Exercise 2

1. Consider a nominal plant

$$P(s) = \frac{1}{s+1}.$$

and a set of perturbed models

$$\Pi = \{ \tilde{P} : \tilde{P} = (1 + w\Delta)P, \ \Delta \in H_{\infty}, \ \|\Delta\|_{\infty} \le 1 \}$$

in which

$$w = \frac{0.125s + 0.25}{(0.125/4)s + 1}.$$

Find the extreme parameter values in each of the plants (a) - (g) below so that each plant belongs to the set Π . All parameters are assumed to be positive.

- (a) Neglected delay: find the largest θ for $P_a = Pe^{-\theta s}$;
- (b) Neglected lag: find the largest τ for $P_b = P\frac{1}{\tau s + 1}$; (c) Uncertain pole: find the range of a for $P_c = \frac{1}{s + a}$;
- (d) Uncertain pole (time constant form): find the range of T for $P_d = \frac{1}{T_{s+1}}$;
- (e) Neglected resonance: find the range of ζ for $P_e = P \frac{1}{(s/70)^2 + 2\zeta(s/70) + 1}$;
- (f) Neglected dynamics: find the largest integer m for $P_f = P\left(\frac{1}{0.01s+1}\right)^m$; (g) Neglected RHP-zeros: find the largest τ_z for $P_g = P\frac{-\tau_z s+1}{\tau_z s+1}$.
- 2. (a) Derive the 1) LFT structure and 2) the robust stability test of the uncertain models: $\tilde{P} = P(I + W_1 \Delta W_2 P)^{-1}, \|\Delta\|_{\infty} \le 1;$
- (b) Derive the expressions for the nominal and uncertain plants In Figure 1. Uncertainty: $\|[\Delta_N \Delta_M]\|_{\infty} \leq$ ϵ . Derive the LFT structure and RS test. Is the small gain theorem true for non-square Δ and M? (see Theorem 8.1 of ZD)

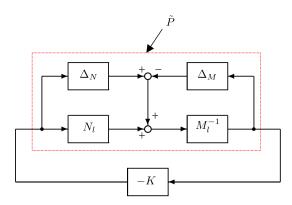


Figure 1: Coprime uncertainty

(c) In Figure 2, G is the nominal plant, K the controller, the uncertainties $\|\Delta_I\|_{\infty} \leq 1$, $\|\Delta_O\|_{\infty} \leq 1$. Derive the LFT structure of the system. Is it possible to derive a robust stability test for the system using the results in the lecture? What about when $\Delta_I = \Delta_O$?

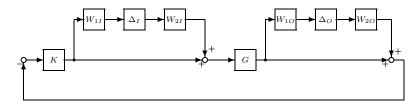


Figure 2: System with input and output multiplicative uncertainty

- 3. Let a unit feedback system with a controller $K(s) = \frac{1}{s}$ and a nominal plant model $P_o(s) =$ $\frac{s+1}{s^2+0.2s+5}$. Construct a smallest destabilizing $\Delta \in RH_{\infty}$ in the sense of H_{∞} -norm for each of the following cases.
 - (a) $P = P_o + \Delta$;

(b)
$$P = P_o(1 + W\Delta)$$
 with $W = \frac{0.2(s+10)}{s+50}$;
(c) $P = \frac{N + \Delta_n}{M + \Delta_m}$, $N = \frac{s+1}{(s+2)^2}$, $M = \frac{s^2 + 0.2s + 5}{(s+2)^2}$ and $\Delta = [\Delta_n \ \Delta_m]$.

4. (1) State and prove the small-gain theorem in the time domain. Assume that you do not know the frequency result (or the Nyquist theorem). In the time domain, the L_q gain of a system is defined as

$$\|G\|_q^q := \sup_{u \in L_q \backslash \{0\}} \frac{\|Gu\|^q}{\|u\|^q}$$

where $1 \leq q \leq \infty$.

- (2) Can you extend it to nonlinear case? You can refer to:
- David J. Hill. "A generalization of the small-gain theorem for nonlinear feedback systems." Automatica 27.6 (1991): 1043-1045.
- Arjan Van der Schaft. L2-gain and passivity techniques in nonlinear control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.
- 5. (1) Read the paper: Soura Dasgupta. "Kharitonov's theorem revisited." Systems & Control Letters 11.5 (1988): 381-384.
 - (2) Explain the Kharitonov's theorem and summarize a proof.