infty) = 0$ .
- *G* is *minimum phase* if it does *not* have RHP zeros or time delays; otherwise it is *non-minimum phase*.

#### Convention

All P (plant) and K (controller) in this course are assumed to be proper.

### $H_{\infty}$ -norm

G proper and stable.  $H_{\infty}$ -norm of G:

$$\|G\|_{\infty} = \sup_{\omega \in \mathbb{R}} \{ \text{largest signular value of } G(j\omega) \}$$
  
=:  $\overline{\sigma}(G(j\omega))$ 

Scalar case:  $\|g\|_{\infty} = \sup_{\omega} |g(j\omega)|$ .

Equivalently (when defined):

$$\|G\|_{\infty} = \sup_{u \in L_2} \frac{\|Gu\|_2}{\|u\|_2} = \sup_{\text{pow}(u) \le 1} \frac{\text{pow}(Gu)}{\text{pow}(u)}$$

where pow(*u*) := 
$$\left(\lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} \|u(t)\|^2 dt\right)^{1/2}$$
.

 $\|G\|_{\infty}$  is the  $L_2$ -gain of the system, and the largest possible amplification of asymptotic signal power/energy.

# $H_{\infty}$ -space

#### **Definition**

The  $H_{\infty}$  space of transfer matrices consists of all matrix-valued functions that are

- Stable, i.e., analytic in the open RHP;
- **Bounded** (in  $H_{\infty}$ -norm) in the open RHP.

The subspace of real rational  $H_{\infty}$  functions is denoted by  $RH_{\infty}$ 

### Implication: for G real rational

$$G \in H_{\infty} \Leftrightarrow G$$
 stable and proper

Note that (by the maximum modulus theorem)

$$\|G\|_{\infty} = \sup_{\omega \in \mathbb{R}} \overline{\sigma}(G(j\omega)) = \sup_{\operatorname{Re}(s) \geq 0} \overline{\sigma}(G(s)) = \sup_{\operatorname{Re}(s) > 0} \overline{\sigma}(G(s))$$

## Internal stability of LFT

#### **Definition**

Let *P*, *K* be transfer matrices. The LFT



is well-posed. Let  $(x_P, x_K)$  be its internal state. Then it is *stable* if w = 0 implies

$$(x_P(t), x_K(t)) \rightarrow 0 \text{ as } t \rightarrow \infty$$

for any initial condition  $(x_P(0), x_K(0))$ .



# Internal stability of LFT, cont'd



$$\begin{bmatrix} \dot{x} \\ \dot{x}_K \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & A_K \end{bmatrix} \begin{bmatrix} x \\ x_K \end{bmatrix} + \begin{bmatrix} B_2 & 0 \\ 0 & B_K \end{bmatrix} \begin{bmatrix} u \\ y \end{bmatrix} + \begin{bmatrix} B_1 \\ 0 \end{bmatrix} w$$
 
$$\begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix} \begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} 0 & C_K \\ C_2 & 0 \end{bmatrix} \begin{bmatrix} x \\ x_K \end{bmatrix} + \begin{bmatrix} 0 \\ D_{21} \end{bmatrix} w$$

The  $\ell$ LFT is internally stable if and only if

$$\begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix}$$
 is invertible

and

$$A_{\mathrm{cl}} \coloneqq \begin{bmatrix} A & 0 \\ 0 & A_K \end{bmatrix} + \begin{bmatrix} B_2 & 0 \\ 0 & B_K \end{bmatrix} \begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix}^{-1} \begin{bmatrix} 0 & C_K \\ C_2 & 0 \end{bmatrix} \text{ is Hurwitz.}$$

## Internal stability of LFT, cont'd

$$A_{\text{cl}} := \begin{bmatrix} A & 0 \\ 0 & A_K \end{bmatrix} + \begin{bmatrix} B_2 & 0 \\ 0 & B_K \end{bmatrix} \begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix}^{-1} \begin{bmatrix} 0 & C_K \\ C_2 & 0 \end{bmatrix}$$

Verify (exercise):

$$\begin{bmatrix} I & -K \\ -P_{22} & I \end{bmatrix}^{-1} = \begin{bmatrix} A_{\text{cl}} & * \\ * & * \end{bmatrix} \text{ and } (I - P_{22}K)^{-1} = \begin{bmatrix} A_{\text{cl}} & * \\ * & * \end{bmatrix}$$

#### **Theorem**

Assume that the state-space realization for  $P_{22}$  and K are stabilizable+detectable. The  $\ell$ LFT is internally stable if and only if

$$ullet$$
  $\begin{bmatrix} I & -K(j\infty) \ -P_{22}(j\infty) & I \end{bmatrix}^{-1}$  is invertible, and

$$\begin{bmatrix}
I & -K \\
-P_{22} & I
\end{bmatrix}^{-1} \text{ is stable}$$

The second item is equivalent to:

 $(I-P_{22}K)^{-1}$  stable & no unstable pole/zero cancellation in forming  $P_{22}K$ .

### **Special case**

If

- ullet the realizations of  $P_{22}$  and K are stabilizable+detectable, and
- ullet  $P_{22}$  and K are stable,

then the  $\ell$ LFT is internally stable if and only if  $\det(I-P_{22}(j\infty)K(j\infty)) \neq 0$  and  $\det(I-P_{22}(s)K(s))$  has no closed RHP zeros.

### **Example**



$$\begin{bmatrix} z \\ y \end{bmatrix} = \begin{bmatrix} P & -I & 0 & P \\ -P & I & -I & -P \end{bmatrix} \begin{bmatrix} w \\ u \end{bmatrix}, \qquad u = Ky$$

Thus the system is internally stable if and only if:

- $I + P(j\infty)K(j\infty)$  is invertible;
- $(I + PK)^{-1}$  is stable;
- there are no hidden unstable modes in P and K, and no unstable pole-zero cancellation when forming PK.