Solution to Exercise 1

Dongjun Wu

1.

s = tf(’s?);

G = [1/s, 1/5];

G.InputName = ’G_in’;

G.OutputName = ’G_out’;

% Wr = tunableGain(’Wr’,1,1);

Wr = tf(1);

Wr.InputName = ’r’;

Wr.OutputName = ’y1’;

% Wrf = tunableGain(’Wrf’,1,1);

Wrf = tf(1);
Wrf.InputName = ’Wrf_in’;
Wrf.OutputName = ’Wrf_out’;

% Wzl = tunableGain(’Wz1’,1,1);
Wzl = tf(1);

Wzl.InputName = ’Wzl_in’;
Wz1.0utputName = ’z1’;

% W2 = tunableGain(’W2’,2,2);
W2 = tf(eye(2));

W2.InputName = ’W2_in’;
W2.0utputName = ’v2’;

% W1 = tunableGain(’W1’,2,1);
Wi = t£([1;11);

W1l.InputName = ’Wil_in’;
W1l.0utputName = ’v1’;

% Wd = tunableGain(’Wd’,1,1);
Wd = tf(1);

Wd.InputName = ’d’;
Wd.OutputName = ’Wd_out’;

% Wn = tunableGain(’Wn’,1,1);
Wn = tf(1);

Wn.InputName = ’n’;
Wn.OutputName = ’Wn_out’;

% Wz2 = tunableGain(’Wz2’,1,2);

Wz2 = tf(eye(2));

Wz2.InputName = ’Wz2_in’;

Wz2.0utputName = ’z2’;

icl = sumblk(’y2 = Wn_out + G_out + Wd_out’,1);

ic2 = sumblk(’G_in = etal + eta2 + u’,2);

ic3 = sumblk(’Wzl_in = Wrf_out + G_out + Wd_out’,1);
ic4 = sumblk(’Wrf_in = r’,1);

ich = sumblk(’Wi_in = G_out’,1);

ic6 = sumblk(’W2_in = u’, 2);

ic7 = sumblk(’Wz2_in = u’,2);

input_name = {’etal’, ’eta2’, ’d’, ’r’, ’n’, ’u’};
output_name = {’v1’, ’v2’, ’z1’, ’z2’, ’y1’, ’y2°};
gen_plant = connect(G, Wr, Wrf, Wzl, W2, Wd, Wi, Wn, Wz2,

icl, ic2, ic3, ic4, ich,

ic6, ic7, input_name, output_name);

Common mistakes:

% Mistake 1




Wrf.InputName = ’r’; % ’r’ has already been used as the InputName of Wr!
% Instead, one should use:

Wrf.InputName = ’Wrf_in’;

ic4 = sumblk(’Wrf_in = r?’);

% Mistake 2
connect(G, K, ...) % the generalized plant doesn’t include K!
2. (1)
T = Ax + Bu
y=Czx+ Du

The inverse of G is proper only if D is invertible since G(joo) = D. In this case, we find

g1 _[A-BD'C|BD™!
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(2) Let

or

Z1 = W1 7KU)2

zo = —Pw1 + wo
o -K . S
To find a state-space realization for | p Il consider the state-space realization for P
T = Az + Buwy
y1 = Cx + Dwy
and K
.%"K = AKSCK + BKw2
Y2 = Cxxi + Dgws
We have

z1 = w1 —y2 = w1 — (Cxrk + Drws)
20 = —y1 + wo = —(Cz + Dwy) + wo

from which we get

A 0 | B 0
I —-K] | 0 Ag | 0 Bg
-P I | |70 —Ckx| I -Dg

Now we can apply (1) to get
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3. The diagram means

z = Prijw + Pou
y = Paiw + Paou
u= K11y + K0
z2 = Koy + Kaow



We need to eliminate the internal variables u and y.

y = Porw + Pao(K11y + Ki2w)
= y= (I — PooK11) " (Paiw + PoaKi2w)
u=Ky1(I — PyaK11) " (Porw + PooK12w) + K1t
= K11(I = PuaK11) ' Poyw + (K1 + K11(I — P2oK11) ™' Poo K1)
Invoking the identity
(I —AB) A= A(I — BA)™,

(another useful identity
(I-AB)™' =1+ A(I-BA)™'B

) we get
Ko+ K11(I — PaoK11) ' PaoK12 = Kig + (I — K11 Pa2) ' K11 Paa K12
=Ko+ - K11P22)71(K11P22 — I+ 1)K
=Ko — K12+ (I — K11 Ps2) ' Ki2
=(I- K11P22)71K12
= u=Ki1(I — PyoK11) ' Poyw + (I — K11 Pa2) ' Ko
and hence
z = Prw + PpaK11(I — PagK11) ' Poyw + Pia(I — K11 P2) ' Ki91)
= (P11 + Pi2K11 (1 — P22K11)71P21)U) + Pio(I — K11P22)71K12UA/
= Fy(P, K11)w + Pio(I — K11 Pas) ' Ko
2= Ko (I — PooK11) H(Poaw + PaoKiow) + Koot
= Ko1(I — PooK11) ' Poyw + (Koo + Koy (I — Py K11) ' Pao Ky2)
= Ko1(I — PooK11) ' Poyw + Fy (K, Pa2)id
as desired.

4. On the one hand
|Gull3 = / ly(t)|?dt = / ly(jw)|?dw (Parseval’s identity)
R R
~ [ 16wt

< / |G (jw)|3 - Ju(jw)|*dw (]G (jw)|2is the matrix 2-norm)
R

< sup |G(jw)[3 - Jull3
w

from which we deduce

G
||||u1ﬁ||2 < sup {largest signular value of G(jw)}, Vu € L*\{0}.
2 weR

On the other hand, let wg be such that

|G (jwo)|2 = sup |G (jw)l2

Let f € L%, ||fll = 1 be such that f(jw) is concentrated around w = 0 and |G(jwo)|2 = |G(jwo)f(0)]. Take
u(t) = e7J@ot f(¢). Then a(jw) = f(j(w — wp)) and

|Gull? = / G (je) F (5w — o) P
~ |Gjwo) 2.



Thus ||Gul|2/|lul|2 can approximate the RHS arbitrarily well. Rigorous construction is left as an exercise, see also
Chapter 4.2, ZD.

5. (1) The interconnection is well-posed if and only if 1 + PCF(joo) is invertible, or PCF(joo) # —1.
(2) We claim that:

The system is internal stability if and only if
a) The system is well-posed;
b) (1+ PCF)~! is stable and there is no unstable mode cancellation in forming PCF.

( = ) Well-posedness is by definition. We prove b). If there is unstable cancellation, then this cancellation
appears in F'P, PC or CF. If for example, F'P has unstable mode cancellation, then —F and PC' has unstable
mode cancellation, which makes the system internally unstable, as the system can be seen as (see the box at the
bottom of Page 37 of the slides):

— PC

_F |«

Now the box at the bottom of Page 37 of the slides also implies that (1 + PCF)~! is stable. Hence b) is proven.
( <= ) If there is no unstable mode cancellation in forming PCF, then there is no hidden unstable modes in PC
neither. Therefore, the system is internally stable by invoking the box at the bottom of Page 37 of the slides and
the figure above.

To prove (2), we shall show that b) is equivalent to that Np No Ngp + MpMcMp having no roots in the closed
RHP.
(=) If NpNecNp(s9) + MpMcMp(sg) =0 for Re(sg) > 0, then since

1 _ McMpMp
1+ PCF NpNcNp + MpMcMp

is stable, NpNoNp(sg) = MpMcMp(sg) = 0. This implies that there is unstable mode cancellation in forming
PCF, a contradiction.

(<= ) If NoNcNp + MpMcMr has no roots in the closed RHP, then (1 + PCF)~! must be stable. Suppose
there is unstable mode cancellation in forming PCF, i.e., NpNoNp(so) = MpMcMFp(sg) = 0, for Re(sg) > 0,
then NpNeoNg(so) + MpMcMp(so) =0, i.e, so is a root of NpNoNp + MpMcMFp, a contradiction.

Alternative proof

Fact: The system is internally stable if and only if the the system is well-posed and the transfer matrix from
[d,r,n] to [u,y,v] is stable.

We prove (2) by applying this fact.

(<) If NpoNcNp + MpMcMp has no roots in the closed RHP. Then the transfer matrix is obviously stable,
as each of the nice transfer functions has the form %.

( = ) If the system is internally stable, then by the fact above, the nice transfer functions are stable. In
particular,

1 Mo MeMp c NeMrMp
1-{-]:’C'F'7]\fpv]\/vcf]\f}r:—|—]\4}3]\JC<]\JF7 1+PCF7NPNcNF+MPMcMF
PF NFNPMC P NPMFMC

1+ PCF  NpNeNp+ MpMcMp' 14 PCF~ NpNeNp + MpMcMp

are stable. If 3sg, Re(sg) > 0, s.t., NpNeNp(so) + MpMcMp(so) = 0, then
MpMcMF(So) = NchNF(So) =0

and
0= NcMFMp(So) = NFNPMC(SO) = NPMFMc(So) etc ...



If s — 59| Mc, then s —so t N¢, and thus s — sg| MpMp since s — so| No MpMp. Now, either s — so| Mp or s — so| Mp.
If s — so|MFp, then s — sg t Nr; by s — so|Noe NpMp and s — sg t N¢, we get s — sg| Mp. Similarly, if s — so|Mp,
then s — so| Mp. In both cases, we get s — so|M¢, Mp, Mp. But No NpNp contains (s — sg) as a factor. Therefore,
this must contradict the fact that (Mg, N¢), (Mg, Nr), (Mp, Np) are coprime factorizations.



