
Solution to Exercise 1

Dongjun Wu

1.
s = tf(’s’);
G = [1/s, 1/s];
G.InputName = ’G_in’;
G.OutputName = ’G_out’;
% Wr = tunableGain(’Wr’,1,1);
Wr = tf(1);
Wr.InputName = ’r’;
Wr.OutputName = ’y1’;
% Wrf = tunableGain(’Wrf’,1,1);
Wrf = tf(1);
Wrf.InputName = ’Wrf_in’;
Wrf.OutputName = ’Wrf_out’;
% Wz1 = tunableGain(’Wz1’,1,1);
Wz1 = tf(1);
Wz1.InputName = ’Wz1_in’;
Wz1.OutputName = ’z1’;
% W2 = tunableGain(’W2’,2,2);
W2 = tf(eye(2));
W2.InputName = ’W2_in’;
W2.OutputName = ’v2’;
% W1 = tunableGain(’W1’,2,1);
W1 = tf([1;1]);
W1.InputName = ’W1_in’;
W1.OutputName = ’v1’;
% Wd = tunableGain(’Wd’,1,1);
Wd = tf(1);
Wd.InputName = ’d’;
Wd.OutputName = ’Wd_out’;
% Wn = tunableGain(’Wn’,1,1);
Wn = tf(1);
Wn.InputName = ’n’;
Wn.OutputName = ’Wn_out’;
% Wz2 = tunableGain(’Wz2’,1,2);
Wz2 = tf(eye(2));
Wz2.InputName = ’Wz2_in’;
Wz2.OutputName = ’z2’;
ic1 = sumblk(’y2 = Wn_out + G_out + Wd_out’,1);
ic2 = sumblk(’G_in = eta1 + eta2 + u’,2);
ic3 = sumblk(’Wz1_in = Wrf_out + G_out + Wd_out’,1);
ic4 = sumblk(’Wrf_in = r’,1);
ic5 = sumblk(’W1_in = G_out’,1);
ic6 = sumblk(’W2_in = u’, 2);
ic7 = sumblk(’Wz2_in = u’,2);
input_name = {’eta1’, ’eta2’, ’d’, ’r’, ’n’, ’u’};
output_name = {’v1’, ’v2’, ’z1’, ’z2’, ’y1’, ’y2’};
gen_plant = connect(G, Wr, Wrf, Wz1, W2, Wd, W1, Wn, Wz2, ...

ic1, ic2, ic3, ic4, ic5, ic6, ic7, input_name, output_name);
Common mistakes:

% Mistake 1
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Wrf.InputName = ’r’; % ’r’ has already been used as the InputName of Wr!
% Instead, one should use:
Wrf.InputName = ’Wrf_in’;
ic4 = sumblk(’Wrf_in = r’);
% Mistake 2
connect(G, K, ...) % the generalized plant doesn’t include K!

2. (1)

ẋ = Ax+Bu

y = Cx+Du

The inverse of G is proper only if D is invertible since G(j∞) = D. In this case, we find

G−1 =

[
A−BD−1C BD−1

−D−1C D−1

]
(1)

(2) Let [
z1
z2

]
=

[
I −K

−P I

] [
w1

w2

]
or

z1 = w1 −Kw2

z2 = −Pw1 + w2

To find a state-space realization for
[

I −K
−P I

]
, consider the state-space realization for P

ẋ = Ax+Bw1

y1 = Cx+Dw1

and K

ẋK = AKxK +BKw2

y2 = CKxK +DKw2

We have

z1 = w1 − y2 = w1 − (CKxK +DKw2)

z2 = −y1 + w2 = −(Cx+Dw1) + w2

from which we get [
I −K

−P I

]
=


A 0 B 0
0 AK 0 BK

0 −CK I −DK

−C 0 −D I


Now we can apply (1) to get

[
I −K

−P I

]−1

=


[
A 0
0 AK

]
+

[
B 0
0 BK

] [
I −DK

−D I

]−1 [
0 CK

C 0

] [
B 0
0 BK

] [
I −DK

−D I

]−1

[
I −DK

−D I

]−1 [
0 CK

C 0

] [
I −DK

−D I

]−1

 .

3. The diagram means

z = P11w + P12u

y = P21w + P22u

u = K11y +K12ŵ

ẑ = K21y +K22ŵ
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We need to eliminate the internal variables u and y.

y = P21w + P22(K11y +K12ŵ)

=⇒ y = (I − P22K11)
−1(P21w + P22K12ŵ)

u = K11(I − P22K11)
−1(P21w + P22K12ŵ) +K12ŵ

= K11(I − P22K11)
−1P21w + (K12 +K11(I − P22K11)

−1P22K12)ŵ

Invoking the identity
(I −AB)−1A = A(I −BA)−1,

(another useful identity
(I −AB)−1 = I +A(I −BA)−1B

) we get

K12 +K11(I − P22K11)
−1P22K12 = K12 + (I −K11P22)

−1K11P22K12

= K12 + (I −K11P22)
−1(K11P22 − I + I)K12

= K12 −K12 + (I −K11P22)
−1K12

= (I −K11P22)
−1K12

=⇒ u = K11(I − P22K11)
−1P21w + (I −K11P22)

−1K12ŵ

and hence

z = P11w + P12K11(I − P22K11)
−1P21w + P12(I −K11P22)

−1K12ŵ)

= (P11 + P12K11(I − P22K11)
−1P21)w + P12(I −K11P22)

−1K12ŵ

= Fℓ(P,K11)w + P12(I −K11P22)
−1K12ŵ

ẑ = K21(I − P22K11)
−1(P21w + P22K12ŵ) +K22ŵ

= K21(I − P22K11)
−1P21w + (K22 +K21(I − P22K11)

−1P22K12)ŵ

= K21(I − P22K11)
−1P21w + Fu(K,P22)ŵ

as desired.

4. On the one hand

∥Gu∥22 =

∫
R
|y(t)|2dt =

∫
R
|y(jω)|2dω (Parseval’s identity)

=

∫
R
|G(jω)u(jω)|2dω

≤
∫
R
|G(jω)|22 · |u(jω)|2dω (|G(jω)|2is the matrix 2-norm)

≤ sup
ω

|G(jω)|22 · ∥u∥22

from which we deduce

∥Gu∥2
∥u∥2

≤ sup
ω∈R

{largest signular value of G(jω)}, ∀u ∈ L2\{0}.

On the other hand, let ω0 be such that

|G(jω0)|2 = sup
ω

|G(jω)|2

Let f ∈ L2, ∥f∥2 = 1 be such that f̂(jω) is concentrated around ω = 0 and |G(jω0)|2 = |G(jω0)f̂(0)|. Take
u(t) = e−jω0tf(t). Then û(jω) = f̂(j(ω − ω0)) and

∥Gu∥22 =

∫
R
|G(jω)f̂(j(ω − ω0))|2dω

≈ |G(jω0)|22.
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Thus ∥Gu∥2/∥u∥2 can approximate the RHS arbitrarily well. Rigorous construction is left as an exercise, see also
Chapter 4.2, ZD.

5. (1) The interconnection is well-posed if and only if 1 + PCF (j∞) is invertible, or PCF (j∞) ̸= −1.
(2) We claim that:

The system is internal stability if and only if

a) The system is well-posed;

b) (1 + PCF )−1 is stable and there is no unstable mode cancellation in forming PCF .

( =⇒ ) Well-posedness is by definition. We prove b). If there is unstable cancellation, then this cancellation
appears in FP , PC or CF . If for example, FP has unstable mode cancellation, then −F and PC has unstable
mode cancellation, which makes the system internally unstable, as the system can be seen as (see the box at the
bottom of Page 37 of the slides):

Now the box at the bottom of Page 37 of the slides also implies that (1 + PCF )−1 is stable. Hence b) is proven.
( ⇐= ) If there is no unstable mode cancellation in forming PCF , then there is no hidden unstable modes in PC
neither. Therefore, the system is internally stable by invoking the box at the bottom of Page 37 of the slides and
the figure above.

To prove (2), we shall show that b) is equivalent to that NPNCNF +MPMCMF having no roots in the closed
RHP.

( =⇒ ) If NPNCNF (s0) +MPMCMF (s0) = 0 for Re(s0) ≥ 0, then since

1

1 + PCF
=

MCMFMP

NPNCNF +MPMCMF

is stable, NPNCNF (s0) = MPMCMF (s0) = 0. This implies that there is unstable mode cancellation in forming
PCF , a contradiction.

( ⇐= ) If NPNCNF +MPMCMF has no roots in the closed RHP, then (1 + PCF )−1 must be stable. Suppose
there is unstable mode cancellation in forming PCF , i.e., NPNCNF (s0) = MPMCMF (s0) = 0, for Re(s0) ≥ 0,
then NPNCNF (s0) +MPMCMF (s0) = 0, i.e, s0 is a root of NPNCNF +MPMCMF , a contradiction.

Alternative proof
Fact: The system is internally stable if and only if the the system is well-posed and the transfer matrix from

[d, r, n] to [u, y, v] is stable.
We prove (2) by applying this fact.
( ⇐= ) If NPNCNF +MPMCMF has no roots in the closed RHP. Then the transfer matrix is obviously stable,

as each of the nice transfer functions has the form something
1+PCF .

( =⇒ ) If the system is internally stable, then by the fact above, the nice transfer functions are stable. In
particular,

1

1 + PCF
=

MCMFMP

NPNCNF +MPMCMF
,

C

1 + PCF
=

NCMFMP

NPNCNF +MPMCMF

PF

1 + PCF
=

NFNPMC

NPNCNF +MPMCMF
,

P

1 + PCF
=

NPMFMC

NPNCNF +MPMCMF

...

are stable. If ∃s0, Re(s0) ≥ 0, s.t., NPNCNF (s0) +MPMCMF (s0) = 0, then

MPMCMF (s0) = NPNCNF (s0) = 0

and
0 = NCMFMP (s0) = NFNPMC(s0) = NPMFMC(s0) etc ...
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If s−s0|MC , then s−s0 ∤ NC , and thus s−s0|MFMP since s−s0|NCMFMP . Now, either s−s0|MF or s−s0|MP .
If s − s0|MF , then s − s0 ∤ NF ; by s − s0|NCNFMP and s − s0 ∤ NC , we get s − s0|MP . Similarly, if s − s0|MP ,
then s− s0|MF . In both cases, we get s− s0|MC ,MF ,MP . But NCNFNP contains (s− s0) as a factor. Therefore,
this must contradict the fact that (MC , NC), (MF , NF ), (MP , NP ) are coprime factorizations.
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